메뉴 건너뛰기




Volumn 49, Issue 5, 2019, Pages 1680-1693

Evolutionary multiobjective clustering and its applications to patient stratification

Author keywords

Clustering; Density peaks; Multiobjective optimization; Patient stratification

Indexed keywords

EVOLUTIONARY ALGORITHMS; FUNCTION EVALUATION; LINEAR PROGRAMMING; MULTIOBJECTIVE OPTIMIZATION; PATIENT TREATMENT; QUALITY CONTROL; ROBUSTNESS (CONTROL SYSTEMS);

EID: 85045207233     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCYB.2018.2817480     Document Type: Article
Times cited : (63)

References (53)
  • 1
    • 79959435199 scopus 로고    scopus 로고
    • Genome-wide genetic marker discovery and genotyping using next-generation sequencing
    • J. W. Davey et al., "Genome-wide genetic marker discovery and genotyping using next-generation sequencing," Nat. Rev. Genet., vol. 12, no. 7, pp. 499-510, 2011.
    • (2011) Nat. Rev. Genet. , vol.12 , Issue.7 , pp. 499-510
    • Davey, J.W.1
  • 2
    • 32944454936 scopus 로고    scopus 로고
    • An integrated computational/experimental model of tumor invasion
    • H. B. Frieboes et al., "An integrated computational/experimental model of tumor invasion," Cancer Res., vol. 66, no. 3, pp. 1597-1604, 2006.
    • (2006) Cancer Res. , vol.66 , Issue.3 , pp. 1597-1604
    • Frieboes, H.B.1
  • 3
    • 84874610717 scopus 로고    scopus 로고
    • Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype
    • E. Bresin et al., "Combined complement gene mutations in atypical hemolytic uremic syndrome influence clinical phenotype," J. Amer. Soc. Nephrol., vol. 24, no. 3, pp. 475-486, 2013.
    • (2013) J. Amer. Soc. Nephrol. , vol.24 , Issue.3 , pp. 475-486
    • Bresin, E.1
  • 5
    • 85012113418 scopus 로고    scopus 로고
    • Bayesian biclustering for patient stratification
    • S. Khakabimamaghani and M. Ester, "Bayesian biclustering for patient stratification," in Proc. Pac. Symp. Biocomput., vol. 21, 2016, pp. 345-356.
    • (2016) Proc. Pac. Symp. Biocomput. , vol.21 , pp. 345-356
    • Khakabimamaghani, S.1    Ester, M.2
  • 6
    • 84958040641 scopus 로고    scopus 로고
    • COPD subtypes identified by network-based clustering of blood gene expression
    • Y. Chang et al., "COPD subtypes identified by network-based clustering of blood gene expression," Genomics, vol. 107, nos. 2-3, pp. 51-58, 2016.
    • (2016) Genomics , vol.107 , Issue.2-3 , pp. 51-58
    • Chang, Y.1
  • 7
    • 85016483712 scopus 로고    scopus 로고
    • Revealing cancer subtypes with higher-order correlations applied to imaging and omics data
    • K. Graim et al., "Revealing cancer subtypes with higher-order correlations applied to imaging and omics data," BMC Med. Genomics, vol. 10, no. 1, p. 20, 2017.
    • (2017) BMC Med. Genomics , vol.10 , Issue.1 , pp. 20
    • Graim, K.1
  • 8
    • 85019861322 scopus 로고    scopus 로고
    • Unsupervised clustering of quantitative image phenotypes reveals Breast cancer subtypes with distinct prognoses and molecular pathways
    • J. Wu et al., "Unsupervised clustering of quantitative image phenotypes reveals breast cancer subtypes with distinct prognoses and molecular pathways," Clin. Cancer Res., vol. 23, no. 13, pp. 3334-3342, 2017.
    • (2017) Clin. Cancer Res. , vol.23 , Issue.13 , pp. 3334-3342
    • Wu, J.1
  • 9
    • 84901256826 scopus 로고    scopus 로고
    • On the selection of appropriate distances for gene expression data clustering
    • P. A. Jaskowiak, R. J. Campello, and I. G. Costa, "On the selection of appropriate distances for gene expression data clustering," BMC Bioinformat., vol. 15, no. 2, pp. 1-7, 2014.
    • (2014) BMC Bioinformat. , vol.15 , Issue.2 , pp. 1-7
    • Jaskowiak, P.A.1    Campello, R.J.2    Costa, I.G.3
  • 10
    • 85032672184 scopus 로고    scopus 로고
    • Entropy-based consensus clustering for patient stratification
    • H. Liu et al., "Entropy-based consensus clustering for patient stratification," Bioinformatics, vol. 33, no. 17, pp. 2691-2698, 2017.
    • (2017) Bioinformatics , vol.33 , Issue.17 , pp. 2691-2698
    • Liu, H.1
  • 11
    • 54349116573 scopus 로고    scopus 로고
    • Brightness preserving weight clustering histogram equalization
    • Aug.
    • N. Sengee and H. K. Choi, "Brightness preserving weight clustering histogram equalization," IEEE Trans. Consum. Electron., vol. 54, no. 3, pp. 1329-1337, Aug. 2008.
    • (2008) IEEE Trans. Consum. Electron. , vol.54 , Issue.3 , pp. 1329-1337
    • Sengee, N.1    Choi, H.K.2
  • 12
    • 84903594807 scopus 로고    scopus 로고
    • Herd clustering: A syner-gistic data clustering approach using collective intelligence
    • Oct.
    • K.-C. Wong, C. Peng, Y. Li, and T.-M. Chan, "Herd clustering: A syner-gistic data clustering approach using collective intelligence," Appl. Soft Comput., vol. 23, pp. 61-75, Oct. 2014.
    • (2014) Appl. Soft Comput. , vol.23 , pp. 61-75
    • Wong, K.-C.1    Peng, C.2    Li, Y.3    Chan, T.-M.4
  • 13
    • 80052263784 scopus 로고    scopus 로고
    • Sample-weighted clustering methods
    • J. Yu, M.-S. Yang, and E. S. Lee, "Sample-weighted clustering methods," Comput. Math. Appl., vol. 62, no. 5, pp. 2200-2208, 2011.
    • (2011) Comput. Math. Appl. , vol.62 , Issue.5 , pp. 2200-2208
    • Yu, J.1    Yang, M.-S.2    Lee, E.S.3
  • 15
    • 0042312608 scopus 로고    scopus 로고
    • Feature weighting in k-means clustering
    • D. S. Modha and W. S. Spangler, "Feature weighting in k-means clustering," Mach. Learn., vol. 52, no. 3, pp. 217-237, 2003.
    • (2003) Mach. Learn. , vol.52 , Issue.3 , pp. 217-237
    • Modha, D.S.1    Spangler, W.S.2
  • 16
    • 80055024879 scopus 로고    scopus 로고
    • Minkowski metric, feature weighting and anomalous cluster initializing in K-means clustering
    • R. C. De Amorim and B. Mirkin, "Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering," Pattern Recognit., vol. 45, no. 3, pp. 1061-1075, 2012.
    • (2012) Pattern Recognit. , vol.45 , Issue.3 , pp. 1061-1075
    • De Amorim, R.C.1    Mirkin, B.2
  • 17
    • 26944481948 scopus 로고    scopus 로고
    • Subspace clustering of text documents with feature weighting k-means algorithm
    • L. Jing, M. K. Ng, J. Xu, and J. Z. Huang, "Subspace clustering of text documents with feature weighting k-means algorithm," in Proc. PAKDD, 2005, pp. 802-812.
    • (2005) Proc. PAKDD , pp. 802-812
    • Jing, L.1    Ng, M.K.2    Xu, J.3    Huang, J.Z.4
  • 18
    • 77957837752 scopus 로고    scopus 로고
    • Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting
    • S. Güneş, K. Polat, and Ş. Yosunkaya, "Efficient sleep stage recognition system based on EEG signal using k-means clustering based feature weighting," Expert Syst. Appl., vol. 37, no. 12, pp. 7922-7928, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 7922-7928
    • Güneş, S.1    Polat, K.2    Yosunkaya, S.3
  • 19
    • 84867697711 scopus 로고    scopus 로고
    • Feature weighting fuzzy clustering integrating rough sets and shadowed sets
    • L. Wang and J. Wang, "Feature weighting fuzzy clustering integrating rough sets and shadowed sets," Int. J. Pattern Recognit. Artif. Intell., vol. 26, no. 4, 2012, Art. no. 1250010.
    • (2012) Int. J. Pattern Recognit. Artif. Intell. , vol.26 , Issue.4
    • Wang, L.1    Wang, J.2
  • 20
    • 18144419389 scopus 로고    scopus 로고
    • Automated variable weighting in k-means type clustering
    • May
    • J. Z. Huang, M. K. Ng, H. Rong, and Z. Li, "Automated variable weighting in k-means type clustering," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 5, pp. 657-668, May 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.5 , pp. 657-668
    • Huang, J.Z.1    Ng, M.K.2    Rong, H.3    Li, Z.4
  • 21
    • 33947227459 scopus 로고    scopus 로고
    • An evolutionary approach to multiobjective clustering
    • Feb.
    • J. Handl and J. Knowles, "An evolutionary approach to multiobjective clustering," IEEE Trans. Evol. Comput., vol. 11, no. 1, pp. 56-76, Feb. 2007.
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.1 , pp. 56-76
    • Handl, J.1    Knowles, J.2
  • 23
    • 62949240361 scopus 로고    scopus 로고
    • Combining pareto-optimal clusters using supervised learning for identifying coexpressed genes
    • U. Maulik, A. Mukhopadhyay, and S. Bandyopadhyay, "Combining Pareto-optimal clusters using supervised learning for identifying coexpressed genes," BMC Bioinformat., vol. 10, no. 1, p. 27, 2009.
    • (2009) BMC Bioinformat. , vol.10 , Issue.1 , pp. 27
    • Maulik, U.1    Mukhopadhyay, A.2    Bandyopadhyay, S.3
  • 24
    • 70349860274 scopus 로고    scopus 로고
    • Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes
    • Oct.
    • A. Mukhopadhyay, U. Maulik, and S. Bandyopadhyay, "Multiobjective genetic algorithm-based fuzzy clustering of categorical attributes," IEEE Trans. Evol. Comput., vol. 13, no. 5, pp. 991-1005, Oct. 2009.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.5 , pp. 991-1005
    • Mukhopadhyay, A.1    Maulik, U.2    Bandyopadhyay, S.3
  • 25
    • 77349089680 scopus 로고    scopus 로고
    • Data clustering using multi-objective differential evolution algorithms
    • K. Suresh, D. Kundu, S. Ghosh, S. Das, and A. Abraham, "Data clustering using multi-objective differential evolution algorithms," Fundamenta Informaticae, vol. 97, no. 4, pp. 381-403, 2009.
    • (2009) Fundamenta Informaticae , vol.97 , Issue.4 , pp. 381-403
    • Suresh, K.1    Kundu, D.2    Ghosh, S.3    Das, S.4    Abraham, A.5
  • 26
    • 84959542710 scopus 로고    scopus 로고
    • Multiobjective clustering analysis using particle swarm optimization
    • Aug.
    • G. Armano and M. R. Farmani, "Multiobjective clustering analysis using particle swarm optimization," Expert Syst. Appl., vol. 55, pp. 184-193, Aug. 2016.
    • (2016) Expert Syst. Appl. , vol.55 , pp. 184-193
    • Armano, G.1    Farmani, M.R.2
  • 27
    • 70349121272 scopus 로고    scopus 로고
    • A new multiobjective simulated annealing based clustering technique using symmetry
    • S. Saha and S. Bandyopadhyay, "A new multiobjective simulated annealing based clustering technique using symmetry," Pattern Recognit. Lett., vol. 30, no. 15, pp. 1392-1403, 2009.
    • (2009) Pattern Recognit. Lett. , vol.30 , Issue.15 , pp. 1392-1403
    • Saha, S.1    Bandyopadhyay, S.2
  • 28
    • 84919930171 scopus 로고    scopus 로고
    • Ant colony optimization based clustering methodology
    • Mar.
    • T. İnkaya, S. Kayaligil, and N. E. Özdemirel, "Ant colony optimization based clustering methodology," Appl. Soft Comput., vol. 28, pp. 301-311, Mar. 2015.
    • (2015) Appl. Soft Comput. , vol.28 , pp. 301-311
    • Inkaya, T.1    Kayaligil, S.2    Özdemirel, N.E.3
  • 29
    • 84903289127 scopus 로고    scopus 로고
    • Clustering by fast search and find of density peaks
    • A. Rodriguez and L. Alessandro, "Clustering by fast search and find of density peaks," Science, vol. 344, no. 6191, pp. 1492-1496, 2014.
    • (2014) Science , vol.344 , Issue.6191 , pp. 1492-1496
    • Rodriguez, A.1    Alessandro, L.2
  • 30
    • 84946487753 scopus 로고    scopus 로고
    • Comparing the performance of biomedical clustering methods
    • C. Wiwie, J. Baumbach, and R. Röttger, "Comparing the performance of biomedical clustering methods," Nat. Methods, vol. 12, no. 11, pp. 1033-1038, 2015.
    • (2015) Nat. Methods , vol.12 , Issue.11 , pp. 1033-1038
    • Wiwie, C.1    Baumbach, J.2    Röttger, R.3
  • 31
    • 84955569035 scopus 로고    scopus 로고
    • Structure and specificity of the RNA-guided endonuclease cas9 during DNA interrogation, target binding and cleavage
    • E. A. Josephs et al., "Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage," Nucleic Acids Res., vol. 43, no. 18, pp. 8924-8941, 2015.
    • (2015) Nucleic Acids Res. , vol.43 , Issue.18 , pp. 8924-8941
    • Josephs, E.A.1
  • 32
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D: A multiobjective evolutionary algorithm based on decomposition
    • Dec.
    • Q. Zhang and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," IEEE Trans. Evol. Comput., vol. 11, no. 6, pp. 712-731, Dec. 2007.
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 33
    • 84956482660 scopus 로고    scopus 로고
    • Multi-objective optimization
    • Boston, MA, USA: Springer
    • K. Deb, "Multi-objective optimization," in Search Methodologies. Boston, MA, USA: Springer, 2014, pp. 403-449. [Online]. Available: https://scholar.google.co.jp/scholar?hl=zh-CN&as-sdt=2005&sciodt=0%2C5&cites=5259926186684130741&scipsc=&q=Multi-objective+optimization&btnG=
    • (2014) Search Methodologies , pp. 403-449
    • Deb, K.1
  • 34
    • 33644978280 scopus 로고    scopus 로고
    • Evolutionary multi-objective optimization: A historical view of the field
    • Feb.
    • C. A. C. Coello, "Evolutionary multi-objective optimization: A historical view of the field," IEEE Comput. Intell. Mag., vol. 1, no. 1, pp. 28-36, Feb. 2006.
    • (2006) IEEE Comput. Intell. Mag. , vol.1 , Issue.1 , pp. 28-36
    • Coello, C.A.C.1
  • 35
    • 84897505942 scopus 로고    scopus 로고
    • A survey of multi-objective metaheuristics applied to structural optimization
    • G. R. Zavala, A. J. Nebro, F. Luna, and C. A. C. Coello, "A survey of multi-objective metaheuristics applied to structural optimization," Struct. Multidiscipl. Optim., vol. 49, no. 4, pp. 537-558, 2014.
    • (2014) Struct. Multidiscipl. Optim. , vol.49 , Issue.4 , pp. 537-558
    • Zavala, G.R.1    Nebro, A.J.2    Luna, F.3    Coello, C.A.C.4
  • 36
    • 84987187193 scopus 로고
    • Identifying aggregates in hypertext structures
    • San Antonio, TX, USA
    • R. A. Botafogo and B. Shneiderman, "Identifying aggregates in hypertext structures," in Proc. 3rd Annu. ACM Conf. Hypertext, San Antonio, TX, USA, 1991, pp. 63-74.
    • (1991) Proc. 3rd Annu. ACM Conf. Hypertext , pp. 63-74
    • Botafogo, R.A.1    Shneiderman, B.2
  • 37
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy C-means model
    • Aug.
    • N. R. Pal and J. C. Bezdek, "On cluster validity for the fuzzy C-means model," IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 370-379, Aug. 1995.
    • (1995) IEEE Trans. Fuzzy Syst. , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 38
    • 0036937614 scopus 로고    scopus 로고
    • Performance evaluation of some clustering algorithms and validity indices
    • Dec.
    • U. Maulik and S. Bandyopadhyay, "Performance evaluation of some clustering algorithms and validity indices," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 12, pp. 1650-1654, Dec. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.12 , pp. 1650-1654
    • Maulik, U.1    Bandyopadhyay, S.2
  • 39
    • 0348108148 scopus 로고    scopus 로고
    • Validity index for crisp and fuzzy clusters
    • M. K. Pakhira, S. Bandyopadhyay, and U. Maulik, "Validity index for crisp and fuzzy clusters," Pattern Recognit., vol. 37, no. 3, pp. 487-501, 2004.
    • (2004) Pattern Recognit. , vol.37 , Issue.3 , pp. 487-501
    • Pakhira, M.K.1    Bandyopadhyay, S.2    Maulik, U.3
  • 41
    • 0042377235 scopus 로고    scopus 로고
    • Constrained K-means clustering with background knowledge
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl, "Constrained K-means clustering with background knowledge," in Proc. ICML, vol. 1, 2001, pp. 577-584.
    • (2001) Proc. ICML , vol.1 , pp. 577-584
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schrödl, S.4
  • 42
    • 13844276694 scopus 로고    scopus 로고
    • Cluster analysis for gene expression data: A survey
    • Nov.
    • D. Jiang, C. Tang, and A. Zhang, "Cluster analysis for gene expression data: A survey," IEEE Trans. Knowl. Data Eng., vol. 16, no. 11, pp. 1370-1386, Nov. 2004.
    • (2004) IEEE Trans. Knowl. Data Eng. , vol.16 , Issue.11 , pp. 1370-1386
    • Jiang, D.1    Tang, C.2    Zhang, A.3
  • 43
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, "A density-based algorithm for discovering clusters in large spatial databases with noise," in Proc. Kdd, vol. 96, 1996, pp. 226-231.
    • (1996) Proc. Kdd , vol.96 , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 44
    • 77954195198 scopus 로고    scopus 로고
    • LCE: A link-based cluster ensemble method for improved gene expression data analysis
    • N. Iam-On, T. Boongoen, and S. Garrett, "LCE: A link-based cluster ensemble method for improved gene expression data analysis," Bioinformatics, vol. 26, no. 12, pp. 1513-1519, 2010.
    • (2010) Bioinformatics , vol.26 , Issue.12 , pp. 1513-1519
    • Iam-On, N.1    Boongoen, T.2    Garrett, S.3
  • 45
    • 84949942848 scopus 로고    scopus 로고
    • Consensus clustering in gene expression
    • Naples, Italy
    • P. Galdi, F. Napolitano, and R. Tagliaferri, "Consensus clustering in gene expression," in Proc. Int. Meeting Comput. Intell. Methods Bioinformat. Biostat., vol. 8623. Naples, Italy, 2015, pp. 57-67. [Online]. Available: https://scholar.google.co.jp/scholar?hl=zh-CN&as-sdt=0%2C5&q=Consensus+clustering+in+gene+expression&btnG=
    • (2015) Proc. Int. Meeting Comput. Intell. Methods Bioinformat. Biostat. , vol.8623 , pp. 57-67
    • Galdi, P.1    Napolitano, F.2    Tagliaferri, R.3
  • 46
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Apr.
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182-197, Apr. 2002.
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 47
    • 84875528853 scopus 로고    scopus 로고
    • A grid-based evolutionary algorithm for many-objective optimization
    • Oct.
    • S. Yang, M. Li, X. Liu, and J. Zheng, "A grid-based evolutionary algorithm for many-objective optimization," IEEE Trans. Evol. Comput., vol. 17, no. 5, pp. 721-736, Oct. 2013.
    • (2013) IEEE Trans. Evol. Comput. , vol.17 , Issue.5 , pp. 721-736
    • Yang, S.1    Li, M.2    Liu, X.3    Zheng, J.4
  • 48
    • 79951564654 scopus 로고    scopus 로고
    • Hype: An algorithm for fast hypervolume-based many-objective optimization
    • J. Bader and E. Zitzler, "Hype: An algorithm for fast hypervolume-based many-objective optimization," Evol. Comput., vol. 19, no. 1, pp. 45-76, 2011.
    • (2011) Evol. Comput. , vol.19 , Issue.1 , pp. 45-76
    • Bader, J.1    Zitzler, E.2
  • 50
    • 3142756516 scopus 로고    scopus 로고
    • Handling multiple objectives with particle swarm optimization
    • Jun.
    • C. A. C. Coello, G. T. Pulido, and M. S. Lechuga, "Handling multiple objectives with particle swarm optimization," IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 256-279, Jun. 2004.
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 256-279
    • Coello, C.A.C.1    Pulido, G.T.2    Lechuga, M.S.3
  • 51
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • Nov.
    • L. V. D. Maaten and G. Hinton, "Visualizing data using t-SNE," J. Mach. Learn. Res., vol. 9, pp. 2579-2605, Nov. 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 2579-2605
    • Maaten, L.V.D.1    Hinton, G.2
  • 53
    • 84895516704 scopus 로고    scopus 로고
    • Similarity network fusion for aggregating data types on a genomic scale
    • B. Wang et al., "Similarity network fusion for aggregating data types on a genomic scale," Nat. Methods, vol. 11, no. 3, pp. 333-337, 2014.
    • (2014) Nat. Methods , vol.11 , Issue.3 , pp. 333-337
    • Wang, B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.