메뉴 건너뛰기




Volumn 23, Issue , 2014, Pages 61-75

Herd Clustering: A synergistic data clustering approach using collective intelligence

Author keywords

Collective intelligence; Herd behavior; Heuristic; Natural computing

Indexed keywords

BEHAVIORAL RESEARCH; CLUSTER ANALYSIS; DATA MINING;

EID: 84903594807     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2014.05.034     Document Type: Article
Times cited : (27)

References (73)
  • 1
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan Automatic subspace clustering of high dimensional data for data mining applications SIGMOD Rec. 27 June 1998 94 105 (Pubitemid 128655960)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, P.4
  • 3
    • 84960565609 scopus 로고
    • A simple model of herd behavior
    • A.V. Banerjee A simple model of herd behavior Q. J. Econ. 107 3 1992 797 817
    • (1992) Q. J. Econ. , vol.107 , Issue.3 , pp. 797-817
    • Banerjee, A.V.1
  • 4
    • 3142665421 scopus 로고    scopus 로고
    • Correlation clustering
    • Special Issue on Theoretical Advances in Data Clustering
    • N. Bansal, A. Blum, and S. Chawla Correlation clustering Mach. Learn. J. 2004 86 113 Special Issue on Theoretical Advances in Data Clustering
    • (2004) Mach. Learn. J. , pp. 86-113
    • Bansal, N.1    Blum, A.2    Chawla, S.3
  • 6
    • 33846349887 scopus 로고
    • A hierarchical O(N log N) force-calculation algorithm
    • J. Barnes, and P. Hut A hierarchical O(N log N) force-calculation algorithm Nature 324 December (6096) 1986 446 449
    • (1986) Nature , vol.324 , Issue.DECEMBER 6096 , pp. 446-449
    • Barnes, J.1    Hut, P.2
  • 8
    • 57349146373 scopus 로고    scopus 로고
    • Lessons from the netflix prize challenge
    • R.M. Bell, and Y. Koren Lessons from the netflix prize challenge SIGKDD Explor. Newslett. 9 December (2) 2007 75 79
    • (2007) SIGKDD Explor. Newslett. , vol.9 , Issue.DECEMBER 2 , pp. 75-79
    • Bell, R.M.1    Koren, Y.2
  • 9
    • 33750882505 scopus 로고    scopus 로고
    • Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities
    • DOI 10.1038/nbt1246, PII NBT1246
    • M.F. Berger, A.A. Philippakis, A.M. Qureshi, F.S. He, P.W. Estep, and M.L. Bulyk Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities Nat. Biotechnol. 24 November 2006 1429 1435 (Pubitemid 44722107)
    • (2006) Nature Biotechnology , vol.24 , Issue.11 , pp. 1429-1435
    • Berger, M.F.1    Philippakis, A.A.2    Qureshi, A.M.3    He, F.S.4    Estep III, P.W.5    Bulyk, M.L.6
  • 10
    • 39449104740 scopus 로고    scopus 로고
    • Pattern recognition and machine learning
    • Springer-Verlag New York, Inc. Secaucus, NJ, USA
    • C.M. Bishop Pattern Recognition and Machine Learning Information Science and Statistics 2006 Springer-Verlag New York, Inc. Secaucus, NJ, USA
    • (2006) Information Science and Statistics
    • Bishop, C.M.1
  • 11
    • 33947188020 scopus 로고    scopus 로고
    • Newtonian clustering: An approach based on molecular dynamics and global optimization
    • DOI 10.1016/j.patcog.2006.07.012, PII S0031320306003463
    • K. Blekas, and I.E. Lagaris Newtonian clustering: an approach based on molecular dynamics and global optimization Pattern Recogn. 40 June 2007 1734 1744 (Pubitemid 46399774)
    • (2007) Pattern Recognition , vol.40 , Issue.6 , pp. 1734-1744
    • Blekas, K.1    Lagaris, I.E.2
  • 12
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux Gilles, and Govaert Gard Gaussian parsimonious clustering models Pattern Recogn. 28 5 1995 781 793
    • (1995) Pattern Recogn. , vol.28 , Issue.5 , pp. 781-793
    • Gilles, C.1    Gard, G.2
  • 13
    • 34547844155 scopus 로고    scopus 로고
    • RankMotif++: A motif-search algorithm that accounts for relative ranks of K-mers in binding transcription factors
    • i72-79
    • X. Chen, T.R. Hughes, and Q. Morris RankMotif++: a motif-search algorithm that accounts for relative ranks of K-mers in binding transcription factors Bioinformatics 23 July 2007 781 793 i72-79
    • (2007) Bioinformatics , vol.23 , Issue.JULY , pp. 781-793
    • Chen, X.1    Hughes, T.R.2    Morris, Q.3
  • 14
    • 0742290001 scopus 로고    scopus 로고
    • A fuzzy relational clustering algorithm based on a dissimilarity measure extracted from data
    • P. Corsini, B. Lazzerini, and F. Marcelloni A fuzzy relational clustering algorithm based on a dissimilarity measure extracted from data IEEE Trans. Syst. Man Cybern. B 34 February (1) 2004 775 781
    • (2004) IEEE Trans. Syst. Man Cybern. B , vol.34 , Issue.FEBRUARY 1 , pp. 775-781
    • Corsini, P.1    Lazzerini, B.2    Marcelloni, F.3
  • 16
    • 0035972909 scopus 로고    scopus 로고
    • Looking for natural patterns in data. Part 1. Density-based approach
    • DOI 10.1016/S0169-7439(01)00111-3, PII S0169743901001113
    • M. Daszykowski, B. Walczak, and D.L. Massart Looking for natural patterns in data: Part 1. Density-based approach Chemometr. Intell. Lab. Syst. 56 2 2001 83 92 (Pubitemid 32452125)
    • (2001) Chemometrics and Intelligent Laboratory Systems , vol.56 , Issue.2 , pp. 83-92
    • Daszykowski, M.1    Walczak, B.2    Massart, D.L.3
  • 20
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • DOI 10.1016/j.patcog.2007.05.018, PII S0031320307002580
    • F. Camastra, F. Masulli, S. Rovetta, and M. Filippone A survey of kernel and spectral methods for clustering Pattern Recogn. 41 1 2008 176 190 (Pubitemid 47284212)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4
  • 21
    • 0000764772 scopus 로고
    • The use of multiple measurements in taxonomic problems
    • R.A. Fisher The use of multiple measurements in taxonomic problems Ann. Eugen. 7 1936 179 188
    • (1936) Ann. Eugen. , vol.7 , pp. 179-188
    • Fisher, R.A.1
  • 23
    • 0031192257 scopus 로고    scopus 로고
    • Clustering by competitive agglomeration
    • PII S0031320396001409
    • H. Frigui, and R. Krishnapuram Clustering by competitive agglomeration Pattern Recogn. 30 7 1997 1109 1119 (Pubitemid 127406518)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1109-1119
    • Frigui, H.1    Krishnapuram, R.2
  • 26
    • 80054817510 scopus 로고
    • On the computational complexity of clustering and related problems
    • R. Drenick, F. Kozin, Lecture Notes in Control and Information Sciences Springer Berlin/Heidelberg 10.1007/BFb0006133
    • T. Gonzalez On the computational complexity of clustering and related problems R. Drenick, F. Kozin, System Modeling and Optimization Lecture Notes in Control and Information Sciences vol. 38 1982 Springer Berlin/Heidelberg 174 182 10.1007/BFb0006133
    • (1982) System Modeling and Optimization , vol.38 , pp. 174-182
    • Gonzalez, T.1
  • 27
    • 0025902445 scopus 로고
    • Symbolic clustering using a new dissimilarity measure
    • DOI 10.1016/0031-3203(91)90022-W
    • K. Chidananda Gowda, and E. Diday Symbolic clustering using a new dissimilarity measure Pattern Recogn. 24 6 1991 567 578 (Pubitemid 21650079)
    • (1991) Pattern Recognition , vol.24 , Issue.6 , pp. 567-578
    • Chidananda Gowda, K.1    Diday, E.2
  • 28
    • 0000396658 scopus 로고
    • A fast algorithm for particle simulations
    • L. Greengard, and V. Rokhlin A fast algorithm for particle simulations J. Comput. Phys. 73 December 1987 325 348
    • (1987) J. Comput. Phys. , vol.73 , Issue.DECEMBER , pp. 325-348
    • Greengard, L.1    Rokhlin, V.2
  • 31
    • 84863749915 scopus 로고    scopus 로고
    • Uncertain centroid based partitional clustering of uncertain data
    • F. Gullo, and A. Tagarelli Uncertain centroid based partitional clustering of uncertain data Proc. VLDB Endowment 5 7 2012 610 621
    • (2012) Proc. VLDB Endowment , vol.5 , Issue.7 , pp. 610-621
    • Gullo, F.1    Tagarelli, A.2
  • 34
    • 0030332781 scopus 로고    scopus 로고
    • A probabilistic classification system for predicting the cellular localization sites of proteins
    • P. Horton, and K. Nakai A probabilistic classification system for predicting the cellular localization sites of proteins Proc. Int. Conf. Intell. Syst. Mol. Biol. 4 1996 109 115
    • (1996) Proc. Int. Conf. Intell. Syst. Mol. Biol. , vol.4 , pp. 109-115
    • Horton, P.1    Nakai, K.2
  • 35
    • 67649410207 scopus 로고    scopus 로고
    • Unsupervised active learning based on hierarchical graph-theoretic clustering
    • Hu Weiming, Hu Wei, Xie Nianhua, and Maybank Steve Unsupervised active learning based on hierarchical graph-theoretic clustering IEEE Trans. Syst. Man Cybern. B 39 October 2009 1147 1161
    • (2009) IEEE Trans. Syst. Man Cybern. B , vol.39 , Issue.OCTOBER , pp. 1147-1161
    • Weiming, H.1    Wei, H.2    Nianhua, X.3    Steve, M.4
  • 36
    • 79953049015 scopus 로고    scopus 로고
    • Molecular dynamics-like data clustering approach
    • Junlin Li, and Hongguang Fu Molecular dynamics-like data clustering approach Pattern Recogn. 44 8 2011 1721 1737
    • (2011) Pattern Recogn. , vol.44 , Issue.8 , pp. 1721-1737
    • Li, J.1    Fu, H.2
  • 37
    • 0032686723 scopus 로고    scopus 로고
    • Chameleon: Hierarchical clustering using dynamic modeling
    • G. Karypis, Eui-Hong (Sam) Han, and V. Kumar Chameleon: hierarchical clustering using dynamic modeling Computer 32 August 1999 68 75
    • (1999) Computer , vol.32 , Issue.AUGUST , pp. 68-75
    • Karypis, G.1    Han, E.-H.2    Kumar, V.3
  • 38
    • 0036487280 scopus 로고    scopus 로고
    • The global k-means clustering algorithm
    • DOI 10.1016/S0031-3203(02)00060-2, PII S0031320302000602
    • A. Likas, N. Vlassis, and J.J. Verbeek The global k-means clustering algorithm Pattern Recogn. 36 2 2003 451 461 (Pubitemid 35212840)
    • (2002) Pattern Recognition , vol.36 , Issue.2 , pp. 451-461
    • Likas, A.1    Vlassis, N.2    Verbeek, J.3
  • 39
    • 33750090356 scopus 로고    scopus 로고
    • A new simplified gravitational clustering method for multi-prototype learning based on minimum classification error training
    • Advances in Machine Vision, Image Processing, and Pattern Analysis - International Workshop on Intelligent Computing in Pattern Analysis/Synthesis, IWICPAS 2006, Proceedings
    • Teng Long, and Lian-Wen Jin A new simplified gravitational clustering method for multi-prototype learning based on minimum classification error training Nanning Zheng, Xiaoyi Jiang, Xuguang Lan, Advances in Machine Vision, Image Processing, and Pattern Analysis Lecture Notes in Computer Science vol. 4153 2006 Springer Berlin/Heidelberg 168 175 (Pubitemid 44577675)
    • (2006) Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , pp. 168-175
    • Long, T.1    Jin, L.-W.2
  • 41
    • 79551682104 scopus 로고    scopus 로고
    • Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data
    • P. Maji Fuzzy-rough supervised attribute clustering algorithm and classification of microarray data IEEE Trans. Syst. Man Cybern. B 41 1 2011 222 233
    • (2011) IEEE Trans. Syst. Man Cybern. B , vol.41 , Issue.1 , pp. 222-233
    • Maji, P.1
  • 42
    • 0343968934 scopus 로고    scopus 로고
    • A further comparison of simplification methods for decision-tree induction
    • D. Fisher, H. Lenz, Springer-Verlag
    • D. Malerba, F. Esposito, and G. Semeraro A further comparison of simplification methods for decision-tree induction D. Fisher, H. Lenz, Learning 1996 Springer-Verlag 365 374
    • (1996) Learning , pp. 365-374
    • Malerba, D.1    Esposito, F.2    Semeraro, G.3
  • 43
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • U. Maulik, and S. Bandyopadhyay Genetic algorithm-based clustering technique Pattern Recogn. 33 9 2000 1455 1465
    • (2000) Pattern Recogn. , vol.33 , Issue.9 , pp. 1455-1465
    • Maulik, U.1    Bandyopadhyay, S.2
  • 44
    • 0025933503 scopus 로고
    • Expert system for predicting protein localization sites in Gram-negative bacteria
    • K. Nakai, and M. Kanehisa Expert system for predicting protein localization sites in Gram-negative bacteria Proteins 11 1991 95 110
    • (1991) Proteins , vol.11 , pp. 95-110
    • Nakai, K.1    Kanehisa, M.2
  • 46
    • 84859945418 scopus 로고    scopus 로고
    • Collective human mobility pattern from taxi trips in urban area
    • Chengbin Peng, Xiaogang Jin, Ka-Chun Wong, Meixia Shi, and Pietro Liò Collective human mobility pattern from taxi trips in urban area PLOS ONE 7 4 2012 e34487
    • (2012) PLOS ONE , vol.7 , Issue.4 , pp. 34487
    • Peng, C.1    Jin, X.2    Wong, K.-C.3    Shi, M.4    Liò, P.5
  • 48
    • 0012018345 scopus 로고
    • Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland Tech. Rep. No. 92-02
    • D. Coomans, S. Aeberhard, and O. de Vel Comparison of Classifiers in High Dimensional Settings 1992 Dept. of Computer Science and Dept. of Mathematics and Statistics, James Cook University of North Queensland Tech. Rep. No. 92-02
    • (1992) Comparison of Classifiers in High Dimensional Settings
    • Coomans, D.1    Aeberhard, S.2    De Vel, O.3
  • 50
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Jianbo Shi, and Jitendra Malik Normalized cuts and image segmentation IEEE Trans. Pattern Anal. Mach. Intell. 22 August 2000 888 905
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.AUGUST , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 51
    • 24144488328 scopus 로고    scopus 로고
    • Terminal velocity of non-spherical particles falling through a Carreau model liquid
    • DOI 10.1016/j.cep.2005.04.005, PII S0255270105001066
    • B. Siska, H. Bendov, and I. Machac Terminal velocity of non-spherical particles falling through a Carreau model liquid Chem. Eng. Process. 44 12 2005 1312 1319 (Pubitemid 41231562)
    • (2005) Chemical Engineering and Processing: Process Intensification , vol.44 , Issue.12 , pp. 1312-1319
    • Siska, B.1    Bendova, H.2    MacHac, I.3
  • 53
    • 33747479974 scopus 로고
    • Sur la division des corps ma4eriels en parties
    • H. Steinhaus Sur la division des corps ma4eriels en parties Bull. Acad. Pol. Sci. Cl. III 4 1957 801 804
    • (1957) Bull. Acad. Pol. Sci. Cl. III , vol.4 , pp. 801-804
    • Steinhaus, H.1
  • 56
    • 0028423359 scopus 로고
    • Fuzzy Kohonen clustering networks
    • DOI 10.1016/0031-3203(94)90052-3
    • Eric Chen-Kuo Tsao, J.C. Bezdek, and N.R. Pal Fuzzy Kohonen clustering networks Pattern Recogn. 27 5 1994 757 764 (Pubitemid 124017446)
    • (1994) Pattern Recognition , vol.27 , Issue.5 , pp. 757-764
    • Tsao, E.C.-K.1    Bezdek, J.C.2    Pal, N.R.3
  • 57
    • 29844449492 scopus 로고    scopus 로고
    • CURLER: Finding and visualizing nonlinear correlation clusters
    • DOI 10.1145/1066157.1066211, SIGMOD 2005: Proceedings of the ACM SIGMOD International Conference on Management of Data
    • A.K.H. Tung, Xin Xu, and Beng Chin Ooi Curler: finding and visualizing nonlinear correlation clusters Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, SIGMOD '05 2005 ACM New York, NY, USA 467 478 (Pubitemid 43038950)
    • (2005) Proceedings of the ACM SIGMOD International Conference on Management of Data , pp. 467-478
    • Tung, A.K.H.1    Xu, X.2    Ooi, B.C.3
  • 59
    • 78649420560 scopus 로고    scopus 로고
    • Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
    • Nguyen Xuan Vinh, Julien Epps, and James Bailey Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance J. Mach. Learn. Res. 11 December 2010 2837 2854
    • (2010) J. Mach. Learn. Res. , vol.11 , Issue.DECEMBER , pp. 2837-2854
    • Vinh, N.X.1    Epps, J.2    Bailey, J.3
  • 60
    • 34548255908 scopus 로고    scopus 로고
    • CLUES: A non-parametric clustering method based on local shrinking
    • DOI 10.1016/j.csda.2006.12.016, PII S0167947306004786
    • Xiaogang Wang, Weiliang Qiu, and R.H. Zamar Clues: a non-parametric clustering method based on local shrinking Comput. Stat. Data Anal. 52 September (1) 2007 286 298 (Pubitemid 47331707)
    • (2007) Computational Statistics and Data Analysis , vol.52 , Issue.1 , pp. 286-298
    • Wang, X.1    Qiu, W.2    Zamar, R.H.3
  • 61
    • 84887011782 scopus 로고    scopus 로고
    • DNA motif elucidation using belief propagation
    • Ka-Chun Wong, Tak-Ming Chan, Chengbin Peng, Yue Li, and Zhaolei Zhang DNA motif elucidation using belief propagation Nucleic Acids Res. 41 September (16) 2013 e153
    • (2013) Nucleic Acids Res. , vol.41 , Issue.SEPTEMBER 16 , pp. 153
    • Wong, K.-C.1    Chan, T.-M.2    Peng, C.3    Li, Y.4    Zhang, Z.5
  • 63
    • 79960092508 scopus 로고    scopus 로고
    • Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm
    • Ka-Chun Wong, Chengbin Peng, Man-Hon Wong, and Kwong-Sak Leung Generalizing and learning protein-DNA binding sequence representations by an evolutionary algorithm Soft Comput. 15 8 2011 1631 1642
    • (2011) Soft Comput. , vol.15 , Issue.8 , pp. 1631-1642
    • Wong, K.-C.1    Peng, C.2    Wong, M.-H.3    Leung, K.-S.4
  • 64
    • 84862782212 scopus 로고    scopus 로고
    • Evolutionary multimodal optimization using the principle of locality
    • Ka-Chun Wong, Chun-Ho Wu, R.K.P. Mok, Chengbin Peng, and Zhaolei Zhang Evolutionary multimodal optimization using the principle of locality Inf. Sci. 194 July 2012 138 170
    • (2012) Inf. Sci. , vol.194 , Issue.JULY , pp. 138-170
    • Wong, K.-C.1    Wu, C.-H.2    Mok, R.K.P.3    Peng, C.4    Zhang, Z.5
  • 65
    • 84898852770 scopus 로고    scopus 로고
    • SNPdryad: Predicting deleterious non-synonymous human SNPs using only orthologous protein sequences
    • Ka-Chun Wong, and Zhaolei Zhang SNPdryad: predicting deleterious non-synonymous human SNPs using only orthologous protein sequences Bioinformatics 30 8 2014 1112 1119
    • (2014) Bioinformatics , vol.30 , Issue.8 , pp. 1112-1119
    • Wong, K.-C.1    Zhang, Z.2
  • 66
    • 0017544514 scopus 로고
    • Gravitational clustering
    • W.E. Wright Gravitational clustering Pattern Recogn. 9 3 1977 151 166
    • (1977) Pattern Recogn. , vol.9 , Issue.3 , pp. 151-166
    • Wright, W.E.1
  • 67
    • 0036779072 scopus 로고    scopus 로고
    • Alternative c-means clustering algorithms
    • DOI 10.1016/S0031-3203(01)00197-2, PII S0031320301001972
    • Kuo-Lung Wu, and Miin-Shen Yang Alternative c-means clustering algorithms Pattern Recogn. 35 10 2002 2267 2278 (Pubitemid 34812877)
    • (2002) Pattern Recognition , vol.35 , Issue.10 , pp. 2267-2278
    • Wu, K.-L.1    Yang, M.-S.2
  • 68
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • DOI 10.1109/TNN.2005.845141
    • R. Xu, and D. Wunsch Survey of clustering algorithms IEEE Trans. Neural Netw. 16 3 2005 645 678 (Pubitemid 40718010)
    • (2005) IEEE Transactions on Neural Networks , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch II, D.2
  • 69
    • 58349092517 scopus 로고    scopus 로고
    • Knowledge discovery on RFM model using Bernoulli sequence
    • I-Cheng Yeh, King-Jang Yang, and Tao-Ming Ting Knowledge discovery on RFM model using Bernoulli sequence Expert Syst. Appl. 36 April 2009 5866 5871
    • (2009) Expert Syst. Appl. , vol.36 , Issue.APRIL , pp. 5866-5871
    • Yeh, I.-C.1    Yang, K.-J.2    Ting, T.-M.3
  • 72
    • 24044537630 scopus 로고    scopus 로고
    • Hierarchical clustering algorithms for document datasets
    • DOI 10.1007/s10618-005-0361-3
    • Ying Zhao, G. Karypis, and U. Fayyad Hierarchical clustering algorithms for document datasets Data Min. Knowl. Discov. 10 2 2005 141 168 (Pubitemid 41217849)
    • (2005) Data Mining and Knowledge Discovery , vol.10 , Issue.2 , pp. 141-168
    • Zhao, Y.1    Karypis, G.2
  • 73
    • 67349203840 scopus 로고    scopus 로고
    • Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions
    • Lin Zhu, Fu-Lai Chung, and Shitong Wang Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions IEEE Trans. Syst. Man Cybern. B 39 June 2009 578 591
    • (2009) IEEE Trans. Syst. Man Cybern. B , vol.39 , Issue.JUNE , pp. 578-591
    • Zhu, L.1    Chung, F.-L.2    Wang, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.