메뉴 건너뛰기




Volumn 45, Issue 3, 2012, Pages 1061-1075

Minkowski metric, feature weighting and anomalous cluster initializing in K-Means clustering

Author keywords

Anomalous cluster; Feature weights; K means; Minkowski metric; Noise features

Indexed keywords

ANOMALOUS CLUSTER; FEATURE WEIGHT; K-MEANS; MINKOWSKI; NOISE FEATURES;

EID: 80055024879     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2011.08.012     Document Type: Article
Times cited : (306)

References (49)
  • 5
    • 85130866618 scopus 로고    scopus 로고
    • Weighting method for feature selection in K-means
    • H. Liu, H. Motoda, Chapman & Hall/CRC
    • J.Z. Huang, J. Xu, M. Ng, and Y. Ye Weighting method for feature selection in K-means H. Liu, H. Motoda, Computational Methods of Feature Selection 2008 Chapman & Hall/CRC 193 209
    • (2008) Computational Methods of Feature Selection , pp. 193-209
    • Huang, J.Z.1    Xu, J.2    Ng, M.3    Ye, Y.4
  • 6
    • 1842762839 scopus 로고    scopus 로고
    • An optimization algorithm for clustering using weighted dissimilarity measures
    • DOI 10.1016/j.patcog.2003.11.003, PII S0031320303004035
    • Y. Chan, W.K. Ching, M.K. Ng, and J.Z. Huang An optimization algorithm for clustering using weighted dissimilarity measures Pattern Recognition 37 5 2004 943 952 (Pubitemid 38473837)
    • (2004) Pattern Recognition , vol.37 , Issue.5 , pp. 943-952
    • Chan, E.Y.1    Ching, W.K.2    Ng, M.K.3    Huang, J.Z.4
  • 9
    • 0035619721 scopus 로고    scopus 로고
    • Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software
    • V. Makarenkov, and P. Legendre Optimal variable weighting for ultrametric and additive trees and K-Means partitioning Journal of Classification 18 2001 245 271 (Pubitemid 33587487)
    • (2001) Journal of Classification , vol.18 , Issue.2 , pp. 245-271
    • Makarenkov, V.1    Legendre, P.2
  • 10
    • 77953022339 scopus 로고    scopus 로고
    • Intelligent choice of the number of clusters in k-means clustering: An experimental study with different cluster spreads
    • M.M. Chiang, and B. Mirkin Intelligent choice of the number of clusters in k-means clustering: an experimental study with different cluster spreads Journal of Classification 27 1 2010 1 38
    • (2010) Journal of Classification , vol.27 , Issue.1 , pp. 1-38
    • Chiang, M.M.1    Mirkin, B.2
  • 11
    • 36948999941 scopus 로고    scopus 로고
    • Irvine, CA: University of California, School of Information and Computer Science
    • A. Asuncion, D.J. Newman, UCI Machine Learning Repository 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉. Irvine, CA: University of California, School of Information and Computer Science, 2007.
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 12
    • 77950369345 scopus 로고    scopus 로고
    • Data clustering: 50 years beyond K-means
    • A.K. Jain Data clustering: 50 years beyond K-means Pattern Recognition Letters 31 8 2010 651 666
    • (2010) Pattern Recognition Letters , vol.31 , Issue.8 , pp. 651-666
    • Jain, A.K.1
  • 16
    • 0042312608 scopus 로고    scopus 로고
    • Feature weighting in K-Means clustering
    • D.S. Modha, and W.S. Spangler Feature weighting in K-Means clustering Machine Learning 52 2003 217 237
    • (2003) Machine Learning , vol.52 , pp. 217-237
    • Modha, D.S.1    Spangler, W.S.2
  • 17
    • 44349127297 scopus 로고    scopus 로고
    • Developing a feature weight adjustment mechanism for a K-Means clustering algorithm
    • C.Y. Tsai, and C.C. Chiu Developing a feature weight adjustment mechanism for a K-Means clustering algorithm Computational Statistics and Data Analysis 52 2008 4658 4672
    • (2008) Computational Statistics and Data Analysis , vol.52 , pp. 4658-4672
    • Tsai, C.Y.1    Chiu, C.C.2
  • 18
    • 0346847567 scopus 로고    scopus 로고
    • Unsupervised learning of prototypes and attribute weights
    • DOI 10.1016/j.patcog.2003.08.002
    • H. Frigui, and O. Nasraoui Unsupervised learning of prototypes and attribute weights Pattern Recognition 37 2004 567 581 (Pubitemid 38003094)
    • (2004) Pattern Recognition , vol.37 , Issue.3 , pp. 567-581
    • Frigui, H.1    Nasraoui, O.2
  • 20
    • 70450239631 scopus 로고    scopus 로고
    • The P-Norm Push: A simple convex ranking algorithm that concentrates at the top of the list
    • B. Rudin The P-Norm Push: a simple convex ranking algorithm that concentrates at the top of the list Journal of Machine Learning Research 10 2009 2233 2271
    • (2009) Journal of Machine Learning Research , vol.10 , pp. 2233-2271
    • Rudin, B.1
  • 22
    • 33646032356 scopus 로고    scopus 로고
    • The p-Norm generalization of the LMS algorithm for adaptive filtering
    • J. Kivinen, M.K. Warmuth, and B. Hassibi The p-Norm generalization of the LMS algorithm for adaptive filtering IEEE Transactions on Signal Processing 54 5 2006 1782 1793
    • (2006) IEEE Transactions on Signal Processing , vol.54 , Issue.5 , pp. 1782-1793
    • Kivinen, J.1    Warmuth, M.K.2    Hassibi, B.3
  • 24
    • 34548025132 scopus 로고    scopus 로고
    • A survey of kernel and spectral methods for clustering
    • DOI 10.1016/j.patcog.2007.05.018, PII S0031320307002580
    • M. Filippone, F. Camastra, and F.S. Rovetta A survey of kernel and spectral methods for clustering Pattern Recognition 41 2008 176 190 (Pubitemid 47284212)
    • (2008) Pattern Recognition , vol.41 , Issue.1 , pp. 176-190
    • Filippone, M.1    Camastra, F.2    Masulli, F.3    Rovetta, S.4
  • 26
    • 34250871625 scopus 로고    scopus 로고
    • Initializing K-means batch clustering: A critical evaluation of several techniques
    • D. Steinley, and M.J. Brusco Initializing K-means batch clustering: a critical evaluation of several techniques Journal of Classification 24 2007 99 121
    • (2007) Journal of Classification , vol.24 , pp. 99-121
    • Steinley, D.1    Brusco, M.J.2
  • 28
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data
    • S. Monti, P. Tamayo, J. Mesirov, and T. Golub Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data Machine Learning 52 2003 91 118
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 29
    • 23744437299 scopus 로고    scopus 로고
    • On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples
    • G.J. McLachlan, and N. Khan On a resampling approach for tests on the number of clusters with mixture model-based clustering of tissue samples Journal of Multivariate Analysis 2004 90 1005
    • (2004) Journal of Multivariate Analysis , pp. 90-1005
    • McLachlan, G.J.1    Khan, N.2
  • 30
    • 0000930268 scopus 로고
    • Hierarchical grouping methods and stopping rules: An evaluation
    • R. Mojena Hierarchical grouping methods and stopping rules: an evaluation The Computer Journal 20 4 1977 359 363
    • (1977) The Computer Journal , vol.20 , Issue.4 , pp. 359-363
    • Mojena, R.1
  • 34
    • 75649123332 scopus 로고    scopus 로고
    • Worst-case and smoothed analysis of the ICP Algorithm, with an application to the k-means method
    • D. Arthur, and S. Vassilvitskii Worst-case and smoothed analysis of the ICP Algorithm, with an application to the k-means method SIAM Journal on Computing 39 2009 766 782
    • (2009) SIAM Journal on Computing , vol.39 , pp. 766-782
    • Arthur, D.1    Vassilvitskii, S.2
  • 35
    • 0011327518 scopus 로고    scopus 로고
    • accessed 3 April 2010
    • Netlab Neural Network software, 〈http://www.ncrg.aston.ac.uk/netlab/ index.php〉, accessed 3 April 2010.
    • Netlab Neural Network Software
  • 37
    • 67649403091 scopus 로고    scopus 로고
    • Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation
    • J. Fan, M. Han, and J. Wang Single point iterative weighted fuzzy C-means clustering algorithm for remote sensing image segmentation Pattern Recognition 42 11 2009 2527 2540
    • (2009) Pattern Recognition , vol.42 , Issue.11 , pp. 2527-2540
    • Fan, J.1    Han, M.2    Wang, J.3
  • 39
    • 44649105615 scopus 로고    scopus 로고
    • Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm
    • Y. Hong, S. Kwong, Y. Chang, and Q. Ren Unsupervised feature selection using clustering ensembles and population based incremental learning algorithm Pattern Recognition 41 9 2008 2742 2756
    • (2008) Pattern Recognition , vol.41 , Issue.9 , pp. 2742-2756
    • Hong, Y.1    Kwong, S.2    Chang, Y.3    Ren, Q.4
  • 40
    • 15944402058 scopus 로고    scopus 로고
    • Reducing the number of training samples for fast Support Vector Machine classification
    • R. Koggalage, and S. Halgamuge Reducing the number of training samples for fast Support Vector Machine classification Neural Information Processing 2 3 2004 57 65
    • (2004) Neural Information Processing , vol.2 , Issue.3 , pp. 57-65
    • Koggalage, R.1    Halgamuge, S.2
  • 41
    • 57149147265 scopus 로고    scopus 로고
    • Non-negative matrix factorization for semi-supervised data clustering
    • Y. Chen, M. Rege, M. Dong, and J. Hua Non-negative matrix factorization for semi-supervised data clustering Knowledge Information Systems 17 3 2008 355 379
    • (2008) Knowledge Information Systems , vol.17 , Issue.3 , pp. 355-379
    • Chen, Y.1    Rege, M.2    Dong, M.3    Hua, J.4
  • 43
    • 67349174255 scopus 로고    scopus 로고
    • An initialization method for the K-Means algorithm using neighborhood model
    • F. Cao, J. Liang, and G. Jiang An initialization method for the K-Means algorithm using neighborhood model Computers and Mathematics with Applications 58 3 2009 474 483
    • (2009) Computers and Mathematics with Applications , vol.58 , Issue.3 , pp. 474-483
    • Cao, F.1    Liang, J.2    Jiang, G.3
  • 45
    • 33845288287 scopus 로고    scopus 로고
    • Learning multicriteria fuzzy classification method PROAFTN from data
    • DOI 10.1016/j.cor.2005.07.019, PII S0305054805002455
    • N. Belacel, H.B. Raval, and A.P. Punnen Learning multicriteria fuzzy classification method PROAFTN from data Computers & Operations Research 34 2007 1885 1898 (Pubitemid 44879762)
    • (2007) Computers and Operations Research , vol.34 , Issue.7 , pp. 1885-1898
    • Belacel, N.1    Raval, H.B.2    Punnen, A.P.3
  • 46
    • 12744254229 scopus 로고    scopus 로고
    • K-medoid-style clustering algorithms for supervised summary generation
    • Proceedings of the International Conference on Artificial Intelligence, IC-AI'04 and Proceedings of the International Conference on Machine Learning; Models, Technologies and Applications, MLMTA'04)
    • N.M. Zeidat, C.F. Eick, K-medoid-style clustering algorithms for supervised summary generation, in: Proceedings of the International Conference on Machine Learning (2004), pp. 932938. (Pubitemid 40155432)
    • (2004) Proceedings of the International Conference on Artificial Intelligence, IC-AI'04 , vol.2 , pp. 932-938
    • Zeidat, N.1    Eick, C.F.2
  • 47
    • 84949479246 scopus 로고    scopus 로고
    • On the Surprising Behavior of Distance Metrics in High Dimensional Spaces
    • C.C. Aggarwal, A. Hinneburg, D. Keim, On the surprising behavior of distance metrics in high dimensional space, in: Proceedings of the Eighth International Conference on Database Theory (2001), pp. 420434. (Pubitemid 33213340)
    • (2001) Lecture Notes in Computer Science , Issue.1973 , pp. 420-434
    • Aggarwal, C.C.1    Hinneburg, A.2    Keim, D.A.3
  • 48
    • 80055012245 scopus 로고    scopus 로고
    • A Method for Classifying Mental Tasks in the Space of EEG Transforms
    • Birkbeck University of London, London
    • R.C. Amorim, B. Mirkin, J. Gan, A Method for Classifying Mental Tasks in the Space of EEG Transforms. Technical Report BBKS-10-01, Birkbeck University of London, London, 2010.
    • (2010) Technical Report BBKS-10-01
    • Amorim, R.C.1    Mirkin, B.2    Gan, J.3
  • 49
    • 80055025227 scopus 로고    scopus 로고
    • An adaptive spell checker based on PS3M: Improving the clusters of replacement words
    • M. Kurzynski, M. Wozniak, Springer Berlin/Heidelberg
    • R.C. Amorim An adaptive spell checker based on PS3M: Improving the clusters of replacement words M. Kurzynski, M. Wozniak, Computer Recognition Systems vol. 3 2009 Springer Berlin/Heidelberg 519 526
    • (2009) Computer Recognition Systems , vol.3 , pp. 519-526
    • Amorim, R.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.