-
1
-
-
33751255087
-
Evaluation of clustering algorithms for protein-protein interaction networks
-
Brohée, S. & van Helden, J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006).
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 488
-
-
Brohée, S.1
Van Helden, J.2
-
2
-
-
37249051926
-
Large scale clustering of protein sequences with FORCE-A layout based heuristic for weighted cluster editing
-
Wittkop, T., Baumbach, J., Lobo, F.P. & Rahmann, S. Large scale clustering of protein sequences with FORCE-A layout based heuristic for weighted cluster editing. BMC Bioinformatics 8, 396 (2007).
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 396
-
-
Wittkop, T.1
Baumbach, J.2
Lobo, F.P.3
Rahmann, S.4
-
3
-
-
0000417994
-
Developments in automatic text retrieval
-
Salton, G. Developments in automatic text retrieval. Science 253, 974-980 (1991).
-
(1991)
Science
, vol.253
, pp. 974-980
-
-
Salton, G.1
-
4
-
-
61949087310
-
Word sense disambiguation: A survey
-
Navigli, R. Word sense disambiguation: a survey. ACM Comput. Surv. 41, 10:11-10:69 (2009).
-
(2009)
ACM Comput. Surv.
, vol.41
, pp. 1011-1069
-
-
Navigli, R.1
-
5
-
-
73649123907
-
Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
-
Verhaak, R.G.W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110 (2010).
-
(2010)
Cancer Cell
, vol.17
, pp. 98-110
-
-
Verhaak, R.G.W.1
-
6
-
-
58149330982
-
Meta-Analysis of gene expression profiles in breast cancer: Toward a unified understanding of breast cancer subtyping and prognosis signatures
-
Wirapati, P. et al. Meta-Analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).
-
(2008)
Breast Cancer Res.
, vol.10
, pp. R65
-
-
Wirapati, P.1
-
7
-
-
79952433272
-
Comprehensive cluster analysis with Transitivity Clustering
-
Wittkop, T. et al. Comprehensive cluster analysis with Transitivity Clustering. Nat. Protoc. 6, 285-295 (2011).
-
(2011)
Nat. Protoc.
, vol.6
, pp. 285-295
-
-
Wittkop, T.1
-
8
-
-
84872515092
-
Density parameter estimation for finding clusters of homologous proteins-Dracing actinobacterial pathogenicity lifestyles
-
Röttger, R. et al. Density parameter estimation for finding clusters of homologous proteins-Dracing actinobacterial pathogenicity lifestyles. Bioinformatics 29, 215-222 (2013).
-
(2013)
Bioinformatics
, vol.29
, pp. 215-222
-
-
Röttger, R.1
-
9
-
-
10244264813
-
Protein complex prediction via cost-based clustering
-
King, A.D., Przulj, N. & Jurisica, I. Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013-3020 (2004).
-
(2004)
Bioinformatics
, vol.20
, pp. 3013-3020
-
-
King, A.D.1
Przulj, N.2
Jurisica, I.3
-
10
-
-
84860361165
-
Detecting overlapping protein complexes in protein-protein interaction networks
-
Nepusz, T., Yu, H. & Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471-472 (2012).
-
(2012)
Nat. Methods
, vol.9
, pp. 471-472
-
-
Nepusz, T.1
Yu, H.2
Paccanaro, A.3
-
11
-
-
0030376226
-
Measuring the influence of individual data points in a cluster analysis
-
Milligan, G. & Cheng, R. Measuring the influence of individual data points in a cluster analysis. Journal of Classification 13, 315-335 (1996).
-
(1996)
Journal of Classification
, vol.13
, pp. 315-335
-
-
Milligan, G.1
Cheng, R.2
-
12
-
-
78650121315
-
Clustering algorithms in biomedical research: A review
-
Xu, R. & Wunsch, D.C. Clustering algorithms in biomedical research: a review. IEEE Rev. Biomed. Eng. 3, 120-154 (2010).
-
(2010)
IEEE Rev Biomed. Eng.
, vol.3
, pp. 120-154
-
-
Xu, R.1
Wunsch, D.C.2
-
13
-
-
65549104397
-
A roadmap of clustering algorithms: Finding a match for a biomedical application
-
Andreopoulos, B., An, A., Wang, X. & Schroeder, M. A roadmap of clustering algorithms: finding a match for a biomedical application. Brief. Bioinform. 10, 297-314 (2009).
-
(2009)
Brief. Bioinform.
, vol.10
, pp. 297-314
-
-
Andreopoulos, B.1
An, A.2
Wang, X.3
Schroeder, M.4
-
14
-
-
0023523514
-
How many clusters are best?-An experiment
-
Dubes, R.C. How many clusters are best?-An experiment. Pattern Recognit. 20, 645-663 (1987).
-
(1987)
Pattern Recognit.
, vol.20
, pp. 645-663
-
-
Dubes, R.C.1
-
15
-
-
84893405732
-
Data clustering: A review
-
Jain, A.K., Murty, M.N. & Flynn, P.J. Data clustering: a review. ACM Comput. Surv. 31, 264-323 (1999).
-
(1999)
ACM Comput Surv.
, vol.31
, pp. 264-323
-
-
Jain, A.K.1
Murty, M.N.2
Flynn, P.J.3
-
16
-
-
84871233616
-
Online transitivity clustering of biological data with missing values
-
eds. Böcker, S., Hufsky, F., Scheubert, K., Schleicher, J. & Schuster, S.) (Schloss Dagstuhl-Leibniz-Zentrum für Informatik
-
Röttger, R., Kreutzer, C., Duong Vu, T., Wittkop, T. & Baumbach, J. Online transitivity clustering of biological data with missing values. Proc. German Conference on Bioinformatics (eds. Böcker, S., Hufsky, F., Scheubert, K., Schleicher, J. & Schuster, S.) 57-68 (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2012).
-
(2012)
Proc. German Conference on Bioinformatics
, pp. 57-68
-
-
Röttger, R.1
Kreutzer, C.2
Duong Vu, T.3
Wittkop, T.4
Baumbach, J.5
-
17
-
-
33846606051
-
Clustering methods for microarray gene expression data
-
Belacel, N., Wang, Q. & Cuperlovic-Culf, M. Clustering methods for microarray gene expression data. OMICS 10, 507-531 (2006).
-
(2006)
OMICS
, vol.10
, pp. 507-531
-
-
Belacel, N.1
Wang, Q.2
Cuperlovic-Culf, M.3
-
18
-
-
23844434593
-
Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data
-
Boutros, P.C. & Okey, A.B. Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief. Bioinform. 6, 331-343 (2005).
-
(2005)
Brief. Bioinform.
, vol.6
, pp. 331-343
-
-
Boutros, P.C.1
Okey, A.B.2
-
19
-
-
28644449917
-
How does gene expression clustering work?
-
DHaeseleer, P. How does gene expression clustering work? Nat. Biotechnol. 23, 1499-1501 (2005).
-
(2005)
Nat. Biotechnol.
, vol.23
, pp. 1499-1501
-
-
Daeseleer, P.1
-
20
-
-
39449097889
-
Techniques for clustering gene expression data
-
Kerr, G., Ruskin, H.J., Crane, M. & Doolan, P. Techniques for clustering gene expression data. Comput. Biol. Med. 38, 283-293 (2008).
-
(2008)
Comput. Biol. Med.
, vol.38
, pp. 283-293
-
-
Kerr, G.1
Ruskin, H.J.2
Crane, M.3
Doolan, P.4
-
21
-
-
33750021210
-
Evaluation and comparison of gene clustering methods in microarray analysis
-
Thalamuthu, A., Mukhopadhyay, I., Zheng, X. & Tseng, G.C. Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics 22, 2405-2412 (2006).
-
(2006)
Bioinformatics
, vol.22
, pp. 2405-2412
-
-
Thalamuthu, A.1
Mukhopadhyay, I.2
Zheng, X.3
Tseng, G.C.4
-
22
-
-
33847172327
-
Clustering by passing messages between data points
-
Frey, B.J. & Dueck, D. Clustering by passing messages between data points. Science 315, 972-976 (2007).
-
(2007)
Science
, vol.315
, pp. 972-976
-
-
Frey, B.J.1
Dueck, D.2
-
23
-
-
84903289127
-
Clustering by fast search and find of density peaks
-
Rodriguez, A. & Laio, A. Clustering by fast search and find of density peaks. Science 344, 1492-1496 (2014).
-
(2014)
Science
, vol.344
, pp. 1492-1496
-
-
Rodriguez, A.1
Laio, A.2
-
24
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226-231 (1996).
-
(1996)
Kdd
, vol.96
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
25
-
-
84872130773
-
-
Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. & Hornik, K. cluster: cluster analysis basics and extensions. R package version 2.0.1 (2015).
-
(2015)
Cluster: Cluster Analysis Basics and Extensions. R Package Version 2.0.1
-
-
Maechler, M.1
Rousseeuw, P.2
Struyf, A.3
Hubert, M.4
Hornik, K.5
-
28
-
-
2942552459
-
An automated method for finding molecular complexes in large protein interaction networks
-
Bader, G.D. & Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003).
-
(2003)
BMC Bioinformatics
, vol.4
, pp. 2
-
-
Bader, G.D.1
Hogue, C.W.V.2
-
29
-
-
36048959493
-
Self-And super-organizing maps in R: The kohonen package
-
Wehrens, R. & Buydens, L.M.C. Self-And super-organizing maps in R: the kohonen package. J. Stat. Softw. 21, 1-19 (2007).
-
(2007)
J. Stat. Softw.
, vol.21
, pp. 1-19
-
-
Wehrens, R.1
Buydens, L.M.C.2
-
30
-
-
11244352554
-
Kernlab-An S4 package for kernel methods in R
-
Karatzoglou, A., Smola, A., Hornik, K. & Zeileis, A. kernlab-An S4 package for kernel methods in R. J. Stat. Softw. 11, 1-20 (2004).
-
(2004)
J. Stat. Softw.
, vol.11
, pp. 1-20
-
-
Karatzoglou, A.1
Smola, A.2
Hornik, K.3
Zeileis, A.4
-
31
-
-
77952983494
-
Partitioning biological data with transitivity clustering
-
Wittkop, T. et al. Partitioning biological data with transitivity clustering. Nat. Methods 7, 419-420 (2010).
-
(2010)
Nat. Methods
, vol.7
, pp. 419-420
-
-
Wittkop, T.1
-
32
-
-
0038724494
-
Consensus clustering-A resampling-based method for class discovery and visualization of gene expression microarray data
-
Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering-A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52, 91-118 (2003).
-
(2003)
Machine Learning
, vol.52
, pp. 91-118
-
-
Monti, S.1
Tamayo, P.2
Mesirov, J.3
Golub, T.4
-
34
-
-
20144387067
-
The MIPS mammalian protein-protein interaction database
-
Pagel, P. et al. The MIPS mammalian protein-protein interaction database. Bioinformatics 21, 832-834 (2005).
-
(2005)
Bioinformatics
, vol.21
, pp. 832-834
-
-
Pagel, P.1
-
35
-
-
0033977581
-
The ASTRAL compendium for protein structure and sequence analysis
-
Brenner, S.E., Koehl, P. & Levitt, M. The ASTRAL compendium for protein structure and sequence analysis. Nucleic Acids Res. 28, 254-256 (2000).
-
(2000)
Nucleic Acids Res.
, vol.28
, pp. 254-256
-
-
Brenner, S.E.1
Koehl, P.2
Levitt, M.3
-
36
-
-
33745027619
-
A gold standard set of mechanistically diverse enzyme superfamilies
-
Brown, S.D., Gerlt, J.A., Seffernick, J.L. & Babbitt, P.C. A gold standard set of mechanistically diverse enzyme superfamilies. Genome Biol. 7, R8 (2006).
-
(2006)
Genome Biol.
, vol.7
, pp. R8
-
-
Brown, S.D.1
Gerlt, J.A.2
Seffernick, J.L.3
Babbitt, P.C.4
-
37
-
-
0036839162
-
MAMMOTH (matching molecular models obtained from theory): An automated method for model comparison
-
Ortiz, A.R., Strauss, C.E. & Olmea, O. MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci. 11, 2606-2621 (2002).
-
(2002)
Protein Sci.
, vol.11
, pp. 2606-2621
-
-
Ortiz, A.R.1
Strauss, C.E.2
Olmea, O.3
-
38
-
-
42449110882
-
An information flow model for conflict and fission in small groups
-
Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452-473 (1977).
-
(1977)
J. Anthropol. Res.
, vol.33
, pp. 452-473
-
-
Zachary, W.W.1
-
39
-
-
34548016117
-
Robust path-based spectral clustering
-
Chang, H. & Yeung, D.-Y. Robust path-based spectral clustering. Pattern Recognit. 41, 191-203 (2008).
-
(2008)
Pattern Recognit.
, vol.41
, pp. 191-203
-
-
Chang, H.1
Yeung, D.-Y.2
-
40
-
-
33244462619
-
Iterative shrinking method for clustering problems
-
Fränti, P. & Virmajoki, O. Iterative shrinking method for clustering problems. Pattern Recognit. 39, 761-775 (2006).
-
(2006)
Pattern Recognit.
, vol.39
, pp. 761-775
-
-
Fränti, P.1
Virmajoki, O.2
-
41
-
-
39449096984
-
FLAME a novel fuzzy clustering method for the analysis of DNA microarray data
-
Fu, L. & Medico, E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8, 3 (2007).
-
(2007)
BMC Bioinformatics
, vol.8
, pp. 3
-
-
Fu, L.1
Medico, E.2
-
43
-
-
0036709181
-
A maximum variance cluster algorithm
-
Veenman, C.J., Reinders, M.J.T. & Backer, E. A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24, 1273-1280 (2002).
-
(2002)
IEEE Trans Pattern Anal. Mach. Intell.
, vol.24
, pp. 1273-1280
-
-
Veenman, C.J.1
Reinders, M.J.T.2
Backer, E.3
-
44
-
-
0014976008
-
Graph-Dheoretical methods for detecting and describing gestalt clusters
-
Zahn, C.T. Graph-Dheoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. C-20, 68-86 (1971).
-
(1971)
IEEE Trans. Comput.
, vol.C-20
, pp. 68-86
-
-
Zahn, C.T.1
-
46
-
-
84976702763
-
WordNet: A lexical database for English
-
Miller, G.A. WordNet: a lexical database for English. Commun. ACM 38, 39-41 (1995).
-
(1995)
Commun. ACM
, vol.38
, pp. 39-41
-
-
Miller, G.A.1
-
48
-
-
84941155240
-
Well-separated clusters and optimal fuzzy partitions
-
Dunn, J.C. Well-separated clusters and optimal fuzzy partitions. Cybern. Syst. 4, 95-104 (1974).
-
(1974)
Cybern. Syst.
, vol.4
, pp. 95-104
-
-
Dunn, J.C.1
-
49
-
-
0023453329
-
Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
-
Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987).
-
(1987)
J. Comput. Appl. Math.
, vol.20
, pp. 53-65
-
-
Rousseeuw, P.J.1
-
50
-
-
84864758525
-
Evaluation: From precision, recall and F-factor to ROC, informedness, markedness and correlation
-
Powers, D.M.W. Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies 2, 1-24 (2007).
-
(2007)
Journal of Machine Learning Technologies
, vol.2
, pp. 1-24
-
-
Powers, D.M.W.1
-
51
-
-
84962838402
-
Controlling the false discovery rate: A practical and powerful approach to multiple testing
-
Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289-300 (1995).
-
(1995)
J. R. Stat. Soc. Series B Stat. Methodol.
, vol.57
, pp. 289-300
-
-
Benjamini, Y.1
Hochberg, Y.2
-
53
-
-
84945923591
-
A method for comparing two hierarchical clusterings
-
Fowlkes, E.B. & Mallows, C.L. A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553-569 (1983).
-
(1983)
J. Am. Stat. Assoc.
, vol.78
, pp. 553-569
-
-
Fowlkes, E.B.1
Mallows, C.L.2
-
55
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850 (1971).
-
(1971)
J. Am. Stat. Assoc.
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
|