메뉴 건너뛰기




Volumn 12, Issue 11, 2015, Pages 1033-1038

Comparing the performance of biomedical clustering methods

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACID SEQUENCE; ARTICLE; BIOINFORMATICS; CLUSTER ANALYSIS; COMPARATIVE STUDY; GENE EXPRESSION; MARKOV CLUSTERING; MEDICAL RESEARCH; PRIORITY JOURNAL; PROTEIN DOMAIN; REPRODUCIBILITY; STATISTICAL ANALYSIS; ALGORITHM; ANIMAL; AUTOMATED PATTERN RECOGNITION; AUTOMATION; BIOLOGY; COMPUTER PROGRAM; DNA MICROARRAY; GENE EXPRESSION PROFILING; GENE EXPRESSION REGULATION; HUMAN; PROCEDURES; PROTEIN TERTIARY STRUCTURE; QUALITY CONTROL;

EID: 84946487753     PISSN: 15487091     EISSN: 15487105     Source Type: Journal    
DOI: 10.1038/nmeth.3583     Document Type: Article
Times cited : (191)

References (56)
  • 1
    • 33751255087 scopus 로고    scopus 로고
    • Evaluation of clustering algorithms for protein-protein interaction networks
    • Brohée, S. & van Helden, J. Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7, 488 (2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 488
    • Brohée, S.1    Van Helden, J.2
  • 2
    • 37249051926 scopus 로고    scopus 로고
    • Large scale clustering of protein sequences with FORCE-A layout based heuristic for weighted cluster editing
    • Wittkop, T., Baumbach, J., Lobo, F.P. & Rahmann, S. Large scale clustering of protein sequences with FORCE-A layout based heuristic for weighted cluster editing. BMC Bioinformatics 8, 396 (2007).
    • (2007) BMC Bioinformatics , vol.8 , pp. 396
    • Wittkop, T.1    Baumbach, J.2    Lobo, F.P.3    Rahmann, S.4
  • 3
    • 0000417994 scopus 로고
    • Developments in automatic text retrieval
    • Salton, G. Developments in automatic text retrieval. Science 253, 974-980 (1991).
    • (1991) Science , vol.253 , pp. 974-980
    • Salton, G.1
  • 4
    • 61949087310 scopus 로고    scopus 로고
    • Word sense disambiguation: A survey
    • Navigli, R. Word sense disambiguation: a survey. ACM Comput. Surv. 41, 10:11-10:69 (2009).
    • (2009) ACM Comput. Surv. , vol.41 , pp. 1011-1069
    • Navigli, R.1
  • 5
    • 73649123907 scopus 로고    scopus 로고
    • Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1
    • Verhaak, R.G.W. et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17, 98-110 (2010).
    • (2010) Cancer Cell , vol.17 , pp. 98-110
    • Verhaak, R.G.W.1
  • 6
    • 58149330982 scopus 로고    scopus 로고
    • Meta-Analysis of gene expression profiles in breast cancer: Toward a unified understanding of breast cancer subtyping and prognosis signatures
    • Wirapati, P. et al. Meta-Analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer Res. 10, R65 (2008).
    • (2008) Breast Cancer Res. , vol.10 , pp. R65
    • Wirapati, P.1
  • 7
    • 79952433272 scopus 로고    scopus 로고
    • Comprehensive cluster analysis with Transitivity Clustering
    • Wittkop, T. et al. Comprehensive cluster analysis with Transitivity Clustering. Nat. Protoc. 6, 285-295 (2011).
    • (2011) Nat. Protoc. , vol.6 , pp. 285-295
    • Wittkop, T.1
  • 8
    • 84872515092 scopus 로고    scopus 로고
    • Density parameter estimation for finding clusters of homologous proteins-Dracing actinobacterial pathogenicity lifestyles
    • Röttger, R. et al. Density parameter estimation for finding clusters of homologous proteins-Dracing actinobacterial pathogenicity lifestyles. Bioinformatics 29, 215-222 (2013).
    • (2013) Bioinformatics , vol.29 , pp. 215-222
    • Röttger, R.1
  • 9
    • 10244264813 scopus 로고    scopus 로고
    • Protein complex prediction via cost-based clustering
    • King, A.D., Przulj, N. & Jurisica, I. Protein complex prediction via cost-based clustering. Bioinformatics 20, 3013-3020 (2004).
    • (2004) Bioinformatics , vol.20 , pp. 3013-3020
    • King, A.D.1    Przulj, N.2    Jurisica, I.3
  • 10
    • 84860361165 scopus 로고    scopus 로고
    • Detecting overlapping protein complexes in protein-protein interaction networks
    • Nepusz, T., Yu, H. & Paccanaro, A. Detecting overlapping protein complexes in protein-protein interaction networks. Nat. Methods 9, 471-472 (2012).
    • (2012) Nat. Methods , vol.9 , pp. 471-472
    • Nepusz, T.1    Yu, H.2    Paccanaro, A.3
  • 11
    • 0030376226 scopus 로고    scopus 로고
    • Measuring the influence of individual data points in a cluster analysis
    • Milligan, G. & Cheng, R. Measuring the influence of individual data points in a cluster analysis. Journal of Classification 13, 315-335 (1996).
    • (1996) Journal of Classification , vol.13 , pp. 315-335
    • Milligan, G.1    Cheng, R.2
  • 12
    • 78650121315 scopus 로고    scopus 로고
    • Clustering algorithms in biomedical research: A review
    • Xu, R. & Wunsch, D.C. Clustering algorithms in biomedical research: a review. IEEE Rev. Biomed. Eng. 3, 120-154 (2010).
    • (2010) IEEE Rev Biomed. Eng. , vol.3 , pp. 120-154
    • Xu, R.1    Wunsch, D.C.2
  • 13
    • 65549104397 scopus 로고    scopus 로고
    • A roadmap of clustering algorithms: Finding a match for a biomedical application
    • Andreopoulos, B., An, A., Wang, X. & Schroeder, M. A roadmap of clustering algorithms: finding a match for a biomedical application. Brief. Bioinform. 10, 297-314 (2009).
    • (2009) Brief. Bioinform. , vol.10 , pp. 297-314
    • Andreopoulos, B.1    An, A.2    Wang, X.3    Schroeder, M.4
  • 14
    • 0023523514 scopus 로고
    • How many clusters are best?-An experiment
    • Dubes, R.C. How many clusters are best?-An experiment. Pattern Recognit. 20, 645-663 (1987).
    • (1987) Pattern Recognit. , vol.20 , pp. 645-663
    • Dubes, R.C.1
  • 16
    • 84871233616 scopus 로고    scopus 로고
    • Online transitivity clustering of biological data with missing values
    • eds. Böcker, S., Hufsky, F., Scheubert, K., Schleicher, J. & Schuster, S.) (Schloss Dagstuhl-Leibniz-Zentrum für Informatik
    • Röttger, R., Kreutzer, C., Duong Vu, T., Wittkop, T. & Baumbach, J. Online transitivity clustering of biological data with missing values. Proc. German Conference on Bioinformatics (eds. Böcker, S., Hufsky, F., Scheubert, K., Schleicher, J. & Schuster, S.) 57-68 (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2012).
    • (2012) Proc. German Conference on Bioinformatics , pp. 57-68
    • Röttger, R.1    Kreutzer, C.2    Duong Vu, T.3    Wittkop, T.4    Baumbach, J.5
  • 17
    • 33846606051 scopus 로고    scopus 로고
    • Clustering methods for microarray gene expression data
    • Belacel, N., Wang, Q. & Cuperlovic-Culf, M. Clustering methods for microarray gene expression data. OMICS 10, 507-531 (2006).
    • (2006) OMICS , vol.10 , pp. 507-531
    • Belacel, N.1    Wang, Q.2    Cuperlovic-Culf, M.3
  • 18
    • 23844434593 scopus 로고    scopus 로고
    • Unsupervised pattern recognition: An introduction to the whys and wherefores of clustering microarray data
    • Boutros, P.C. & Okey, A.B. Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief. Bioinform. 6, 331-343 (2005).
    • (2005) Brief. Bioinform. , vol.6 , pp. 331-343
    • Boutros, P.C.1    Okey, A.B.2
  • 19
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work?
    • DHaeseleer, P. How does gene expression clustering work? Nat. Biotechnol. 23, 1499-1501 (2005).
    • (2005) Nat. Biotechnol. , vol.23 , pp. 1499-1501
    • Daeseleer, P.1
  • 21
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • Thalamuthu, A., Mukhopadhyay, I., Zheng, X. & Tseng, G.C. Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics 22, 2405-2412 (2006).
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1    Mukhopadhyay, I.2    Zheng, X.3    Tseng, G.C.4
  • 22
    • 33847172327 scopus 로고    scopus 로고
    • Clustering by passing messages between data points
    • Frey, B.J. & Dueck, D. Clustering by passing messages between data points. Science 315, 972-976 (2007).
    • (2007) Science , vol.315 , pp. 972-976
    • Frey, B.J.1    Dueck, D.2
  • 23
    • 84903289127 scopus 로고    scopus 로고
    • Clustering by fast search and find of density peaks
    • Rodriguez, A. & Laio, A. Clustering by fast search and find of density peaks. Science 344, 1492-1496 (2014).
    • (2014) Science , vol.344 , pp. 1492-1496
    • Rodriguez, A.1    Laio, A.2
  • 24
    • 85170282443 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Ester, M., Kriegel, H.-P., Sander, J. & Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96, 226-231 (1996).
    • (1996) Kdd , vol.96 , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 28
    • 2942552459 scopus 로고    scopus 로고
    • An automated method for finding molecular complexes in large protein interaction networks
    • Bader, G.D. & Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003).
    • (2003) BMC Bioinformatics , vol.4 , pp. 2
    • Bader, G.D.1    Hogue, C.W.V.2
  • 29
    • 36048959493 scopus 로고    scopus 로고
    • Self-And super-organizing maps in R: The kohonen package
    • Wehrens, R. & Buydens, L.M.C. Self-And super-organizing maps in R: the kohonen package. J. Stat. Softw. 21, 1-19 (2007).
    • (2007) J. Stat. Softw. , vol.21 , pp. 1-19
    • Wehrens, R.1    Buydens, L.M.C.2
  • 31
    • 77952983494 scopus 로고    scopus 로고
    • Partitioning biological data with transitivity clustering
    • Wittkop, T. et al. Partitioning biological data with transitivity clustering. Nat. Methods 7, 419-420 (2010).
    • (2010) Nat. Methods , vol.7 , pp. 419-420
    • Wittkop, T.1
  • 32
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering-A resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering-A resampling-based method for class discovery and visualization of gene expression microarray data. Machine Learning 52, 91-118 (2003).
    • (2003) Machine Learning , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 34
    • 20144387067 scopus 로고    scopus 로고
    • The MIPS mammalian protein-protein interaction database
    • Pagel, P. et al. The MIPS mammalian protein-protein interaction database. Bioinformatics 21, 832-834 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 832-834
    • Pagel, P.1
  • 35
    • 0033977581 scopus 로고    scopus 로고
    • The ASTRAL compendium for protein structure and sequence analysis
    • Brenner, S.E., Koehl, P. & Levitt, M. The ASTRAL compendium for protein structure and sequence analysis. Nucleic Acids Res. 28, 254-256 (2000).
    • (2000) Nucleic Acids Res. , vol.28 , pp. 254-256
    • Brenner, S.E.1    Koehl, P.2    Levitt, M.3
  • 36
    • 33745027619 scopus 로고    scopus 로고
    • A gold standard set of mechanistically diverse enzyme superfamilies
    • Brown, S.D., Gerlt, J.A., Seffernick, J.L. & Babbitt, P.C. A gold standard set of mechanistically diverse enzyme superfamilies. Genome Biol. 7, R8 (2006).
    • (2006) Genome Biol. , vol.7 , pp. R8
    • Brown, S.D.1    Gerlt, J.A.2    Seffernick, J.L.3    Babbitt, P.C.4
  • 37
    • 0036839162 scopus 로고    scopus 로고
    • MAMMOTH (matching molecular models obtained from theory): An automated method for model comparison
    • Ortiz, A.R., Strauss, C.E. & Olmea, O. MAMMOTH (matching molecular models obtained from theory): an automated method for model comparison. Protein Sci. 11, 2606-2621 (2002).
    • (2002) Protein Sci. , vol.11 , pp. 2606-2621
    • Ortiz, A.R.1    Strauss, C.E.2    Olmea, O.3
  • 38
    • 42449110882 scopus 로고
    • An information flow model for conflict and fission in small groups
    • Zachary, W.W. An information flow model for conflict and fission in small groups. J. Anthropol. Res. 33, 452-473 (1977).
    • (1977) J. Anthropol. Res. , vol.33 , pp. 452-473
    • Zachary, W.W.1
  • 39
    • 34548016117 scopus 로고    scopus 로고
    • Robust path-based spectral clustering
    • Chang, H. & Yeung, D.-Y. Robust path-based spectral clustering. Pattern Recognit. 41, 191-203 (2008).
    • (2008) Pattern Recognit. , vol.41 , pp. 191-203
    • Chang, H.1    Yeung, D.-Y.2
  • 40
    • 33244462619 scopus 로고    scopus 로고
    • Iterative shrinking method for clustering problems
    • Fränti, P. & Virmajoki, O. Iterative shrinking method for clustering problems. Pattern Recognit. 39, 761-775 (2006).
    • (2006) Pattern Recognit. , vol.39 , pp. 761-775
    • Fränti, P.1    Virmajoki, O.2
  • 41
    • 39449096984 scopus 로고    scopus 로고
    • FLAME a novel fuzzy clustering method for the analysis of DNA microarray data
    • Fu, L. & Medico, E. FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8, 3 (2007).
    • (2007) BMC Bioinformatics , vol.8 , pp. 3
    • Fu, L.1    Medico, E.2
  • 44
    • 0014976008 scopus 로고
    • Graph-Dheoretical methods for detecting and describing gestalt clusters
    • Zahn, C.T. Graph-Dheoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. C-20, 68-86 (1971).
    • (1971) IEEE Trans. Comput. , vol.C-20 , pp. 68-86
    • Zahn, C.T.1
  • 46
    • 84976702763 scopus 로고
    • WordNet: A lexical database for English
    • Miller, G.A. WordNet: a lexical database for English. Commun. ACM 38, 39-41 (1995).
    • (1995) Commun. ACM , vol.38 , pp. 39-41
    • Miller, G.A.1
  • 48
    • 84941155240 scopus 로고
    • Well-separated clusters and optimal fuzzy partitions
    • Dunn, J.C. Well-separated clusters and optimal fuzzy partitions. Cybern. Syst. 4, 95-104 (1974).
    • (1974) Cybern. Syst. , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 49
    • 0023453329 scopus 로고
    • Silhouettes: A graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw, P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53-65 (1987).
    • (1987) J. Comput. Appl. Math. , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 50
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: From precision, recall and F-factor to ROC, informedness, markedness and correlation
    • Powers, D.M.W. Evaluation: from precision, recall and F-factor to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies 2, 1-24 (2007).
    • (2007) Journal of Machine Learning Technologies , vol.2 , pp. 1-24
    • Powers, D.M.W.1
  • 51
    • 84962838402 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289-300 (1995).
    • (1995) J. R. Stat. Soc. Series B Stat. Methodol. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 53
    • 84945923591 scopus 로고
    • A method for comparing two hierarchical clusterings
    • Fowlkes, E.B. & Mallows, C.L. A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553-569 (1983).
    • (1983) J. Am. Stat. Assoc. , vol.78 , pp. 553-569
    • Fowlkes, E.B.1    Mallows, C.L.2
  • 55
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W.M. Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66, 846-850 (1971).
    • (1971) J. Am. Stat. Assoc. , vol.66 , pp. 846-850
    • Rand, W.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.