메뉴 건너뛰기




Volumn 10122 LNCS, Issue , 2016, Pages 193-203

A systems biology approach for unsupervised clustering of high-dimensional data

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLUSTER ANALYSIS; CLUSTERING ALGORITHMS; FEATURE EXTRACTION; FORMAL LANGUAGES; GENE EXPRESSION; LEARNING SYSTEMS; PIPELINES;

EID: 85009471638     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-51469-7_16     Document Type: Conference Paper
Times cited : (2)

References (30)
  • 1
    • 84937196666 scopus 로고    scopus 로고
    • Subtyping: What it is and its role in precision medicine
    • Saria, S., Goldenberg, A.: Subtyping: what it is and its role in precision medicine. IEEE Intell. Syst. 30(4), 70–75 (2015)
    • (2015) IEEE Intell. Syst , vol.30 , Issue.4 , pp. 70-75
    • Saria, S.1    Goldenberg, A.2
  • 2
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. 95(25), 14863–14868 (1998)
    • (1998) Proc. Natl. Acad. Sci , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 3
    • 70349730070 scopus 로고    scopus 로고
    • MULTI-K: Accurate classification of microarray subtypes using ensemble k-means clustering
    • Kim, E.Y., Kim, S.Y., Ashlock, D., Nam, D.: MULTI-K: accurate classification of microarray subtypes using ensemble k-means clustering. BMC Bioinform. 10, 260 (2009)
    • (2009) BMC Bioinform , vol.10 , pp. 260
    • Kim, E.Y.1    Kim, S.Y.2    Ashlock, D.3    Nam, D.4
  • 5
    • 84955506895 scopus 로고    scopus 로고
    • Outcome-driven cluster analysis with application to microarray data
    • Hsu, J.J., Finkelstein, D.M., Schoenfeld, D.A.: Outcome-driven cluster analysis with application to microarray data. PLoS ONE 10(11), e0141874 (2015)
    • (2015) Plos ONE , vol.10 , Issue.11
    • Hsu, J.J.1    Finkelstein, D.M.2    Schoenfeld, D.A.3
  • 7
    • 84932642625 scopus 로고    scopus 로고
    • A review of feature selection and feature extraction methods applied on microarray data
    • Hira, Z.M., Gillies, D.F., Hira, Z.M., Gillies, D.F.: A review of feature selection and feature extraction methods applied on microarray data. Adv. Bioinform. 2015, e198363 (2015)
    • (2015) Adv. Bioinform , pp. 2015
    • Hira, Z.M.1    Gillies, D.F.2    Hira, Z.M.3    Gillies, D.F.4
  • 9
    • 84897521088 scopus 로고    scopus 로고
    • Clustering gene expression regulators: New approach to disease subtyping
    • Pyatnitskiy, M., Mazo, I., Shkrob, M., Schwartz, E., Kotelnikova, E.: Clustering gene expression regulators: new approach to disease subtyping. PLoS ONE 9(1), e84955 (2014)
    • (2014) Plos ONE , vol.9 , Issue.1
    • Pyatnitskiy, M.1    Mazo, I.2    Shkrob, M.3    Schwartz, E.4    Kotelnikova, E.5
  • 10
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • Li, T., Zhang, C., Ogihara, M.: A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics 20(15), 2429–2437 (2004)
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 12
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • Sebastiani, F.: Machine learning in automated text categorization. ACM Comput. Surv. 34(1), 1–47 (2002)
    • (2002) ACM Comput. Surv , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 13
    • 24144432307 scopus 로고    scopus 로고
    • Data mining feature selection for credit scoring models
    • Liu, Y., Schumann, M.: Data mining feature selection for credit scoring models. J. Oper. Res. Soc. 56(9), 1099–1108 (2005)
    • (2005) J. Oper. Res. Soc , vol.56 , Issue.9 , pp. 1099-1108
    • Liu, Y.1    Schumann, M.2
  • 14
    • 16644402628 scopus 로고    scopus 로고
    • Feature selection for text categorization on imbalanced data
    • Zheng, Z., Wu, X., Srihari, R.: Feature selection for text categorization on imbalanced data. SIGKDD Explor. Newsl. 6(1), 80–89 (2004)
    • (2004) SIGKDD Explor. Newsl , vol.6 , Issue.1 , pp. 80-89
    • Zheng, Z.1    Wu, X.2    Srihari, R.3
  • 16
    • 30644464444 scopus 로고    scopus 로고
    • Gene selection and classification of microarray data using random forest
    • Diaz-Uriarte, R., de Andres, S.A.: Gene selection and classification of microarray data using random forest. BMC Bioinform. 7, 3 (2006)
    • (2006) BMC Bioinform , vol.7 , pp. 3
    • Diaz-Uriarte, R.1    de Andres, S.A.2
  • 17
    • 84868119274 scopus 로고    scopus 로고
    • Null space based feature selection method for gene expression data
    • Sharma, A., Imoto, S., Miyano, S., Sharma, V.: Null space based feature selection method for gene expression data. Int. J. Mach. Learn. Cybern. 3(4), 269–276 (2011)
    • (2011) Int. J. Mach. Learn. Cybern , vol.3 , Issue.4 , pp. 269-276
    • Sharma, A.1    Imoto, S.2    Miyano, S.3    Sharma, V.4
  • 18
    • 19344375744 scopus 로고    scopus 로고
    • Semi-supervised methods to predict patient survival from gene expression data
    • Bair, E., Tibshirani, R.: Semi-supervised methods to predict patient survival from gene expression data. PLOS Biol. 2(4), e108 (2004)
    • (2004) PLOS Biol , vol.2 , Issue.4
    • Bair, E.1    Tibshirani, R.2
  • 20
    • 38149114028 scopus 로고    scopus 로고
    • Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes
    • Bushel, P.R., Wolfinger, R.D., Gibson, G.: Simultaneous clustering of gene expression data with clinical chemistry and pathological evaluations reveals phenotypic prototypes. BMC Syst. Biol. 1, 15 (2007)
    • (2007) BMC Syst. Biol , vol.1 , pp. 15
    • Bushel, P.R.1    Wolfinger, R.D.2    Gibson, G.3
  • 21
    • 84962699589 scopus 로고    scopus 로고
    • Integrative clustering methods for high-dimensional molecular data
    • Chalise, P., Koestler, D.C., Bimali, M., Yu, Q., Fridley, B.L.: Integrative clustering methods for high-dimensional molecular data. Transl. Cancer Res. 3(3), 202–216 (2014)
    • (2014) Transl. Cancer Res , vol.3 , Issue.3 , pp. 202-216
    • Chalise, P.1    Koestler, D.C.2    Bimali, M.3    Yu, Q.4    Fridley, B.L.5
  • 22
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)
    • (2000) Nucleic Acids Res , vol.28 , Issue.1 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 24
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • Hanisch, D., Zien, A., Zimmer, R., Lengauer, T.: Co-clustering of biological networks and gene expression data. Bioinformatics 18(suppl. 1), S145–S154 (2002)
    • (2002) Bioinformatics , vol.18 , pp. S145-S154
    • Hanisch, D.1    Zien, A.2    Zimmer, R.3    Lengauer, T.4
  • 25
    • 33646895693 scopus 로고    scopus 로고
    • Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    • Huang, D., Pan, W.: Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics 22(10), 1259–1268 (2006)
    • (2006) Bioinformatics , vol.22 , Issue.10 , pp. 1259-1268
    • Huang, D.1    Pan, W.2
  • 27
    • 84870776189 scopus 로고    scopus 로고
    • Effective feature selection framework for cluster analysis of microarray data
    • Pok, G., Liu, J.C.S., Ryu, K.H.: Effective feature selection framework for cluster analysis of microarray data. Bioinformation 4(8), 385–389 (2010)
    • (2010) Bioinformation , vol.4 , Issue.8 , pp. 385-389
    • Pok, G.1    Liu, J.C.S.2    Ryu, K.H.3
  • 28
    • 84872007657 scopus 로고    scopus 로고
    • Ten Simple rules for the open development of scientific software
    • Prlić, A., Procter, J.B.: Ten Simple rules for the open development of scientific software. PLOS Comput. Biol. 8(12), e1002802 (2012)
    • (2012) PLOS Comput. Biol , vol.8 , Issue.12
    • Prlić, A.1    Procter, J.B.2
  • 29
    • 79955763421 scopus 로고    scopus 로고
    • Reproducible research concepts and tools for cancer bioinformatics
    • Ochs, M.F., Casagrande, J.T., Davuluri, R.V. (eds.), Springer, New York
    • Carey, V.J., Stodden, V.: Reproducible research concepts and tools for cancer bioinformatics. In: Ochs, M.F., Casagrande, J.T., Davuluri, R.V. (eds.) Biomedical Informatics for Cancer Research, pp. 149–175. Springer, New York (2010). doi:10. 1007/978-1-4419-5714-6 8
    • (2010) Biomedical Informatics for Cancer Research , pp. 149-175
    • Carey, V.J.1    Stodden, V.2
  • 30
    • 85009513197 scopus 로고    scopus 로고
    • MirIntegrator: Integrating miRNAs into signaling pathways
    • Diaz, D., Draghici, S.: mirIntegrator: Integrating miRNAs into signaling pathways. R package (2015)
    • (2015) R Package
    • Diaz, D.1    Draghici, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.