메뉴 건너뛰기




Volumn , Issue , 2014, Pages 403-450

Multi-objective optimization

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84956482660     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1007/978-1-4614-6940-7_15     Document Type: Chapter
Times cited : (988)

References (104)
  • 1
    • 84901463314 scopus 로고    scopus 로고
    • Differential evolution for multi-objective optimization
    • IEEE, Piscataway, 26962703
    • Babu B, Jehan ML (2003) Differential evolution for multi-objective optimization. In: Proceedings of the CEC’2003, Canberra, vol 4. IEEE, Piscataway, pp 26962703
    • (2003) Proceedings of the CEC’2003, Canberra , vol.4
    • Babu, B.1    Jehan, M.L.2
  • 2
    • 79960064807 scopus 로고    scopus 로고
    • Faster hypervolume-based search using Monte Carlo sampling
    • LNEMS, Springer, Heidelberg
    • Bader J, Deb K, Zitzler E (2010) Faster hypervolume-based search using Monte Carlo sampling. In: Proceedings of the MCDM 2008, Auckland. LNEMS 634. Springer, Heidelberg, pp 313-326
    • (2010) Proceedings of the MCDM 2008, Auckland , vol.634 , pp. 313-326
    • Bader, J.1    Deb, K.2    Zitzler, E.3
  • 4
    • 84931437397 scopus 로고    scopus 로고
    • Multicriteria evolutionary algorithm with tabu search for task assignment
    • Balicki J, Kitowski Z (2001) Multicriteria evolutionary algorithm with tabu search for task assignment. In: Proceedings of the EMO-01, Zurich, pp 373-384
    • (2001) Proceedings of the EMO-01, Zurich , pp. 373-384
    • Balicki, J.1    Kitowski, Z.2
  • 5
    • 79959402010 scopus 로고    scopus 로고
    • Automated discovery of vital knowledge from pareto-optimal solutions: First results from engineering design
    • IEEE, Piscataway
    • Bandaru S, Deb K (2010) Automated discovery of vital knowledge from pareto-optimal solutions: first results from engineering design. In: Proceedings of the WCCI-2010, Barcelona. IEEE, Piscataway
    • (2010) Proceedings of the WCCI-2010, Barcelona
    • Bandaru, S.1    Deb, K.2
  • 6
    • 79953824573 scopus 로고    scopus 로고
    • Automated innovization for simultaneous discovery of multiple rules in bi-objective problems
    • Springer, Heidelberg
    • Bandaru S, Deb K (2011a) Automated innovization for simultaneous discovery of multiple rules in bi-objective problems. In: Proceedings of the EMO-2011, Ouro Preto. Springer, Heidelberg, pp 1-15
    • (2011) Proceedings of the EMO-2011, Ouro Preto , pp. 1-15
    • Bandaru, S.1    Deb, K.2
  • 7
    • 84860388963 scopus 로고    scopus 로고
    • Towards automating the discovery of certain innovative design principles through a clustering based optimization technique
    • Bandaru S, Deb K (2011b) Towards automating the discovery of certain innovative design principles through a clustering based optimization technique. Eng Optim43:911-941
    • (2011) Eng Optim , vol.43 , pp. 911-941
    • Bandaru, S.1    Deb, K.2
  • 8
    • 55749098965 scopus 로고    scopus 로고
    • A simulated annealing-based multiobjective optimization algorithm: Amosa
    • Bandyopadhyay S, Saha S, Maulik U, Deb K (2008) A simulated annealing-based multiobjective optimization algorithm: Amosa. IEEE Trans Evol Comput 12:269-283
    • (2008) IEEE Trans Evol Comput , vol.12 , pp. 269-283
    • Bandyopadhyay, S.1    Saha, S.2    Maulik, U.3    Deb, K.4
  • 14
    • 33750250967 scopus 로고    scopus 로고
    • Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization
    • Brockhoff D, Zitzler E (2006) Are all objectives necessary? On dimensionality reduction in evolutionary multiobjective optimization. In: PPSN IX, Reykjavik. LNCS4193, pp 533-542
    • (2006) PPSN IX, Reykjavik. LNCS4193 , pp. 533-542
    • Brockhoff, D.1    Zitzler, E.2
  • 15
    • 55749098297 scopus 로고    scopus 로고
    • Dimensionality reduction in multiobjective optimization: The minimum objective subset problem
    • Waldmann KH, Stocker UM, Springer, Berlin
    • Brockhoff D, Zitzler E (2007) Dimensionality reduction in multiobjective optimization: the minimum objective subset problem. In: Waldmann KH, Stocker UM (eds) OR proceedings 2006, Karlsruhe, Germany. Springer, Berlin, pp 423-429
    • (2007) OR Proceedings 2006, Karlsruhe, Germany , pp. 423-429
    • Brockhoff, D.1    Zitzler, E.2
  • 17
    • 0028447734 scopus 로고
    • A simulated annealing technique for multiobjective optimization of intelligent structures
    • Chattopadhyay A, Seeley C (1994) A simulated annealing technique for multiobjective optimization of intelligent structures. Smart Mater Struct 3:98-106
    • (1994) Smart Mater Struct , vol.3 , pp. 98-106
    • Chattopadhyay, A.1    Seeley, C.2
  • 19
    • 84956490473 scopus 로고    scopus 로고
    • Coello CAC (2003)http://www.lania.mx/~ccoello/EMOO/
    • (2003)
    • Coello, C.1
  • 21
    • 84901438927 scopus 로고    scopus 로고
    • MOPSO: A proposal for multiple objective particle swarm optimization
    • IEEE, Piscataway, Honolulu, USA
    • Coello CAC, Lechuga MS (2002) MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the CEC 2002, vol 2. IEEE, Piscataway, Honolulu, USA, pp. 1051-1056
    • (2002) Proceedings of the CEC 2002 , vol.2 , pp. 1051-1056
    • Coello, C.1    Lechuga, M.S.2
  • 27
    • 34548137363 scopus 로고    scopus 로고
    • Techniques for highly multiobjective optimization: Some nondominated points are better than others
    • ACM, New York
    • Corne DW, Knowles JD (2007) Techniques for highly multiobjective optimization: some nondominated points are better than others. In: Proceedings of the GECCO-07, London. ACM, New York, pp 773-780
    • (2007) Proceedings of the GECCO-07, London , pp. 773-780
    • Corne, D.W.1    Knowles, J.D.2
  • 33
    • 0344464824 scopus 로고    scopus 로고
    • Unveiling innovative design principles by means of multiple conflicting objectives
    • Deb K (2003) Unveiling innovative design principles by means of multiple conflicting objectives. Eng Optim 35:445-470
    • (2003) Eng Optim , vol.35 , pp. 445-470
    • Deb, K.1
  • 34
    • 79959407346 scopus 로고    scopus 로고
    • A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach
    • Deb K, Datta R (2010) A fast and accurate solution of constrained optimization problems using a hybrid bi-objective and penalty function approach. In: Proceedings of the IEEE WCCI 2010, Barcelona, pp 165-172
    • (2010) Proceedings of the IEEE WCCI 2010, Barcelona , pp. 165-172
    • Deb, K.1    Datta, R.2
  • 36
    • 0141731317 scopus 로고    scopus 로고
    • Multi-speed gearbox design using multi-objective evolutionary algorithms
    • Deb K, Jain S (2003) Multi-speed gearbox design using multi-objective evolutionary algorithms. ASME Trans Mech Des 125:609-619
    • (2003) ASME Trans Mech Des , vol.125 , pp. 609-619
    • Deb, K.1    Jain, S.2
  • 38
    • 34548078735 scopus 로고    scopus 로고
    • Interactive evolutionary multi-objective optimization and decision-making using reference direction method
    • London. ACM, New York
    • Deb K, Kumar A (2007a) Interactive evolutionary multi-objective optimization and decision-making using reference direction method. In: Proceedings of the GECCO 2007, London. ACM, New York, pp 781-788
    • (2007) Proceedings of the GECCO , vol.2007 , pp. 781-788
    • Deb, K.1    Kumar, A.2
  • 39
    • 72749122175 scopus 로고    scopus 로고
    • Light beam search based multi-objective optimization using evolutionary algorithms
    • Deb K, Kumar A (2007b) Light beam search based multi-objective optimization using evolutionary algorithms. In: Proceedings of the CEC-07, Singapore, pp 2125-2132
    • (2007) Proceedings of the CEC-07, Singapore , pp. 2125-2132
    • Deb, K.1    Kumar, A.2
  • 40
    • 84857519155 scopus 로고    scopus 로고
    • Multimodal optimization using a bi-objective evolutionary algorithms
    • Deb K, Saha A (2012) Multimodal optimization using a bi-objective evolutionary algorithms. Evol Comput J 20:27-62
    • (2012) Evol Comput J , vol.20 , pp. 27-62
    • Deb, K.1    Saha, A.2
  • 41
    • 37249052124 scopus 로고    scopus 로고
    • Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems
    • Deb K, Saxena D (2006) Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: Proceedings of the WCCI2006, Vancouver, pp 3352-3360
    • (2006) Proceedings of the WCCI2006, Vancouver , pp. 3352-3360
    • Deb, K.1    Saxena, D.2
  • 42
    • 33750258231 scopus 로고    scopus 로고
    • Innovization: Innovating design principles through optimization
    • ACM, New York
    • Deb K, Srinivasan A (2006) Innovization: innovating design principles through optimization. In: Proceedings of the GECCO-2006, Seattle. ACM, New York, pp 1629-1636
    • (2006) Proceedings of the GECCO-2006, Seattle , pp. 1629-1636
    • Deb, K.1    Srinivasan, A.2
  • 45
    • 33748901398 scopus 로고    scopus 로고
    • Distributed computing of pareto-optimal solutions using multi-objective evolutionary algorithms
    • LNCS
    • Deb K, Zope P, Jain A (2003a) Distributed computing of pareto-optimal solutions using multi-objective evolutionary algorithms. In: Proceedings of the EMO-03, Faro. LNCS 2632, pp 535-549
    • (2003) Proceedings of the EMO-03, Faro , vol.2632 , pp. 535-549
    • Deb, K.1    Zope, P.2    Jain, A.3
  • 46
    • 33947670047 scopus 로고    scopus 로고
    • Towards a quick computation of well-spread pareto-optimal solutions
    • LNCS
    • Deb K, Mohan M, Mishra S (2003b) Towards a quick computation of well-spread pareto-optimal solutions. In: Proceedings of the EMO-03, Faro. LNCS 2632, pp 222-236
    • (2003) Proceedings of the EMO-03, Faro , vol.2632 , pp. 222-236
    • Deb, K.1    Mohan, M.2    Mishra, S.3
  • 47
    • 4444258455 scopus 로고    scopus 로고
    • Multi-objective placement of electronic components using evolutionary algorithms
    • Deb K, Jain P, Gupta N, Maji H (2004a) Multi-objective placement of electronic components using evolutionary algorithms. IEEE Trans Compon Packag Technol27:480-492
    • (2004) IEEE Trans Compon Packag Technol , vol.27 , pp. 480-492
    • Deb, K.1    Jain, P.2    Gupta, N.3    Maji, H.4
  • 48
    • 4644246639 scopus 로고    scopus 로고
    • Towards a better understanding of the epoxy polymerization process using multi-objective evolutionary computation
    • Deb K, Mitra K, Dewri R, Majumdar S (2004b) Towards a better understanding of the epoxy polymerization process using multi-objective evolutionary computation. Chem Eng Sci 59:4261-4277
    • (2004) Chem Eng Sci , vol.59 , pp. 4261-4277
    • Deb, K.1    Mitra, K.2    Dewri, R.3    Majumdar, S.4
  • 49
    • 33745917564 scopus 로고    scopus 로고
    • Scalable test problems for evolutionary multi-objective optimization
    • Abraham A et al, Springer, London
    • Deb K, Thiele L, Laumanns M, Zitzler E (2005) Scalable test problems for evolutionary multi-objective optimization. In: Abraham A et al (eds) Evolutionary multiobjective optimization. Springer, London, pp 105-145
    • (2005) Evolutionary Multiobjective Optimization , pp. 105-145
    • Deb, K.1    Thiele, L.2    Laumanns, M.3    Zitzler, E.4
  • 50
    • 34548069243 scopus 로고    scopus 로고
    • Reference point based multiobjective optimization using evolutionary algorithms
    • Deb K, Sundar J, Uday N, Chaudhuri S (2006) Reference point based multiobjective optimization using evolutionary algorithms. Int J Comput Intell Res (IJCIR) 2:273-286
    • (2006) Int J Comput Intell Res (IJCIR) , vol.2 , pp. 273-286
    • Deb, K.1    Sundar, J.2    Uday, N.3    Chaudhuri, S.4
  • 51
    • 84956511735 scopus 로고    scopus 로고
    • Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal power scheduling bi-objective optimization problems
    • Deb K, Rao UB, Karthik S (2007) Dynamic multi-objective optimization and decision-making using modified NSGA-II: a case study on hydro-thermal power scheduling bi-objective optimization problems. In: Proceedings of the EMO-2007, Matsushima
    • (2007) Proceedings of the EMO-2007, Matsushima
    • Deb, K.1    Rao, U.B.2    Karthik, S.3
  • 52
    • 77957600209 scopus 로고    scopus 로고
    • An interactive evolutionary multiobjective optimization method based on progressively approximated value functions
    • Deb K, Sinha A, Korhonen P, Wallenius J (2010) An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. IEEE Trans Evol Comput 14:723-739
    • (2010) IEEE Trans Evol Comput , vol.14 , pp. 723-739
    • Deb, K.1    Sinha, A.2    Korhonen, P.3    Wallenius, J.4
  • 59
    • 0037121184 scopus 로고    scopus 로고
    • Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic
    • Gravel M, Price WL, Gagné C (2002) Scheduling continuous casting of aluminum using a multiple objective ant colony optimization metaheuristic. Eur J Oper Res143:218-229
    • (2002) Eur J Oper Res , vol.143 , pp. 218-229
    • Gravel, M.1    Price, W.L.2    Gagné, C.3
  • 60
    • 0015094608 scopus 로고
    • On a bicriterion formulation of the problems of integrated system identification and system optimization
    • Haimes YY, Lasdon LS, Wismer DA (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Trans Syst Man Cybern 1:296-297
    • (1971) IEEE Trans Syst Man Cybern , vol.1 , pp. 296-297
    • Haimes, Y.Y.1    Lasdon, L.S.2    Wismer, D.A.3
  • 63
    • 27144473875 scopus 로고    scopus 로고
    • Evolutionary many-objective optimization: Many once or one many
    • Hughes EJ (2005) Evolutionary many-objective optimization: many once or one many? In: Proceedings of the CEC-2005, Edinburgh, pp 222-227
    • (2005) Proceedings of the CEC-2005, Edinburgh , pp. 222-227
    • Hughes, E.J.1
  • 65
    • 0142172453 scopus 로고    scopus 로고
    • Guiding single-objective optimization using multi-objective methods
    • Raidl G et al, Evoworkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM, Essex. LNCS 2611. Springer, Berlin
    • Jensen MT (2003a) Guiding single-objective optimization using multi-objective methods. In: Raidl G et al (eds) Applications of evolutionary computing. Evoworkshops 2003: EvoBIO, EvoCOP, EvoIASP, EvoMUSART, EvoROB, and EvoSTIM, Essex. LNCS 2611. Springer, Berlin, pp 199-210
    • (2003) Applications of Evolutionary Computing , pp. 199-210
    • Jensen, M.T.1
  • 66
    • 0142165034 scopus 로고    scopus 로고
    • Reducing the run-time complexity of multiobjective EAs
    • Jensen MT (2003b) Reducing the run-time complexity of multiobjective EAs. IEEE Trans Evol Comput 7:503-515
    • (2003) IEEE Trans Evol Comput , vol.7 , pp. 503-515
    • Jensen, M.T.1
  • 67
    • 84931467912 scopus 로고    scopus 로고
    • Tabu-based exploratory evolutionary algorithm for effective multi-objective optimization
    • Khor EF, Tan KC, Lee TH (2001) Tabu-based exploratory evolutionary algorithm for effective multi-objective optimization. In: Proceedings of the EMO-01, Zurich, pp 344-358
    • (2001) Proceedings of the EMO-01, Zurich , pp. 344-358
    • Khor, E.F.1    Tan, K.C.2    Lee, T.H.3
  • 68
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the non-dominated front using the Pareto archived evolution strategy
    • Knowles JD, Corne DW (2000) Approximating the non-dominated front using the Pareto archived evolution strategy. Evol Comput J 8:149-172
    • (2000) Evol Comput J , vol.8 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 69
    • 37249057083 scopus 로고    scopus 로고
    • Quantifying the effects of objective space dimension in evolutionary multiobjective optimization
    • LNCS 4403
    • Knowles J, Corne D (2007) Quantifying the effects of objective space dimension in evolutionary multiobjective optimization. In: Proceedings of the EMO-2007, Matsushima. LNCS 4403, pp 757-771
    • (2007) Proceedings of the EMO-2007, Matsushima , pp. 757-771
    • Knowles, J.1    Corne, D.2
  • 71
    • 0347764679 scopus 로고    scopus 로고
    • Application of chance-constrained programming based on multiobjective simulated annealing to solve a mineral blending problem
    • Kumral M (2003) Application of chance-constrained programming based on multiobjective simulated annealing to solve a mineral blending problem. Eng Optim35:661-673
    • (2003) Eng Optim , vol.35 , pp. 661-673
    • Kumral, M.1
  • 73
    • 0036715683 scopus 로고    scopus 로고
    • Combining convergence and diversity in evolutionary multi-objective optimization
    • Laumanns M, Thiele L, Deb K, Zitzler E (2002a) Combining convergence and diversity in evolutionary multi-objective optimization. Evol Comput 10:263-282
    • (2002) Evol Comput , vol.10 , pp. 263-282
    • Laumanns, M.1    Thiele, L.2    Deb, K.3    Zitzler, E.4
  • 75
    • 2442556083 scopus 로고    scopus 로고
    • Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions
    • Laumanns M, Thiele L, Zitzler E (2004) Running time analysis of multiobjective evolutionary algorithms on pseudo-Boolean functions. IEEE Trans Evol Comput8:170-182
    • (2004) IEEE Trans Evol Comput , vol.8 , pp. 170-182
    • Laumanns, M.1    Thiele, L.2    Zitzler, E.3
  • 78
    • 0035385251 scopus 로고    scopus 로고
    • An ant colony optimization approach to addessing a JIT sequencing problem with multiple objectives
    • McMullen PR (2001) An ant colony optimization approach to addessing a JIT sequencing problem with multiple objectives. Artif Intell Eng 15:309-317
    • (2001) Artif Intell Eng , vol.15 , pp. 309-317
    • McMullen, P.R.1
  • 85
    • 0033666685 scopus 로고    scopus 로고
    • Convergence properties of some multi-objective evolutionary algorithms
    • Rudolph G, Agapie A (2000) Convergence properties of some multi-objective evolutionary algorithms. In: Proceedings of the CEC 2000, San Diego, pp 1010-1016
    • (2000) Proceedings of the CEC 2000, San Diego , pp. 1010-1016
    • Rudolph, G.1    Agapie, A.2
  • 86
    • 84873302479 scopus 로고    scopus 로고
    • Objective reduction in many-objective optimization: Linear and nonlinear algorithms
    • Saxena D, Duro JA, Tiwari A, Deb K, Zhang Q (2013) Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans Evol Comput17(1):77-99
    • (2013) IEEE Trans Evol Comput , vol.17 , Issue.1 , pp. 77-99
    • Saxena, D.1    Duro, J.A.2    Tiwari, A.3    Deb, K.4    Zhang, Q.5
  • 87
    • 78149238285 scopus 로고    scopus 로고
    • GPGPU compatible archive based stochastic ranking evolutionary algorithm (G-ASREA) for multi-objective optimization
    • Springer, Berlin
    • Sharma D, Collet P (2010) GPGPU compatible archive based stochastic ranking evolutionary algorithm (G-ASREA) for multi-objective optimization. In: Proceedings of the PPSN-2010, Krakow. Springer, Berlin, pp 111-120
    • (2010) Proceedings of the PPSN-2010, Krakow , pp. 111-120
    • Sharma, D.1    Collet, P.2
  • 88
    • 0000852513 scopus 로고
    • Multi-objective function optimization using non-dominated sorting genetic algorithms
    • Srinivas N, Deb K (1994) Multi-objective function optimization using non-dominated sorting genetic algorithms. Evol Comput J 2:221-248
    • (1994) Evol Comput J , vol.2 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 89
    • 84958949122 scopus 로고
    • A multi-objective approach to constrained optimization of gas supply networks: The COMOGA method
    • Springer, Berlin
    • Surry PD, Radcliffe NJ, Boyd ID (1995) A multi-objective approach to constrained optimization of gas supply networks: the COMOGA method. In: Evolutionary computing. AISB workshop, Sheffield. Springer, Berlin, pp 166-180
    • (1995) Evolutionary computing. AISB Workshop, Sheffield , pp. 166-180
    • Surry, P.D.1    Radcliffe, N.J.2    Boyd, I.D.3
  • 92
    • 0034201456 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: Analyzing the state-of-the-art
    • Veldhuizen DV, Lamont GB (2000) Multiobjective evolutionary algorithms: analyzing the state-of-the-art. Evol Comput J 8:125-148
    • (2000) Evol Comput J , vol.8 , pp. 125-148
    • Veldhuizen, D.V.1    Lamont, G.B.2
  • 94
    • 85009467389 scopus 로고    scopus 로고
    • Parallel multi-objective evolutionary algorithms on graphics processing units
    • Wong ML (2009) Parallel multi-objective evolutionary algorithms on graphics processing units. Tn: Proceedings of the GECCO-2009, Montreal, pp 2515-2522
    • (2009) Proceedings of the GECCO-2009, Montreal , pp. 2515-2522
    • Wong, M.L.1
  • 95
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D: A multiobjective evolutionary algorithm based on decomposition
    • Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. TEEE Trans Evol Comput 11:712-731
    • (2007) TEEE Trans Evol Comput , vol.11 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 98
    • 35048846146 scopus 로고    scopus 로고
    • Tndicator-based selection in multiobjective search
    • LNCS 3242. Springer, Berlin
    • Zitzler E, Künzli S (2004) Tndicator-based selection in multiobjective search. Tn: Proceedings of the PPSN VTTT, Birmingham. LNCS 3242. Springer, Berlin, pp 832-842
    • (2004) Proceedings of the PPSN VTTT, Birmingham , pp. 832-842
    • Zitzler, E.1    Künzli, S.2
  • 100
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
    • Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. TEEE Trans Evol Comput 3:257-271
    • (1999) TEEE Trans Evol Comput , vol.3 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2
  • 102
    • 2942547409 scopus 로고    scopus 로고
    • SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization
    • Giannakoglou KC, Tsahalis DT, Periaux J, Papailiou KD, Fogarty T, Tnternational Center for Numerical Methods in Engineering (CTMNE)
    • Zitzler E, Laumanns M, Thiele L (2001b) SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. Tn: Giannakoglou KC, Tsahalis DT, Periaux J, Papailiou KD, Fogarty T (eds) Evolutionary methods for design optimization and control with applications to industrial problems, Athens. Tnternational Center for Numerical Methods in Engineering (CTMNE), pp 95-100
    • (2001) Evolutionary Methods for design Optimization and Control with Applications to Industrial Problems, Athens , pp. 95-100
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.