-
2
-
-
0029753649
-
2 over the last 1000 years from air in Antarctic ice and firn
-
2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. Atmos. 1996, 101, 4115-4128, 10.1029/95JD03410
-
(1996)
J. Geophys. Res. Atmos.
, vol.101
, pp. 4115-4128
-
-
Etheridge, D.M.1
Steele, L.P.2
Langenfelds, R.L.3
Francey, R.J.4
Barnola, J.M.5
Morgan, V.I.6
-
3
-
-
85027954070
-
2
-
2. Adv. Mater. 2015, 27, 1957-1963, 10.1002/adma.201500116
-
(2015)
Adv. Mater.
, vol.27
, pp. 1957-1963
-
-
Ozin, G.A.1
-
4
-
-
80051720417
-
Anthropogenic Chemical Carbon Cycle for a Sustainable Future
-
Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic Chemical Carbon Cycle for a Sustainable Future. J. Am. Chem. Soc. 2011, 133, 12881-12898, 10.1021/ja202642y
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 12881-12898
-
-
Olah, G.A.1
Prakash, G.K.S.2
Goeppert, A.3
-
5
-
-
85017037627
-
-
Intergovernmental Panel on Climate Change (IPCC).; IPCC: Geneva, Switzerland. Available at the following
-
Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report 2014; IPCC: Geneva, Switzerland. Available at the following: https://www.ipcc.ch/report/ar5/.
-
Fifth Assessment Report 2014
-
-
-
6
-
-
85029366089
-
-
International Energy Agency.; International Energy Agency: Paris, France. Available at the following
-
International Energy Agency. Medium-Term Renewable Energy Market Report 2016; International Energy Agency: Paris, France. Available at the following: https://www.iea.org/newsroom/news/2016/october/medium-term-renewable-energy-market-report-2016.html.
-
Medium-Term Renewable Energy Market Report 2016
-
-
-
7
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367, 10.1038/35104644
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
9
-
-
84856096310
-
Solar-fuel generation: Towards practical implementation
-
Dahl, S.; Chorkendorff, I. Solar-fuel generation: Towards practical implementation. Nat. Mater. 2012, 11, 100-101, 10.1038/nmat3233
-
(2012)
Nat. Mater.
, vol.11
, pp. 100-101
-
-
Dahl, S.1
Chorkendorff, I.2
-
10
-
-
33750458683
-
Powering the planet: Chemical challenges in solar energy utilization
-
Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729-15735, 10.1073/pnas.0603395103
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
11
-
-
74549131120
-
The teraton challenge. A review of fixation and transformation of carbon dioxide
-
Mikkelsen, M.; Jorgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43-81, 10.1039/B912904A
-
(2010)
Energy Environ. Sci.
, vol.3
, pp. 43-81
-
-
Mikkelsen, M.1
Jorgensen, M.2
Krebs, F.C.3
-
12
-
-
84885988397
-
2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes
-
2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes. Energy Environ. Sci. 2013, 6, 3112-3135, 10.1039/c3ee41272e
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3112-3135
-
-
Kondratenko, E.V.1
Mul, G.2
Baltrusaitis, J.3
Larrazabal, G.O.4
Perez-Ramirez, J.5
-
13
-
-
84907428372
-
Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts
-
Luo, J.; Im, J.-H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N.-G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345, 1593, 10.1126/science.1258307
-
(2014)
Science
, vol.345
, pp. 1593
-
-
Luo, J.1
Im, J.-H.2
Mayer, M.T.3
Schreier, M.4
Nazeeruddin, M.K.5
Park, N.-G.6
Tilley, S.D.7
Fan, H.J.8
Grätzel, M.9
-
14
-
-
84931275466
-
2 using perovskite photovoltaics
-
2 using perovskite photovoltaics. Nat. Commun. 2015, 6, 7326, 10.1038/ncomms8326
-
(2015)
Nat. Commun.
, vol.6
, pp. 7326
-
-
Schreier, M.1
Curvat, L.2
Giordano, F.3
Steier, L.4
Abate, A.5
Zakeeruddin, S.M.6
Luo, J.7
Mayer, M.T.8
Grätzel, M.9
-
15
-
-
84941690718
-
Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
-
Ager, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 2015, 8, 2811-2824, 10.1039/C5EE00457H
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2811-2824
-
-
Ager, J.W.1
Shaner, M.R.2
Walczak, K.A.3
Sharp, I.D.4
Ardo, S.5
-
16
-
-
0032540476
-
A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting
-
Khaselev, O.; Turner, J. A. A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting. Science 1998, 280, 425, 10.1126/science.280.5362.425
-
(1998)
Science
, vol.280
, pp. 425
-
-
Khaselev, O.1
Turner, J.A.2
-
17
-
-
0033634510
-
2-Catalyzed AlGaAs/Si Photoelectrolysis
-
2-Catalyzed AlGaAs/Si Photoelectrolysis. J. Phys. Chem. B 2000, 104, 8920-8924, 10.1021/jp002083b
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 8920-8924
-
-
Licht, S.1
Wang, B.2
Mukerji, S.3
Soga, T.4
Umeno, M.5
Tributsch, H.6
-
18
-
-
84886721800
-
Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell
-
Fujii, K.; Nakamura, S.; Sugiyama, M.; Watanabe, K.; Bagheri, B.; Nakano, Y. Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int. J. Hydrogen Energy 2013, 38, 14424-14432, 10.1016/j.ijhydene.2013.07.010
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, pp. 14424-14432
-
-
Fujii, K.1
Nakamura, S.2
Sugiyama, M.3
Watanabe, K.4
Bagheri, B.5
Nakano, Y.6
-
19
-
-
84905734811
-
Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting
-
Osterloh, F. E. Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting. J. Phys. Chem. Lett. 2014, 5, 2510-2511, 10.1021/jz501342j
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 2510-2511
-
-
Osterloh, F.E.1
-
20
-
-
78449289476
-
Solar Water Splitting Cells
-
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446-6473, 10.1021/cr1002326
-
(2010)
Chem. Rev.
, vol.110
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.5
Santori, E.A.6
Lewis, N.S.7
-
21
-
-
84902144692
-
Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
-
Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535, 10.1039/C3CS60378D
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7520-7535
-
-
Hisatomi, T.1
Kubota, J.2
Domen, K.3
-
22
-
-
35348875044
-
Electrochemical Photolysis of Water at a Semiconductor Electrode
-
Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38, 10.1038/238037a0
-
(1972)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
23
-
-
84884879248
-
Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move
-
Joya, K. S.; Joya, Y. F.; Ocakoglu, K.; van de Krol, R. Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move. Angew. Chem., Int. Ed. 2013, 52, 10426-10437, 10.1002/anie.201300136
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 10426-10437
-
-
Joya, K.S.1
Joya, Y.F.2
Ocakoglu, K.3
Van De Krol, R.4
-
24
-
-
84979927797
-
Semiconducting materials for photoelectrochemical energy conversion
-
Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010, 10.1038/natrevmats.2015.10
-
(2016)
Nat. Rev. Mater.
, vol.1
, pp. 15010
-
-
Sivula, K.1
Van De Krol, R.2
-
25
-
-
0010019696
-
Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors
-
Bard, A. J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59-75, 10.1016/0047-2670(79)80037-4
-
(1979)
J. Photochem.
, vol.10
, pp. 59-75
-
-
Bard, A.J.1
-
26
-
-
0000629550
-
2 crystals
-
2 crystals. Nature 1975, 257, 383-386, 10.1038/257383a0
-
(1975)
Nature
, vol.257
, pp. 383-386
-
-
Nozik, A.J.1
-
27
-
-
84874461329
-
Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
-
Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294-2320, 10.1039/C2CS35266D
-
(2013)
Chem. Soc. Rev.
, vol.42
, pp. 2294-2320
-
-
Osterloh, F.E.1
-
28
-
-
84922897090
-
Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System
-
Walczak, K.; Chen, Y.; Karp, C.; Beeman, J. W.; Shaner, M.; Spurgeon, J.; Sharp, I. D.; Amashukeli, X.; West, W.; Jin, J.; Lewis, N. S.; Xiang, C. Modeling, Simulation, and Fabrication of a Fully Integrated, Acid-stable, Scalable Solar-Driven Water-Splitting System. ChemSusChem 2015, 8, 544-551, 10.1002/cssc.201402896
-
(2015)
ChemSusChem
, vol.8
, pp. 544-551
-
-
Walczak, K.1
Chen, Y.2
Karp, C.3
Beeman, J.W.4
Shaner, M.5
Spurgeon, J.6
Sharp, I.D.7
Amashukeli, X.8
West, W.9
Jin, J.10
Lewis, N.S.11
Xiang, C.12
-
29
-
-
85020394547
-
Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations
-
Osterloh, F. E. Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations. ACS Energy Lett. 2017, 2, 445-453, 10.1021/acsenergylett.6b00665
-
(2017)
ACS Energy Lett.
, vol.2
, pp. 445-453
-
-
Osterloh, F.E.1
-
30
-
-
57649159482
-
Heterogeneous photocatalyst materials for water splitting
-
Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278, 10.1039/B800489G
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 253-278
-
-
Kudo, A.1
Miseki, Y.2
-
31
-
-
84857757585
-
Semiconductor Photocatalysis - Past, Present, and Future Outlook
-
Serpone, N.; Emeline, A. V. Semiconductor Photocatalysis-Past, Present, and Future Outlook. J. Phys. Chem. Lett. 2012, 3, 673-677, 10.1021/jz300071j
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 673-677
-
-
Serpone, N.1
Emeline, A.V.2
-
32
-
-
78449288259
-
Semiconductor-based Photocatalytic Hydrogen Generation
-
Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503-6570, 10.1021/cr1001645
-
(2010)
Chem. Rev.
, vol.110
, pp. 6503-6570
-
-
Chen, X.1
Shen, S.2
Guo, L.3
Mao, S.S.4
-
33
-
-
84872285386
-
Semiconductor Photocatalysis - Mechanistic and Synthetic Aspects
-
Kisch, H. Semiconductor Photocatalysis-Mechanistic and Synthetic Aspects. Angew. Chem., Int. Ed. 2013, 52, 812-847, 10.1002/anie.201201200
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 812-847
-
-
Kisch, H.1
-
34
-
-
79957618173
-
Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals: Synthesis and Function
-
Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Berr, M.; Jäckel, F.; Feldmann, J.; Rogach, A. L. Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals: Synthesis and Function. Adv. Funct. Mater. 2011, 21, 1547-1556, 10.1002/adfm.201002444
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 1547-1556
-
-
Vaneski, A.1
Susha, A.S.2
Rodríguez-Fernández, J.3
Berr, M.4
Jäckel, F.5
Feldmann, J.6
Rogach, A.L.7
-
35
-
-
77954327414
-
Colloidal Hybrid Nanostructures: A New Type of Functional Materials
-
Costi, R.; Saunders, A. E.; Banin, U. Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angew. Chem., Int. Ed. 2010, 49, 4878-4897, 10.1002/anie.200906010
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 4878-4897
-
-
Costi, R.1
Saunders, A.E.2
Banin, U.3
-
36
-
-
84943193278
-
Particle suspension reactors and materials for solar-driven water splitting
-
Fabian, D. M.; Hu, S.; Singh, N.; Houle, F. A.; Hisatomi, T.; Domen, K.; Osterloh, F. E.; Ardo, S. Particle suspension reactors and materials for solar-driven water splitting. Energy Environ. Sci. 2015, 8, 2825-2850, 10.1039/C5EE01434D
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2825-2850
-
-
Fabian, D.M.1
Hu, S.2
Singh, N.3
Houle, F.A.4
Hisatomi, T.5
Domen, K.6
Osterloh, F.E.7
Ardo, S.8
-
37
-
-
84883008345
-
Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry
-
Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S.; Wang, H.; Miller, E.; Jaramillo, T. F. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983-2002, 10.1039/c3ee40831k
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1983-2002
-
-
Pinaud, B.A.1
Benck, J.D.2
Seitz, L.C.3
Forman, A.J.4
Chen, Z.5
Deutsch, T.G.6
James, B.D.7
Baum, K.N.8
Baum, G.N.9
Ardo, S.10
Wang, H.11
Miller, E.12
Jaramillo, T.F.13
-
38
-
-
84930203012
-
Photocatalytic Activity of Inorganic Semiconductor Surfaces: Myths, Hype, and Reality
-
Rajeshwar, K.; Thomas, A.; Janáky, C. Photocatalytic Activity of Inorganic Semiconductor Surfaces: Myths, Hype, and Reality. J. Phys. Chem. Lett. 2015, 6, 139-147, 10.1021/jz502586p
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 139-147
-
-
Rajeshwar, K.1
Thomas, A.2
Janáky, C.3
-
39
-
-
84858432931
-
Advanced Nanoarchitectures for Solar Photocatalytic Applications
-
Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012, 112, 1555-614, 10.1021/cr100454n
-
(2012)
Chem. Rev.
, vol.112
, pp. 1555-1614
-
-
Kubacka, A.1
Fernández-García, M.2
Colón, G.3
-
40
-
-
84907895193
-
2 Nanoparticles as Functional Building Blocks
-
2 Nanoparticles as Functional Building Blocks. Chem. Rev. 2014, 114, 9283-9318, 10.1021/cr400629p
-
(2014)
Chem. Rev.
, vol.114
, pp. 9283-9318
-
-
Sang, L.1
Zhao, Y.2
Burda, C.3
-
41
-
-
1842425986
-
2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review
-
2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal., B 2004, 49, 1-14, 10.1016/j.apcatb.2003.11.010
-
(2004)
Appl. Catal., B
, vol.49
, pp. 1-14
-
-
Konstantinou, I.K.1
Albanis, T.A.2
-
42
-
-
80051587586
-
Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011)
-
Braslavsky, S. E.; Braun, A. M.; Cassano, A. E.; Emeline, A. V.; Litter, M. I.; Palmisano, L.; Parmon, V. N.; Serpone, N. Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 2011, 83, 931-1014, 10.1351/PAC-REC-09-09-36
-
(2011)
Pure Appl. Chem.
, vol.83
, pp. 931-1014
-
-
Braslavsky, S.E.1
Braun, A.M.2
Cassano, A.E.3
Emeline, A.V.4
Litter, M.I.5
Palmisano, L.6
Parmon, V.N.7
Serpone, N.8
-
43
-
-
84981731399
-
2 over Heterostructure Semiconductors into Value-Added Chemicals
-
2 over Heterostructure Semiconductors into Value-Added Chemicals. Chem. Rec. 2016, 16, 1918-1933, 10.1002/tcr.201600008
-
(2016)
Chem. Rec.
, vol.16
, pp. 1918-1933
-
-
Guo, L.-J.1
Wang, Y.-J.2
He, T.3
-
44
-
-
84904438276
-
2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects
-
2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Adv. Mater. 2014, 26, 4607-4626, 10.1002/adma.201400087
-
(2014)
Adv. Mater.
, vol.26
, pp. 4607-4626
-
-
Tu, W.1
Zhou, Y.2
Zou, Z.3
-
45
-
-
84859354779
-
2O on various titanium oxide photocatalysts
-
2O on various titanium oxide photocatalysts. RSC Adv. 2012, 2, 3165-3172, 10.1039/c2ra01332k
-
(2012)
RSC Adv.
, vol.2
, pp. 3165-3172
-
-
Mori, K.1
Yamashita, H.2
Anpo, M.3
-
46
-
-
34547486889
-
Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications
-
Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891-2959, 10.1021/cr0500535
-
(2007)
Chem. Rev.
, vol.107
, pp. 2891-2959
-
-
Chen, X.1
Mao, S.S.2
-
47
-
-
36149024282
-
Optical Properties of Nickel Oxide
-
Newman, R.; Chrenko, R. M. Optical Properties of Nickel Oxide. Phys. Rev. 1959, 114, 1507-1513, 10.1103/PhysRev.114.1507
-
(1959)
Phys. Rev.
, vol.114
, pp. 1507-1513
-
-
Newman, R.1
Chrenko, R.M.2
-
48
-
-
84867018861
-
Unusual x-ray excited luminescence spectra of NiO suggest self-trapping of the d-d charge-transfer exciton
-
Sokolov, V. I.; Pustovarov, V. A.; Churmanov, V. N.; Ivanov, V. Y.; Gruzdev, N. B.; Sokolov, P. S.; Baranov, A. N.; Moskvin, A. S. Unusual x-ray excited luminescence spectra of NiO suggest self-trapping of the d-d charge-transfer exciton. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 86, 115128, 10.1103/PhysRevB.86.115128
-
(2012)
Phys. Rev. B: Condens. Matter Mater. Phys.
, vol.86
-
-
Sokolov, V.I.1
Pustovarov, V.A.2
Churmanov, V.N.3
Ivanov, V.Y.4
Gruzdev, N.B.5
Sokolov, P.S.6
Baranov, A.N.7
Moskvin, A.S.8
-
49
-
-
84861924020
-
4 and Its Implications for Water Splitting Activity in the Wolframite Structure Type
-
4 and Its Implications for Water Splitting Activity in the Wolframite Structure Type. Inorg. Chem. 2012, 51, 6096-6103, 10.1021/ic202715c
-
(2012)
Inorg. Chem.
, vol.51
, pp. 6096-6103
-
-
Malingowski, A.C.1
Stephens, P.W.2
Huq, A.3
Huang, Q.4
Khalid, S.5
Khalifah, P.G.6
-
50
-
-
34548180960
-
Detailed Balance Limit of Efficiency of p-n Junction Solar Cells
-
Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510-519, 10.1063/1.1736034
-
(1961)
J. Appl. Phys.
, vol.32
, pp. 510-519
-
-
Shockley, W.1
Queisser, H.J.2
-
51
-
-
84877828966
-
Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers
-
Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. J. Am. Chem. Soc. 2013, 135, 7118-7121, 10.1021/ja402521s
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 7118-7121
-
-
Shalom, M.1
Inal, S.2
Fettkenhauer, C.3
Neher, D.4
Antonietti, M.5
-
53
-
-
84866716771
-
Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution
-
Chen, S.; Wang, L.-W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chem. Mater. 2012, 24, 3659-3666, 10.1021/cm302533s
-
(2012)
Chem. Mater.
, vol.24
, pp. 3659-3666
-
-
Chen, S.1
Wang, L.-W.2
-
54
-
-
0035850521
-
Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols
-
Aldana, J.; Wang, Y. A.; Peng, X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. J. Am. Chem. Soc. 2001, 123, 8844-8850, 10.1021/ja016424q
-
(2001)
J. Am. Chem. Soc.
, vol.123
, pp. 8844-8850
-
-
Aldana, J.1
Wang, Y.A.2
Peng, X.3
-
55
-
-
0024032632
-
Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential
-
Meissner, D.; Memming, R.; Kastening, B. Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J. Phys. Chem. 1988, 92, 3476-3483, 10.1021/j100323a032
-
(1988)
J. Phys. Chem.
, vol.92
, pp. 3476-3483
-
-
Meissner, D.1
Memming, R.2
Kastening, B.3
-
56
-
-
84862133673
-
Hole Scavenger Redox Potentials Determine Quantum Efficiency and Stability of Pt-decorated CdS Nanorods for Photocatalytic Hydrogen Generation
-
Berr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L.; Jackel, F.; Feldmann, J. Hole Scavenger Redox Potentials Determine Quantum Efficiency and Stability of Pt-decorated CdS Nanorods for Photocatalytic Hydrogen Generation. Appl. Phys. Lett. 2012, 100, 223903-3, 10.1063/1.4723575
-
(2012)
Appl. Phys. Lett.
, vol.100
-
-
Berr, M.J.1
Wagner, P.2
Fischbach, S.3
Vaneski, A.4
Schneider, J.5
Susha, A.S.6
Rogach, A.L.7
Jackel, F.8
Feldmann, J.9
-
57
-
-
84897492602
-
Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative
-
Tarafder, K.; Surendranath, Y.; Olshansky, J. H.; Alivisatos, A. P.; Wang, L.-W. Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative. J. Am. Chem. Soc. 2014, 136, 5121-5131, 10.1021/ja500936n
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 5121-5131
-
-
Tarafder, K.1
Surendranath, Y.2
Olshansky, J.H.3
Alivisatos, A.P.4
Wang, L.-W.5
-
58
-
-
84901700644
-
2 Generation Efficiency in CdS-Pt and CdSe/CdS-Pt Semiconductor Nanorod-Metal Tip Heterostructures
-
2 Generation Efficiency in CdS-Pt and CdSe/CdS-Pt Semiconductor Nanorod-Metal Tip Heterostructures. J. Am. Chem. Soc. 2014, 136, 7708-7716, 10.1021/ja5023893
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 7708-7716
-
-
Wu, K.1
Chen, Z.2
Lv, H.3
Zhu, H.4
Hill, C.L.5
Lian, T.6
-
59
-
-
84960540100
-
Perfect Photon-to-Hydrogen Conversion Efficiency
-
Kalisman, P.; Nakibli, Y.; Amirav, L. Perfect Photon-to-Hydrogen Conversion Efficiency. Nano Lett. 2016, 16, 1776-1781, 10.1021/acs.nanolett.5b04813
-
(2016)
Nano Lett.
, vol.16
, pp. 1776-1781
-
-
Kalisman, P.1
Nakibli, Y.2
Amirav, L.3
-
61
-
-
84983501569
-
2 Generation on Ni-decorated CdS Nanorods
-
2 Generation on Ni-decorated CdS Nanorods. Nat. Mater. 2014, 13, 1013-1018, 10.1038/nmat4049
-
(2014)
Nat. Mater.
, vol.13
, pp. 1013-1018
-
-
Simon, T.1
Bouchonville, N.2
Berr, M.J.3
Vaneski, A.4
Adrović, A.5
Volbers, D.6
Wyrwich, R.7
Döblinger, M.8
Susha, A.S.9
Rogach, A.L.10
Jäckel, F.11
Stolarczyk, J.K.12
Feldmann, J.13
-
62
-
-
79961223176
-
3 during Water Splitting
-
3 during Water Splitting. J. Phys. Chem. Lett. 2011, 2, 1900-1903, 10.1021/jz200839n
-
(2011)
J. Phys. Chem. Lett.
, vol.2
, pp. 1900-1903
-
-
Pesci, F.M.1
Cowan, A.J.2
Alexander, B.D.3
Durrant, J.R.4
Klug, D.R.5
-
63
-
-
0035156207
-
4+ as electron acceptors
-
4+ as electron acceptors. Appl. Catal., A 2001, 205, 117-128, 10.1016/S0926-860X(00)00549-4
-
(2001)
Appl. Catal., A
, vol.205
, pp. 117-128
-
-
Bamwenda, G.R.1
Uesigi, T.2
Abe, Y.3
Sayama, K.4
Arakawa, H.5
-
64
-
-
0036056289
-
An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm)
-
Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem. Commun. 2002, 1698-1699, 10.1039/B202393H
-
(2002)
Chem. Commun.
, pp. 1698-1699
-
-
Hitoki, G.1
Takata, T.2
Kondo, J.N.3
Hara, M.4
Kobayashi, H.5
Domen, K.6
-
65
-
-
0242669302
-
3 Photocatalysts with High Crystallinity and Surface Nanostructure
-
3 Photocatalysts with High Crystallinity and Surface Nanostructure. J. Am. Chem. Soc. 2003, 125, 3082-3089, 10.1021/ja027751g
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 3082-3089
-
-
Kato, H.1
Asakura, K.2
Kudo, A.3
-
67
-
-
0010884753
-
On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I
-
Marcus, R. A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I. J. Chem. Phys. 1956, 24, 966-978, 10.1063/1.1742723
-
(1956)
J. Chem. Phys.
, vol.24
, pp. 966-978
-
-
Marcus, R.A.1
-
68
-
-
84880131318
-
2 and Other Semiconductors
-
2 and Other Semiconductors. Angew. Chem., Int. Ed. 2013, 52, 7372-7408, 10.1002/anie.201207199
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 7372-7408
-
-
Habisreutinger, S.N.1
Schmidt-Mende, L.2
Stolarczyk, J.K.3
-
69
-
-
84855454904
-
Nano-photocatalytic Materials: Possibilities and Challenges
-
Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 2012, 24, 229-251, 10.1002/adma.201102752
-
(2012)
Adv. Mater.
, vol.24
, pp. 229-251
-
-
Tong, H.1
Ouyang, S.2
Bi, Y.3
Umezawa, N.4
Oshikiri, M.5
Ye, J.6
-
70
-
-
0038780625
-
Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo
-
Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo. Science 2003, 300, 1434, 10.1126/science.1083780
-
(2003)
Science
, vol.300
, pp. 1434
-
-
Larson, D.R.1
Zipfel, W.R.2
Williams, R.M.3
Clark, S.W.4
Bruchez, M.P.5
Wise, F.W.6
Webb, W.W.7
-
71
-
-
34047108821
-
Quantum Rod Bioconjugates as Targeted Probes for Confocal and Two-Photon Fluorescence Imaging of Cancer Cells
-
Yong, K.-T.; Qian, J.; Roy, I.; Lee, H. H.; Bergey, E. J.; Tramposch, K. M.; He, S.; Swihart, M. T.; Maitra, A.; Prasad, P. N. Quantum Rod Bioconjugates as Targeted Probes for Confocal and Two-Photon Fluorescence Imaging of Cancer Cells. Nano Lett. 2007, 7, 761-765, 10.1021/nl063031m
-
(2007)
Nano Lett.
, vol.7
, pp. 761-765
-
-
Yong, K.-T.1
Qian, J.2
Roy, I.3
Lee, H.H.4
Bergey, E.J.5
Tramposch, K.M.6
He, S.7
Swihart, M.T.8
Maitra, A.9
Prasad, P.N.10
-
72
-
-
84946553567
-
Controlling upconversion nanocrystals for emerging applications
-
Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924-936, 10.1038/nnano.2015.251
-
(2015)
Nat. Nanotechnol.
, vol.10
, pp. 924-936
-
-
Zhou, B.1
Shi, B.2
Jin, D.3
Liu, X.4
-
73
-
-
79959194595
-
Upconverting Nanoparticles
-
Haase, M.; Schäfer, H. Upconverting Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829, 10.1002/anie.201005159
-
(2011)
Angew. Chem., Int. Ed.
, vol.50
, pp. 5808-5829
-
-
Haase, M.1
Schäfer, H.2
-
74
-
-
77949621313
-
2 core/shell nanoparticles
-
2 core/shell nanoparticles. Chem. Commun. 2010, 46, 2304-2306, 10.1039/b924052g
-
(2010)
Chem. Commun.
, vol.46
, pp. 2304-2306
-
-
Qin, W.1
Zhang, D.2
Zhao, D.3
Wang, L.4
Zheng, K.5
-
76
-
-
85013290702
-
Heterogeneous Semiconductor Shells Sequentially Coated on Upconversion Nanoplates for NIR-Light Enhanced Photocatalysis
-
Cui, C.; Tou, M.; Li, M.; Luo, Z.; Xiao, L.; Bai, S.; Li, Z. Heterogeneous Semiconductor Shells Sequentially Coated on Upconversion Nanoplates for NIR-Light Enhanced Photocatalysis. Inorg. Chem. 2017, 56, 2328-2336, 10.1021/acs.inorgchem.6b03079
-
(2017)
Inorg. Chem.
, vol.56
, pp. 2328-2336
-
-
Cui, C.1
Tou, M.2
Li, M.3
Luo, Z.4
Xiao, L.5
Bai, S.6
Li, Z.7
-
77
-
-
85014860424
-
Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting
-
Zhang, J.; Huang, Y.; Jin, L.; Rosei, F.; Vetrone, F.; Claverie, J. P. Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting. ACS Appl. Mater. Interfaces 2017, 9, 8142-8150, 10.1021/acsami.7b00158
-
(2017)
ACS Appl. Mater. Interfaces
, vol.9
, pp. 8142-8150
-
-
Zhang, J.1
Huang, Y.2
Jin, L.3
Rosei, F.4
Vetrone, F.5
Claverie, J.P.6
-
78
-
-
84874583782
-
2 Core-Shell Nanoparticles
-
2 Core-Shell Nanoparticles. ACS Catal. 2013, 3, 405-412, 10.1021/cs300808r
-
(2013)
ACS Catal.
, vol.3
, pp. 405-412
-
-
Tang, Y.1
Di, W.2
Zhai, X.3
Yang, R.4
Qin, W.5
-
79
-
-
84892391366
-
2
-
2. ACS Appl. Mater. Interfaces 2014, 6, 340-348, 10.1021/am404389g
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 340-348
-
-
Wang, W.1
Huang, W.2
Ni, Y.3
Lu, C.4
Xu, Z.5
-
80
-
-
84896948496
-
Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting
-
Fan, W.; Bai, H.; Shi, W. Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting. CrystEngComm 2014, 16, 3059-3067, 10.1039/c3ce42337a
-
(2014)
CrystEngComm
, vol.16
, pp. 3059-3067
-
-
Fan, W.1
Bai, H.2
Shi, W.3
-
81
-
-
84863229840
-
Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis
-
Zhuo, S.; Shao, M.; Lee, S.-T. Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis. ACS Nano 2012, 6, 1059-1064, 10.1021/nn2040395
-
(2012)
ACS Nano
, vol.6
, pp. 1059-1064
-
-
Zhuo, S.1
Shao, M.2
Lee, S.-T.3
-
82
-
-
84862696573
-
A red metallic oxide photocatalyst
-
Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. S. A red metallic oxide photocatalyst. Nat. Mater. 2012, 11, 595-598, 10.1038/nmat3312
-
(2012)
Nat. Mater.
, vol.11
, pp. 595-598
-
-
Xu, X.1
Randorn, C.2
Efstathiou, P.3
Irvine, J.T.S.4
-
83
-
-
84947125090
-
3 Hybrid Conductor Material
-
3 Hybrid Conductor Material. Nano Lett. 2015, 15, 7199-7203, 10.1021/acs.nanolett.5b01581
-
(2015)
Nano Lett.
, vol.15
, pp. 7199-7203
-
-
Cui, G.1
Wang, W.2
Ma, M.3
Xie, J.4
Shi, X.5
Deng, N.6
Xin, J.7
Tang, B.8
-
85
-
-
72949117426
-
Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors
-
Youngblood, W. J.; Lee, S.-H. A.; Maeda, K.; Mallouk, T. E. Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors. Acc. Chem. Res. 2009, 42, 1966-1973, 10.1021/ar9002398
-
(2009)
Acc. Chem. Res.
, vol.42
, pp. 1966-1973
-
-
Youngblood, W.J.1
Lee, S.-H.A.2
Maeda, K.3
Mallouk, T.E.4
-
86
-
-
81555200698
-
2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics
-
2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A 2011, 115, 13211-13241, 10.1021/jp204364a
-
(2011)
J. Phys. Chem. A
, vol.115
, pp. 13211-13241
-
-
Kumar, S.G.1
Devi, L.G.2
-
87
-
-
84869422039
-
2/Pt Hybrid Systems
-
2/Pt Hybrid Systems. Chem.-Eur. J. 2012, 18, 15368-15381, 10.1002/chem.201201500
-
(2012)
Chem. - Eur. J.
, vol.18
, pp. 15368-15381
-
-
Han, W.-S.1
Wee, K.-R.2
Kim, H.-Y.3
Pac, C.4
Nabetani, Y.5
Yamamoto, D.6
Shimada, T.7
Inoue, H.8
Choi, H.9
Cho, K.10
Kang, S.O.11
-
88
-
-
33748256726
-
2 on Hydrogen Production under Visible Light
-
2 on Hydrogen Production under Visible Light. J. Phys. Chem. B 2006, 110, 14792-14799, 10.1021/jp062540+
-
(2006)
J. Phys. Chem. B
, vol.110
, pp. 14792-14799
-
-
Bae, E.1
Choi, W.2
-
89
-
-
57049129787
-
Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation
-
Maeda, K.; Eguchi, M.; Youngblood, W. J.; Mallouk, T. E. Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation. Chem. Mater. 2008, 20, 6770-6778, 10.1021/cm801807b
-
(2008)
Chem. Mater.
, vol.20
, pp. 6770-6778
-
-
Maeda, K.1
Eguchi, M.2
Youngblood, W.J.3
Mallouk, T.E.4
-
90
-
-
77950851960
-
2 Nanoparticles Using Visible Light
-
2 Nanoparticles Using Visible Light. J. Am. Chem. Soc. 2010, 132, 2132-2133, 10.1021/ja910091z
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 2132-2133
-
-
Woolerton, T.W.1
Sheard, S.2
Reisner, E.3
Pierce, E.4
Ragsdale, S.W.5
Armstrong, F.A.6
-
91
-
-
79959827350
-
2 photoreduction at enzyme-modified metal oxide nanoparticles
-
2 photoreduction at enzyme-modified metal oxide nanoparticles. Energy Environ. Sci. 2011, 4, 2393-2399, 10.1039/c0ee00780c
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 2393-2399
-
-
Woolerton, T.W.1
Sheard, S.2
Pierce, E.3
Ragsdale, S.W.4
Armstrong, F.A.5
-
92
-
-
84857695659
-
Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design
-
Kamat, P. V. Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. J. Phys. Chem. Lett. 2012, 3, 663-672, 10.1021/jz201629p
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 663-672
-
-
Kamat, P.V.1
-
94
-
-
76749158974
-
2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation
-
2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation. Nano Lett. 2010, 10, 478-483, 10.1021/nl903217w
-
(2010)
Nano Lett.
, vol.10
, pp. 478-483
-
-
Hensel, J.1
Wang, G.2
Li, Y.3
Zhang, J.Z.4
-
95
-
-
77949465889
-
Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation
-
Wang, G.; Yang, X.; Qian, F.; Zhang, J. Z.; Li, Y. Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation. Nano Lett. 2010, 10, 1088-1092, 10.1021/nl100250z
-
(2010)
Nano Lett.
, vol.10
, pp. 1088-1092
-
-
Wang, G.1
Yang, X.2
Qian, F.3
Zhang, J.Z.4
Li, Y.5
-
96
-
-
80052049859
-
2 heterostructured photocatalysts
-
2 heterostructured photocatalysts. J. Mater. Chem. 2011, 21, 13452-13457, 10.1039/c1jm12367j
-
(2011)
J. Mater. Chem.
, vol.21
, pp. 13452-13457
-
-
Wang, C.1
Thompson, R.L.2
Ohodnicki, P.3
Baltrus, J.4
Matranga, C.5
-
97
-
-
84861853299
-
Electronic Modulation of a Copper/Zinc Oxide Catalyst by a Heterojunction for Selective Hydrogenation of Carbon Dioxide to Methanol
-
Liao, F.; Zeng, Z.; Eley, C.; Lu, Q.; Hong, X.; Tsang, S. C. E. Electronic Modulation of a Copper/Zinc Oxide Catalyst by a Heterojunction for Selective Hydrogenation of Carbon Dioxide to Methanol. Angew. Chem., Int. Ed. 2012, 51, 5832-5836, 10.1002/anie.201200903
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 5832-5836
-
-
Liao, F.1
Zeng, Z.2
Eley, C.3
Lu, Q.4
Hong, X.5
Tsang, S.C.E.6
-
98
-
-
82055161674
-
Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
-
Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921, 10.1038/nmat3151
-
(2011)
Nat. Mater.
, vol.10
, pp. 911-921
-
-
Linic, S.1
Christopher, P.2
Ingram, D.B.3
-
99
-
-
84929359074
-
Nanocrystal engineering of noble metals and metal chalcogenides: Controlling the morphology, composition and crystallinity
-
Polavarapu, L.; Mourdikoudis, S.; Pastoriza-Santos, I.; Perez-Juste, J. Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 2015, 17, 3727-3762, 10.1039/C5CE00112A
-
(2015)
CrystEngComm
, vol.17
, pp. 3727-3762
-
-
Polavarapu, L.1
Mourdikoudis, S.2
Pastoriza-Santos, I.3
Perez-Juste, J.4
-
100
-
-
30344445988
-
Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles
-
Liz-Marzán, L. M. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir 2006, 22, 32-41, 10.1021/la0513353
-
(2006)
Langmuir
, vol.22
, pp. 32-41
-
-
Liz-Marzán, L.M.1
-
101
-
-
84875869408
-
A Review of Surface Plasmon Resonance-Enhanced Photocatalysis
-
Hou, W.; Cronin, S. B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612-1619, 10.1002/adfm.201202148
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 1612-1619
-
-
Hou, W.1
Cronin, S.B.2
-
102
-
-
85003443683
-
Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites
-
Wang, M.; Ye, M.; Iocozzia, J.; Lin, C.; Lin, Z. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites. Adv. Sci. 2016, 3, 1600024, 10.1002/advs.201600024
-
(2016)
Adv. Sci.
, vol.3
-
-
Wang, M.1
Ye, M.2
Iocozzia, J.3
Lin, C.4
Lin, Z.5
-
103
-
-
84926373419
-
Plasmon-enhanced light harvesting: Applications in enhanced photocatalysis, photodynamic therapy and photovoltaics
-
Zhou, N.; Lopez-Puente, V.; Wang, Q.; Polavarapu, L.; Pastoriza-Santos, I.; Xu, Q.-H. Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 2015, 5, 29076-29097, 10.1039/C5RA01819F
-
(2015)
RSC Adv.
, vol.5
, pp. 29076-29097
-
-
Zhou, N.1
Lopez-Puente, V.2
Wang, Q.3
Polavarapu, L.4
Pastoriza-Santos, I.5
Xu, Q.-H.6
-
104
-
-
84973401363
-
Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles
-
Yan, L.; Wang, F.; Meng, S. Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles. ACS Nano 2016, 10, 5452-5458, 10.1021/acsnano.6b01840
-
(2016)
ACS Nano
, vol.10
, pp. 5452-5458
-
-
Yan, L.1
Wang, F.2
Meng, S.3
-
105
-
-
84956590466
-
Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes
-
Ueno, K.; Oshikiri, T.; Misawa, H. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes. ChemPhysChem 2016, 17, 199-215, 10.1002/cphc.201500761
-
(2016)
ChemPhysChem
, vol.17
, pp. 199-215
-
-
Ueno, K.1
Oshikiri, T.2
Misawa, H.3
-
106
-
-
34250779498
-
New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light
-
Maeda, K.; Domen, K. New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. J. Phys. Chem. C 2007, 111, 7851-7861, 10.1021/jp070911w
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 7851-7861
-
-
Maeda, K.1
Domen, K.2
-
107
-
-
85026888793
-
5: Electronic Band Structures and Absolute Band Edges
-
5: Electronic Band Structures and Absolute Band Edges. J. Phys. Chem. C 2017, 121, 3241-3251, 10.1021/acs.jpcc.6b12370
-
(2017)
J. Phys. Chem. C
, vol.121
, pp. 3241-3251
-
-
Cui, Z.-H.1
Jiang, H.2
-
108
-
-
84934948925
-
2 Reduction with Visible Light Using a Hybrid of a Perovskite Tantalum Oxynitride and a Binuclear Ruthenium(II) Complex
-
2 Reduction with Visible Light Using a Hybrid of a Perovskite Tantalum Oxynitride and a Binuclear Ruthenium(II) Complex. ACS Appl. Mater. Interfaces 2015, 7, 13092-13097, 10.1021/acsami.5b03509
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 13092-13097
-
-
Yoshitomi, F.1
Sekizawa, K.2
Maeda, K.3
Ishitani, O.4
-
109
-
-
84992709773
-
x/TaON Photoanode
-
x/TaON Photoanode. J. Am. Chem. Soc. 2016, 138, 14152-14158, 10.1021/jacs.6b09212
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 14152-14158
-
-
Sahara, G.1
Kumagai, H.2
Maeda, K.3
Kaeffer, N.4
Artero, V.5
Higashi, M.6
Abe, R.7
Ishitani, O.8
-
111
-
-
77952476871
-
Highly active tantalum(v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation
-
Yuliati, L.; Yang, J.-H.; Wang, X.; Maeda, K.; Takata, T.; Antonietti, M.; Domen, K. Highly active tantalum(v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. J. Mater. Chem. 2010, 20, 4295-4298, 10.1039/c0jm00341g
-
(2010)
J. Mater. Chem.
, vol.20
, pp. 4295-4298
-
-
Yuliati, L.1
Yang, J.-H.2
Wang, X.3
Maeda, K.4
Takata, T.5
Antonietti, M.6
Domen, K.7
-
112
-
-
55749110209
-
Nitrogen-doped Lamellar Niobic Acid with Visible Light-responsive Photocatalytic Activity
-
Li, X.; Kikugawa, N.; Ye, J. Nitrogen-doped Lamellar Niobic Acid with Visible Light-responsive Photocatalytic Activity. Adv. Mater. 2008, 20, 3816-3819, 10.1002/adma.200702975
-
(2008)
Adv. Mater.
, vol.20
, pp. 3816-3819
-
-
Li, X.1
Kikugawa, N.2
Ye, J.3
-
114
-
-
84862939595
-
4 under visible light after nitridation
-
4 under visible light after nitridation. J. Mater. Chem. 2012, 22, 2033-2038, 10.1039/C1JM14122H
-
(2012)
J. Mater. Chem.
, vol.22
, pp. 2033-2038
-
-
Liu, Q.1
Zhou, Y.2
Tian, Z.3
Chen, X.4
Gao, J.5
Zou, Z.6
-
115
-
-
85018616499
-
2 Reduction
-
2 Reduction. Eur. J. Inorg. Chem. 2017, 2017, 2195-2200, 10.1002/ejic.201700044
-
(2017)
Eur. J. Inorg. Chem.
, vol.2017
, pp. 2195-2200
-
-
Liu, Q.1
Xu, M.2
Zhou, B.3
Liu, R.4
Tao, F.5
Mao, G.6
-
117
-
-
0037028162
-
3 (M: Ta and Nb) with the Perovskite Structure
-
3 (M: Ta and Nb) with the Perovskite Structure. J. Phys. Chem. B 2002, 106, 12441-12447, 10.1021/jp025974n
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 12441-12447
-
-
Kato, H.1
Kobayashi, H.2
Kudo, A.3
-
118
-
-
77950860313
-
3
-
3. Dalton Trans. 2009, 8519-8524, 10.1039/b906799j
-
(2009)
Dalton Trans.
, pp. 8519-8524
-
-
Li, G.1
Yan, S.2
Wang, Z.3
Wang, X.4
Li, Z.5
Ye, J.6
Zou, Z.7
-
119
-
-
63049089269
-
x with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity
-
x with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 3785-3792, 10.1021/jp807393a
-
(2009)
J. Phys. Chem. C
, vol.113
, pp. 3785-3792
-
-
Wang, D.1
Kako, T.2
Ye, J.3
-
120
-
-
84899960590
-
x
-
x. Int. J. Hydrogen Energy 2014, 39, 7705-7712, 10.1016/j.ijhydene.2014.03.102
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 7705-7712
-
-
Zhao, W.1
Ai, Z.2
Zhu, X.3
Zhang, M.4
Shi, Q.5
Dai, J.6
-
121
-
-
84987720556
-
Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion
-
Sullivan, I.; Zoellner, B.; Maggard, P. A. Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chem. Mater. 2016, 28, 5999-6016, 10.1021/acs.chemmater.6b00926
-
(2016)
Chem. Mater.
, vol.28
, pp. 5999-6016
-
-
Sullivan, I.1
Zoellner, B.2
Maggard, P.A.3
-
122
-
-
77956824030
-
Semiconducting Oxides to Facilitate the Conversion of Solar Energy to Chemical Fuels
-
Joshi, U. A.; Palasyuk, A.; Arney, D.; Maggard, P. A. Semiconducting Oxides to Facilitate the Conversion of Solar Energy to Chemical Fuels. J. Phys. Chem. Lett. 2010, 1, 2719-2726, 10.1021/jz100961d
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2719-2726
-
-
Joshi, U.A.1
Palasyuk, A.2
Arney, D.3
Maggard, P.A.4
-
124
-
-
61949412642
-
4: Elucidating the Role of the Bi s and V d Orbitals
-
4: Elucidating the Role of the Bi s and V d Orbitals. Chem. Mater. 2009, 21, 547-551, 10.1021/cm802894z
-
(2009)
Chem. Mater.
, vol.21
, pp. 547-551
-
-
Walsh, A.1
Yan, Y.2
Huda, M.N.3
Al-Jassim, M.M.4
Wei, S.-H.5
-
125
-
-
22944456204
-
6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts
-
6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chem. Mater. 2005, 17, 3537-3545, 10.1021/cm0501517
-
(2005)
Chem. Mater.
, vol.17
, pp. 3537-3545
-
-
Zhang, C.1
Zhu, Y.2
-
126
-
-
84896735953
-
4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
-
4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343, 990, 10.1126/science.1246913
-
(2014)
Science
, vol.343
, pp. 990
-
-
Kim, T.W.1
Choi, K.-S.2
-
128
-
-
85008600471
-
4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges
-
4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges. Catalysts 2017, 7, 13, 10.3390/catal7010013
-
(2017)
Catalysts
, vol.7
, pp. 13
-
-
Tolod, R.K.1
Hernández, S.2
Russo, N.3
-
130
-
-
0035673336
-
4 with Scheelite Structure and Their Photocatalytic Properties
-
4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater. 2001, 13, 4624-4628, 10.1021/cm0103390
-
(2001)
Chem. Mater.
, vol.13
, pp. 4624-4628
-
-
Tokunaga, S.1
Kato, H.2
Kudo, A.3
-
131
-
-
84874618738
-
4
-
4. Nat. Commun. 2013, 4, 1432, 10.1038/ncomms2401
-
(2013)
Nat. Commun.
, vol.4
, pp. 1432
-
-
Li, R.1
Zhang, F.2
Wang, D.3
Yang, J.4
Li, M.5
Zhu, J.6
Zhou, X.7
Han, H.8
Li, C.9
-
132
-
-
71849110858
-
4 photocatalyst
-
4 photocatalyst. Catal. Commun. 2009, 11, 210-213, 10.1016/j.catcom.2009.10.010
-
(2009)
Catal. Commun.
, vol.11
, pp. 210-213
-
-
Liu, Y.1
Huang, B.2
Dai, Y.3
Zhang, X.4
Qin, X.5
Jiang, M.6
Whangbo, M.-H.7
-
133
-
-
84878087040
-
6 Improved Photocatalytic Water Oxidation with Zn Doping
-
6 Improved Photocatalytic Water Oxidation with Zn Doping. J. Phys. Chem. C 2013, 117, 9633-9640, 10.1021/jp308629q
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 9633-9640
-
-
Bhattacharya, C.1
Lee, H.C.2
Bard, A.J.3
-
134
-
-
80053483649
-
6 Inverse Opals: Facile Fabrication and Efficient Visible-Light-Driven Photocatalytic and Photoelectrochemical Water-Splitting Activity
-
6 Inverse Opals: Facile Fabrication and Efficient Visible-Light-Driven Photocatalytic and Photoelectrochemical Water-Splitting Activity. Small 2011, 7, 2714-2720, 10.1002/smll.201101152
-
(2011)
Small
, vol.7
, pp. 2714-2720
-
-
Zhang, L.1
Baumanis, C.2
Robben, L.3
Kandiel, T.4
Bahnemann, D.5
-
135
-
-
84862833037
-
2 into Renewable Hydrocarbon Fuel under Visible Light
-
2 into Renewable Hydrocarbon Fuel under Visible Light. ACS Appl. Mater. Interfaces 2011, 3, 3594-3601, 10.1021/am2008147
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 3594-3601
-
-
Zhou, Y.1
Tian, Z.2
Zhao, Z.3
Liu, Q.4
Kou, J.5
Chen, X.6
Gao, J.7
Yan, S.8
Zou, Z.9
-
136
-
-
85008417735
-
2 reduction
-
2 reduction. Nano Energy 2017, 32, 359-366, 10.1016/j.nanoen.2016.12.054
-
(2017)
Nano Energy
, vol.32
, pp. 359-366
-
-
Hou, J.1
Cao, S.2
Wu, Y.3
Liang, F.4
Sun, Y.5
Lin, Z.6
Sun, L.7
-
137
-
-
79951513799
-
Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals
-
Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746, 10.1126/science.1200448
-
(2011)
Science
, vol.331
, pp. 746
-
-
Chen, X.1
Liu, L.2
Yu, P.Y.3
Mao, S.S.4
-
138
-
-
84870621164
-
2 for the Photocatalytic Splitting of Water
-
2 for the Photocatalytic Splitting of Water. Angew. Chem., Int. Ed. 2012, 51, 12410-12412, 10.1002/anie.201206375
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 12410-12412
-
-
Hu, Y.H.1
-
139
-
-
84941935350
-
Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy
-
Huang, Z.-F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.-J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv. Mater. 2015, 27, 5309-5327, 10.1002/adma.201501217
-
(2015)
Adv. Mater.
, vol.27
, pp. 5309-5327
-
-
Huang, Z.-F.1
Song, J.2
Pan, L.3
Zhang, X.4
Wang, L.5
Zou, J.-J.6
-
140
-
-
84941695097
-
Ultrathin tungsten oxide nanowires: Oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties
-
Liu, F.; Chen, X.; Xia, Q.; Tian, L.; Chen, X. Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Adv. 2015, 5, 77423-77428, 10.1039/C5RA12993A
-
(2015)
RSC Adv.
, vol.5
, pp. 77423-77428
-
-
Liu, F.1
Chen, X.2
Xia, Q.3
Tian, L.4
Chen, X.5
-
141
-
-
84863244464
-
49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide
-
49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395-2399, 10.1002/anie.201107681
-
(2012)
Angew. Chem., Int. Ed.
, vol.51
, pp. 2395-2399
-
-
Xi, G.1
Ouyang, S.2
Li, P.3
Ye, J.4
Ma, Q.5
Su, N.6
Bai, H.7
Wang, C.8
-
142
-
-
5644259577
-
2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?
-
2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?. J. Phys. Chem. 1995, 99, 16646-16654, 10.1021/j100045a026
-
(1995)
J. Phys. Chem.
, vol.99
, pp. 16646-16654
-
-
Serpone, N.1
Lawless, D.2
Khairutdinov, R.3
-
144
-
-
84855982993
-
Delayed Photoelectron Transfer in Pt-Decorated CdS Nanorods under Hydrogen Generation Conditions
-
Berr, M. J.; Vaneski, A.; Mauser, C.; Fischbach, S.; Susha, A. S.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Delayed Photoelectron Transfer in Pt-Decorated CdS Nanorods under Hydrogen Generation Conditions. Small 2012, 8, 291-297, 10.1002/smll.201101317
-
(2012)
Small
, vol.8
, pp. 291-297
-
-
Berr, M.J.1
Vaneski, A.2
Mauser, C.3
Fischbach, S.4
Susha, A.S.5
Rogach, A.L.6
Jäckel, F.7
Feldmann, J.8
-
145
-
-
54249114499
-
2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry
-
2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. J. Am. Chem. Soc. 2008, 130, 13885-13891, 10.1021/ja8034637
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 13885-13891
-
-
Tang, J.1
Durrant, J.R.2
Klug, D.R.3
-
146
-
-
84949509179
-
Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes
-
White, J. L.; Baruch, M. F.; Pander, J. E., III; Hu, Y.; Fortmeyer, I. C.; Park, J. E.; Zhang, T.; Liao, K.; Gu, J.; Yan, Y.; Shaw, T. W.; Abelev, E.; Bocarsly, A. B. Light-Driven Heterogeneous Reduction of Carbon Dioxide: Photocatalysts and Photoelectrodes. Chem. Rev. 2015, 115, 12888-12935, 10.1021/acs.chemrev.5b00370
-
(2015)
Chem. Rev.
, vol.115
, pp. 12888-12935
-
-
White, J.L.1
Baruch, M.F.2
Pander, J.E.3
Hu, Y.4
Fortmeyer, I.C.5
Park, J.E.6
Zhang, T.7
Liao, K.8
Gu, J.9
Yan, Y.10
Shaw, T.W.11
Abelev, E.12
Bocarsly, A.B.13
-
147
-
-
77956838396
-
Photocatalytic Water Splitting: Recent Progress and Future Challenges
-
Maeda, K.; Domen, K. Photocatalytic Water Splitting: Recent Progress and Future Challenges. J. Phys. Chem. Lett. 2010, 1, 2655-2661, 10.1021/jz1007966
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 2655-2661
-
-
Maeda, K.1
Domen, K.2
-
148
-
-
84879330870
-
2 Evolution
-
2 Evolution. J. Phys. Chem. C 2013, 117, 11584-11591, 10.1021/jp400010z
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 11584-11591
-
-
Huang, L.1
Wang, X.2
Yang, J.3
Liu, G.4
Han, J.5
Li, C.6
-
149
-
-
84883159260
-
Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review
-
Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 2013, 5, 8326-8339, 10.1039/c3nr01577g
-
(2013)
Nanoscale
, vol.5
, pp. 8326-8339
-
-
Wang, Y.1
Wang, Q.2
Zhan, X.3
Wang, F.4
Safdar, M.5
He, J.6
-
151
-
-
84883772810
-
Charge Separation in Type-II Semiconductor Heterodimers
-
Teranishi, T.; Sakamoto, M. Charge Separation in Type-II Semiconductor Heterodimers. J. Phys. Chem. Lett. 2013, 4, 2867-2873, 10.1021/jz4013504
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 2867-2873
-
-
Teranishi, T.1
Sakamoto, M.2
-
152
-
-
0001124831
-
Reduction potential of the carbon dioxide/carbon dioxide radical anion: A comparison with other C1 radicals
-
Koppenol, W. H.; Rush, J. D. Reduction potential of the carbon dioxide/carbon dioxide radical anion: a comparison with other C1 radicals. J. Phys. Chem. 1987, 91, 4429-4430, 10.1021/j100300a045
-
(1987)
J. Phys. Chem.
, vol.91
, pp. 4429-4430
-
-
Koppenol, W.H.1
Rush, J.D.2
-
154
-
-
84978416135
-
2 activation and reaction on surfaces of photocatalysts
-
2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177-2196, 10.1039/C6EE00383D
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 2177-2196
-
-
Chang, X.1
Wang, T.2
Gong, J.3
-
155
-
-
84938654811
-
Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation
-
Coridan, R. H.; Nielander, A. C.; Francis, S. A.; McDowell, M. T.; Dix, V.; Chatman, S. M.; Lewis, N. S. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ. Sci. 2015, 8, 2886-2901, 10.1039/C5EE00777A
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 2886-2901
-
-
Coridan, R.H.1
Nielander, A.C.2
Francis, S.A.3
McDowell, M.T.4
Dix, V.5
Chatman, S.M.6
Lewis, N.S.7
-
156
-
-
71649086534
-
Opportunities and prospects in the chemical recycling of carbon dioxide to fuels
-
Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 2009, 148, 191-205, 10.1016/j.cattod.2009.07.075
-
(2009)
Catal. Today
, vol.148
, pp. 191-205
-
-
Centi, G.1
Perathoner, S.2
-
157
-
-
84878833421
-
2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries
-
2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711-1731, 10.1039/c3ee00056g
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 1711-1731
-
-
Centi, G.1
Quadrelli, E.A.2
Perathoner, S.3
-
158
-
-
33748595686
-
Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure
-
Thampi, K. R.; Kiwi, J.; Grätzel, M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 1987, 327, 506, 10.1038/327506a0
-
(1987)
Nature
, vol.327
, pp. 506
-
-
Thampi, K.R.1
Kiwi, J.2
Grätzel, M.3
-
159
-
-
84973514422
-
2 conversion to liquid fuels
-
2 conversion to liquid fuels. RSC Adv. 2016, 6, 49675-49691, 10.1039/C6RA05414E
-
(2016)
RSC Adv.
, vol.6
, pp. 49675-49691
-
-
Daza, Y.A.1
Kuhn, J.N.2
-
160
-
-
85024933603
-
2 to CO Conversion
-
2 to CO Conversion. ACS Catal. 2017, 7, 4613-4620, 10.1021/acscatal.7b00903
-
(2017)
ACS Catal.
, vol.7
, pp. 4613-4620
-
-
Chen, X.1
Su, X.2
Su, H.-Y.3
Liu, X.4
Miao, S.5
Zhao, Y.6
Sun, K.7
Huang, Y.8
Zhang, T.9
-
161
-
-
85029366915
-
2 reduction through mechanistic understanding
-
2 reduction through mechanistic understanding. Nat. Commun. 2017, 8, 513, 10.1038/s41467-017-00558-9
-
(2017)
Nat. Commun.
, vol.8
, pp. 513
-
-
Wang, X.1
Shi, H.2
Szanyi, J.3
-
162
-
-
33645457717
-
Cobalt Particle Size Effects in the Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts
-
Bezemer, G. L.; Bitter, J. H.; Kuipers, H. P. C. E.; Oosterbeek, H.; Holewijn, J. E.; Xu, X.; Kapteijn, F.; van Dillen, A. J.; de Jong, K. P. Cobalt Particle Size Effects in the Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts. J. Am. Chem. Soc. 2006, 128, 3956-3964, 10.1021/ja058282w
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 3956-3964
-
-
Bezemer, G.L.1
Bitter, J.H.2
Kuipers, H.P.C.E.3
Oosterbeek, H.4
Holewijn, J.E.5
Xu, X.6
Kapteijn, F.7
Van Dillen, A.J.8
De Jong, K.P.9
-
164
-
-
84976594443
-
2 Reduction
-
2 Reduction. Chem. Mater. 2016, 28, 4160-4168, 10.1021/acs.chemmater.6b00301
-
(2016)
Chem. Mater.
, vol.28
, pp. 4160-4168
-
-
Hoch, L.B.1
He, L.2
Qiao, Q.3
Liao, K.4
Reyes, L.M.5
Zhu, Y.6
Ozin, G.A.7
-
165
-
-
84957550007
-
2 Reduction
-
2 Reduction. J. Am. Chem. Soc. 2016, 138, 1206-1214, 10.1021/jacs.5b10179
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 1206-1214
-
-
Ghuman, K.K.1
Hoch, L.B.2
Szymanski, P.3
Loh, J.Y.Y.4
Kherani, N.P.5
El-Sayed, M.A.6
Ozin, G.A.7
Singh, C.V.8
-
166
-
-
85006784380
-
2 reduction of Ti-oxide-based nanomaterials
-
2 reduction of Ti-oxide-based nanomaterials. Appl. Surf. Sci. 2017, 396, 1696-1711, 10.1016/j.apsusc.2016.11.240
-
(2017)
Appl. Surf. Sci.
, vol.396
, pp. 1696-1711
-
-
Sohn, Y.1
Huang, W.2
Taghipour, F.3
-
167
-
-
77953643993
-
2-Based Catalysts: Fact or Fiction?
-
2-Based Catalysts: Fact or Fiction?. J. Am. Chem. Soc. 2010, 132, 8398-8406, 10.1021/ja101318k
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 8398-8406
-
-
Yang, C.C.1
Yu, Y.H.2
Van Der Linden, B.3
Wu, J.C.S.4
Mul, G.5
-
168
-
-
84995982594
-
2-based photocatalysts
-
2-based photocatalysts. Catal. Today 2017, 281 (Part 1), 214-220, 10.1016/j.cattod.2016.05.040
-
(2017)
Catal. Today
, vol.281
, pp. 214-220
-
-
Grigioni, I.1
Dozzi, M.V.2
Bernareggi, M.3
Chiarello, G.L.4
Selli, E.5
-
169
-
-
84973377009
-
y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity
-
y Nanocrystal Superstructures for Enhanced Gas-Phase Photocatalytic Activity. ACS Nano 2016, 10, 5578-5586, 10.1021/acsnano.6b02346
-
(2016)
ACS Nano
, vol.10
, pp. 5578-5586
-
-
He, L.1
Wood, T.E.2
Wu, B.3
Dong, Y.4
Hoch, L.B.5
Reyes, L.M.6
Wang, D.7
Kübel, C.8
Qian, C.9
Jia, J.10
Liao, K.11
O'Brien, P.G.12
Sandhel, A.13
Loh, J.Y.Y.14
Szymanski, P.15
Kherani, N.P.16
Sum, T.C.17
Mims, C.A.18
Ozin, G.A.19
-
170
-
-
85005959352
-
2 reduction
-
2 reduction. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E8011-E8020, 10.1073/pnas.1609374113
-
(2016)
Proc. Natl. Acad. Sci. U. S. A.
, vol.113
, pp. E8011-E8020
-
-
Hoch, L.B.1
Szymanski, P.2
Ghuman, K.K.3
He, L.4
Liao, K.5
Qiao, Q.6
Reyes, L.M.7
Zhu, Y.8
El-Sayed, M.A.9
Singh, C.V.10
Ozin, G.A.11
-
171
-
-
84984698629
-
Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals
-
Sun, W.; Qian, C.; He, L.; Ghuman, K. K.; Wong, A. P. Y.; Jia, J.; Jelle, A. A.; O'Brien, P. G.; Reyes, L. M.; Wood, T. E.; Helmy, A. S.; Mims, C. A.; Singh, C. V.; Ozin, G. A. Heterogeneous reduction of carbon dioxide by hydride-terminated silicon nanocrystals. Nat. Commun. 2016, 7, 12553, 10.1038/ncomms12553
-
(2016)
Nat. Commun.
, vol.7
, pp. 12553
-
-
Sun, W.1
Qian, C.2
He, L.3
Ghuman, K.K.4
Wong, A.P.Y.5
Jia, J.6
Jelle, A.A.7
O'Brien, P.G.8
Reyes, L.M.9
Wood, T.E.10
Helmy, A.S.11
Mims, C.A.12
Singh, C.V.13
Ozin, G.A.14
-
173
-
-
84965079827
-
2 nanofibers: Understanding the reduction pathway
-
2 nanofibers: Understanding the reduction pathway. Nano Res. 2016, 9, 1956-1968, 10.1007/s12274-016-1087-9
-
(2016)
Nano Res.
, vol.9
, pp. 1956-1968
-
-
Sarkar, A.1
Gracia-Espino, E.2
Wågberg, T.3
Shchukarev, A.4
Mohl, M.5
Rautio, A.-R.6
Pitkänen, O.7
Sharifi, T.8
Kordas, K.9
Mikkola, J.-P.10
-
174
-
-
85006173288
-
2(101) Surface: The Essential Role of Oxygen Vacancy
-
2(101) Surface: The Essential Role of Oxygen Vacancy. J. Am. Chem. Soc. 2016, 138, 15896-15902, 10.1021/jacs.6b05695
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 15896-15902
-
-
Ji, Y.1
Luo, Y.2
-
175
-
-
85020880870
-
2(110) in Water: An Ab Initio Molecular Dynamics Study
-
2(110) in Water: An Ab Initio Molecular Dynamics Study. J. Phys. Chem. C 2017, 121, 10476-10483, 10.1021/acs.jpcc.7b02777
-
(2017)
J. Phys. Chem. C
, vol.121
, pp. 10476-10483
-
-
Klyukin, K.1
Alexandrov, V.2
-
176
-
-
77956117728
-
How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
-
Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Norskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315, 10.1039/c0ee00071j
-
(2010)
Energy Environ. Sci.
, vol.3
, pp. 1311-1315
-
-
Peterson, A.A.1
Abild-Pedersen, F.2
Studt, F.3
Rossmeisl, J.4
Norskov, J.K.5
-
177
-
-
85013758505
-
Electro- and Photoreduction of Carbon Dioxide: The Twain Shall Meet at Copper Oxide/Copper Interfaces
-
Janáky, C.; Hursán, D.; EndroÌdi, B.; Chanmanee, W.; Roy, D.; Liu, D.; de Tacconi, N. R.; Dennis, B. H.; Rajeshwar, K. Electro- and Photoreduction of Carbon Dioxide: The Twain Shall Meet at Copper Oxide/Copper Interfaces. ACS Energy Lett. 2016, 1, 332-338, 10.1021/acsenergylett.6b00078
-
(2016)
ACS Energy Lett.
, vol.1
, pp. 332-338
-
-
Janáky, C.1
Hursán, D.2
EndroÌdi, B.3
Chanmanee, W.4
Roy, D.5
Liu, D.6
De Tacconi, N.R.7
Dennis, B.H.8
Rajeshwar, K.9
-
180
-
-
84990869080
-
2 Reduction in Artificial Photosynthesis
-
2 Reduction in Artificial Photosynthesis. ACS Catal. 2016, 6, 6444-6454, 10.1021/acscatal.6b01455
-
(2016)
ACS Catal.
, vol.6
, pp. 6444-6454
-
-
Yu, L.1
Li, G.2
Zhang, X.3
Ba, X.4
Shi, G.5
Li, Y.6
Wong, P.K.7
Yu, J.C.8
Yu, Y.9
-
181
-
-
84992741418
-
2
-
2. J. Am. Chem. Soc. 2016, 138, 13818-13821, 10.1021/jacs.6b08824
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 13818-13821
-
-
Nakajima, T.1
Tamaki, Y.2
Ueno, K.3
Kato, E.4
Nishikawa, T.5
Ohkubo, K.6
Yamazaki, Y.7
Morimoto, T.8
Ishitani, O.9
-
182
-
-
84976878426
-
3 nanorod thin film
-
3 nanorod thin film. Chem. Phys. Lett. 2016, 658, 309-314, 10.1016/j.cplett.2016.06.062
-
(2016)
Chem. Phys. Lett.
, vol.658
, pp. 309-314
-
-
Shoji, S.1
Yin, G.2
Nishikawa, M.3
Atarashi, D.4
Sakai, E.5
Miyauchi, M.6
-
183
-
-
84991475980
-
4
-
4. ACS Sustainable Chem. Eng. 2015, 3, 2381-2388, 10.1021/acssuschemeng.5b00724
-
(2015)
ACS Sustainable Chem. Eng.
, vol.3
, pp. 2381-2388
-
-
Fang, B.1
Xing, Y.2
Bonakdarpour, A.3
Zhang, S.4
Wilkinson, D.P.5
-
184
-
-
85019909030
-
2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel
-
2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 2016, 1, 868-875, 10.1021/acsomega.6b00164
-
(2016)
ACS Omega
, vol.1
, pp. 868-875
-
-
Park, S.-M.1
Razzaq, A.2
Park, Y.H.3
Sorcar, S.4
Park, Y.5
Grimes, C.A.6
In, S.-I.7
-
185
-
-
84878100645
-
Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure
-
Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure. Angew. Chem., Int. Ed. 2013, 52, 5776-5779, 10.1002/anie.201301473
-
(2013)
Angew. Chem., Int. Ed.
, vol.52
, pp. 5776-5779
-
-
Zhai, Q.1
Xie, S.2
Fan, W.3
Zhang, Q.4
Wang, Y.5
Deng, W.6
Wang, Y.7
-
186
-
-
84947460730
-
2 Reduction
-
2 Reduction. J. Am. Chem. Soc. 2015, 137, 14007-14010, 10.1021/jacs.5b06778
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 14007-14010
-
-
Manzi, A.1
Simon, T.2
Sonnleitner, C.3
Döblinger, M.4
Wyrwich, R.5
Stern, O.6
Stolarczyk, J.K.7
Feldmann, J.8
-
189
-
-
84928914589
-
4 Nanotube Arrays
-
4 Nanotube Arrays. Environ. Sci. Technol. 2015, 49, 5828-5835, 10.1021/acs.est.5b00066
-
(2015)
Environ. Sci. Technol.
, vol.49
, pp. 5828-5835
-
-
Shen, Q.1
Chen, Z.2
Huang, X.3
Liu, M.4
Zhao, G.5
-
190
-
-
77950555311
-
Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures
-
Amirav, L.; Alivisatos, A. P. Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051-1054, 10.1021/jz100075c
-
(2010)
J. Phys. Chem. Lett.
, vol.1
, pp. 1051-1054
-
-
Amirav, L.1
Alivisatos, A.P.2
-
191
-
-
84964425413
-
Nickel-based cocatalysts for photocatalytic hydrogen production
-
Xu, Y.; Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779-793, 10.1016/j.apsusc.2015.05.171
-
(2015)
Appl. Surf. Sci.
, vol.351
, pp. 779-793
-
-
Xu, Y.1
Xu, R.2
-
192
-
-
84908539756
-
Mesoporous Nickel Ferrites with Spinel Structure Prepared by an Aerosol Spray Pyrolysis Method for Photocatalytic Hydrogen Evolution
-
Hong, D.; Yamada, Y.; Sheehan, M.; Shikano, S.; Kuo, C.-H.; Tian, M.; Tsung, C.-K.; Fukuzumi, S. Mesoporous Nickel Ferrites with Spinel Structure Prepared by an Aerosol Spray Pyrolysis Method for Photocatalytic Hydrogen Evolution. ACS Sustainable Chem. Eng. 2014, 2, 2588-2594, 10.1021/sc500484b
-
(2014)
ACS Sustainable Chem. Eng.
, vol.2
, pp. 2588-2594
-
-
Hong, D.1
Yamada, Y.2
Sheehan, M.3
Shikano, S.4
Kuo, C.-H.5
Tian, M.6
Tsung, C.-K.7
Fukuzumi, S.8
-
193
-
-
84865849123
-
4 nanoparticles and its visible-light-driven photoactivity for hydrogen production
-
4 nanoparticles and its visible-light-driven photoactivity for hydrogen production. Catal. Commun. 2012, 28, 116-119, 10.1016/j.catcom.2012.08.031
-
(2012)
Catal. Commun.
, vol.28
, pp. 116-119
-
-
Peng, T.1
Zhang, X.2
Lv, H.3
Zan, L.4
-
194
-
-
84924242305
-
Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation
-
Cao, S.; Chen, Y.; Hou, C.-C.; Lv, X.-J.; Fu, W.-F. Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation. J. Mater. Chem. A 2015, 3, 6096-6101, 10.1039/C4TA07149B
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 6096-6101
-
-
Cao, S.1
Chen, Y.2
Hou, C.-C.3
Lv, X.-J.4
Fu, W.-F.5
-
195
-
-
84929095604
-
Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation
-
Cao, S.; Chen, Y.; Wang, C.-J.; Lv, X.-J.; Fu, W.-F. Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation. Chem. Commun. 2015, 51, 8708-8711, 10.1039/C5CC01799H
-
(2015)
Chem. Commun.
, vol.51
, pp. 8708-8711
-
-
Cao, S.1
Chen, Y.2
Wang, C.-J.3
Lv, X.-J.4
Fu, W.-F.5
-
196
-
-
84978431889
-
Quantum Confined Colloidal Nanorod Heterostructures for Solar-to-Fuel Conversion
-
Wu, K.; Lian, T. Quantum Confined Colloidal Nanorod Heterostructures for Solar-to-Fuel Conversion. Chem. Soc. Rev. 2016, 45, 3781-810, 10.1039/C5CS00472A
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 3781-3810
-
-
Wu, K.1
Lian, T.2
-
197
-
-
84992319028
-
Observation of Trapped-hole Diffusion on the Surfaces of CdS nanorods
-
Utterback, J. K.; Grennell, A. N.; Wilker, M. B.; Pearce, O. M.; Eaves, J. D.; Dukovic, G. Observation of Trapped-hole Diffusion on the Surfaces of CdS nanorods. Nat. Chem. 2016, 8, 1061-1066, 10.1038/nchem.2566
-
(2016)
Nat. Chem.
, vol.8
, pp. 1061-1066
-
-
Utterback, J.K.1
Grennell, A.N.2
Wilker, M.B.3
Pearce, O.M.4
Eaves, J.D.5
Dukovic, G.6
-
198
-
-
85019772558
-
A comparison of the chemical, optical and electrocatalytic properties of water-oxidation catalysts for use in integrated solar-fuel generators
-
Sun, K.; Moreno-Hernandez, I. A.; Schmidt, W. C.; Zhou, X.; Crompton, J. C.; Liu, R.; Saadi, F. H.; Chen, Y.; Papadantonakis, K. M.; Lewis, N. S. A comparison of the chemical, optical and electrocatalytic properties of water-oxidation catalysts for use in integrated solar-fuel generators. Energy Environ. Sci. 2017, 10, 987-1002, 10.1039/C6EE03563A
-
(2017)
Energy Environ. Sci.
, vol.10
, pp. 987-1002
-
-
Sun, K.1
Moreno-Hernandez, I.A.2
Schmidt, W.C.3
Zhou, X.4
Crompton, J.C.5
Liu, R.6
Saadi, F.H.7
Chen, Y.8
Papadantonakis, K.M.9
Lewis, N.S.10
-
199
-
-
85002816366
-
Why do Hydrogen and Oxygen Yields from Semiconductor-Based Photocatalyzed Water Splitting Remain Disappointingly Low? Intrinsic and Extrinsic Factors Impacting Surface Redox Reactions
-
Serpone, N.; Emeline, A. V.; Ryabchuk, V. K.; Kuznetsov, V. N.; Artem'ev, Y. M.; Horikoshi, S. Why do Hydrogen and Oxygen Yields from Semiconductor-Based Photocatalyzed Water Splitting Remain Disappointingly Low? Intrinsic and Extrinsic Factors Impacting Surface Redox Reactions. ACS Energy Lett. 2016, 1, 931-948, 10.1021/acsenergylett.6b00391
-
(2016)
ACS Energy Lett.
, vol.1
, pp. 931-948
-
-
Serpone, N.1
Emeline, A.V.2
Ryabchuk, V.K.3
Kuznetsov, V.N.4
Artem'Ev, Y.M.5
Horikoshi, S.6
-
200
-
-
85015153485
-
3 Anode for Efficient Photoelectrochemical Water Oxidation
-
3 Anode for Efficient Photoelectrochemical Water Oxidation. ACS Catal. 2017, 7, 1841-1845, 10.1021/acscatal.7b00022
-
(2017)
ACS Catal.
, vol.7
, pp. 1841-1845
-
-
Huang, J.1
Zhang, Y.2
Ding, Y.3
-
201
-
-
64549112181
-
10 -related electronic configurations
-
10 -related electronic configurations. Energy Environ. Sci. 2009, 2, 364-386, 10.1039/b816677n
-
(2009)
Energy Environ. Sci.
, vol.2
, pp. 364-386
-
-
Inoue, Y.1
-
202
-
-
2342590111
-
10 Configuration
-
10 Configuration. J. Phys. Chem. B 2004, 108, 4369-4375, 10.1021/jp0373189
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 4369-4375
-
-
Sato, J.1
Kobayashi, H.2
Ikarashi, K.3
Saito, N.4
Nishiyama, H.5
Inoue, Y.6
-
203
-
-
84922759698
-
Photochemical oxidation on nanorod photocatalysts
-
Kalisman, P.; Kauffmann, Y.; Amirav, L. Photochemical oxidation on nanorod photocatalysts. J. Mater. Chem. A 2015, 3, 3261-3265, 10.1039/C4TA06164K
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 3261-3265
-
-
Kalisman, P.1
Kauffmann, Y.2
Amirav, L.3
-
204
-
-
79955882528
-
2 Nanocrystals under Visible and UV Light
-
2 Nanocrystals under Visible and UV Light. J. Am. Chem. Soc. 2011, 133, 7264-7267, 10.1021/ja200144w
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7264-7267
-
-
Frame, F.A.1
Townsend, T.K.2
Chamousis, R.L.3
Sabio, E.M.4
Dittrich, T.5
Browning, N.D.6
Osterloh, F.E.7
-
205
-
-
84876586843
-
Transition metal oxide alloys as potential solar energy conversion materials
-
Toroker, M. C.; Carter, E. A. Transition metal oxide alloys as potential solar energy conversion materials. J. Mater. Chem. A 2013, 1, 2474-2484, 10.1039/c2ta00816e
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 2474-2484
-
-
Toroker, M.C.1
Carter, E.A.2
-
206
-
-
84921927359
-
Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting
-
Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M.-J.; Sokaras, D.; Weng, T.-C.; Alonso-Mori, R.; Davis, R. C.; Bargar, J. R.; Nørskov, J. K.; Nilsson, A.; Bell, A. T. Identification of Highly Active Fe Sites in (Ni,Fe)OOH for Electrocatalytic Water Splitting. J. Am. Chem. Soc. 2015, 137, 1305-1313, 10.1021/ja511559d
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 1305-1313
-
-
Friebel, D.1
Louie, M.W.2
Bajdich, M.3
Sanwald, K.E.4
Cai, Y.5
Wise, A.M.6
Cheng, M.-J.7
Sokaras, D.8
Weng, T.-C.9
Alonso-Mori, R.10
Davis, R.C.11
Bargar, J.R.12
Nørskov, J.K.13
Nilsson, A.14
Bell, A.T.15
-
207
-
-
84900346581
-
Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
-
Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753, 10.1021/ja502379c
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 6744-6753
-
-
Trotochaud, L.1
Young, S.L.2
Ranney, J.K.3
Boettcher, S.W.4
-
209
-
-
85026680196
-
2 by metal oxides: Defect engineering - Perfecting imperfection
-
2 by metal oxides: defect engineering-perfecting imperfection. Chem. Soc. Rev. 2017, 46, 4631-4644, 10.1039/C7CS00026J
-
(2017)
Chem. Soc. Rev.
, vol.46
, pp. 4631-4644
-
-
Jia, J.1
Qian, C.2
Dong, Y.3
Li, Y.F.4
Wang, H.5
Ghoussoub, M.6
Butler, K.T.7
Walsh, A.8
Ozin, G.A.9
-
210
-
-
84876741607
-
2 with oxygen vacancies: Synthesis, properties and photocatalytic applications
-
2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601-3614, 10.1039/c3nr00476g
-
(2013)
Nanoscale
, vol.5
, pp. 3601-3614
-
-
Pan, X.1
Yang, M.-Q.2
Fu, X.3
Zhang, N.4
Xu, Y.-J.5
-
211
-
-
84949114872
-
2 Nanorods in Organic Solvent
-
2 Nanorods in Organic Solvent. J. Phys. Chem. C 2014, 118, 25215-25222, 10.1021/jp507383w
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 25215-25222
-
-
Triggiani, L.1
Brunetti, A.2
Aloi, A.3
Comparelli, R.4
Curri, M.L.5
Agostiano, A.6
Striccoli, M.7
Tommasi, R.8
-
212
-
-
84923330638
-
Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production
-
Li, L.; Yan, J.; Wang, T.; Zhao, Z.-J.; Zhang, J.; Gong, J.; Guan, N. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881, 10.1038/ncomms6881
-
(2015)
Nat. Commun.
, vol.6
, pp. 5881
-
-
Li, L.1
Yan, J.2
Wang, T.3
Zhao, Z.-J.4
Zhang, J.5
Gong, J.6
Guan, N.7
-
213
-
-
85017103677
-
4
-
4. J. Mater. Chem. A 2017, 5, 6686-6694, 10.1039/C7TA00737J
-
(2017)
J. Mater. Chem. A
, vol.5
, pp. 6686-6694
-
-
Lang, Q.1
Yang, Y.2
Zhu, Y.3
Hu, W.4
Jiang, W.5
Zhong, S.6
Gong, P.7
Teng, B.8
Zhao, L.9
Bai, S.10
-
214
-
-
84992307676
-
2 Hydrogenation
-
2 Hydrogenation. Angew. Chem., Int. Ed. 2016, 55, 9548-9552, 10.1002/anie.201602512
-
(2016)
Angew. Chem., Int. Ed.
, vol.55
, pp. 9548-9552
-
-
Khan, M.U.1
Wang, L.2
Liu, Z.3
Gao, Z.4
Wang, S.5
Li, H.6
Zhang, W.7
Wang, M.8
Wang, Z.9
Ma, C.10
Zeng, J.11
-
215
-
-
84942885711
-
The golden gate to photocatalytic hydrogen production
-
Kalisman, P.; Houben, L.; Aronovitch, E.; Kauffmann, Y.; Bar-Sadan, M.; Amirav, L. The golden gate to photocatalytic hydrogen production. J. Mater. Chem. A 2015, 3, 19679-19682, 10.1039/C5TA05784A
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 19679-19682
-
-
Kalisman, P.1
Houben, L.2
Aronovitch, E.3
Kauffmann, Y.4
Bar-Sadan, M.5
Amirav, L.6
-
216
-
-
84941758472
-
Designing Bimetallic Co-Catalysts: A Party of Two
-
Aronovitch, E.; Kalisman, P.; Mangel, S.; Houben, L.; Amirav, L.; Bar-Sadan, M. Designing Bimetallic Co-Catalysts: A Party of Two. J. Phys. Chem. Lett. 2015, 6, 3760-3764, 10.1021/acs.jpclett.5b01687
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 3760-3764
-
-
Aronovitch, E.1
Kalisman, P.2
Mangel, S.3
Houben, L.4
Amirav, L.5
Bar-Sadan, M.6
-
217
-
-
85032581622
-
2 Reduction
-
2 Reduction. ACS Catal. 2017, 7, 6600-6608, 10.1021/acscatal.7b01648
-
(2017)
ACS Catal.
, vol.7
, pp. 6600-6608
-
-
Ulissi, Z.W.1
Tang, M.T.2
Xiao, J.3
Liu, X.4
Torelli, D.A.5
Karamad, M.6
Cummins, K.7
Hahn, C.8
Lewis, N.S.9
Jaramillo, T.F.10
Chan, K.11
Nørskov, J.K.12
-
218
-
-
85016332194
-
4
-
4. J. Am. Chem. Soc. 2017, 139, 4486-4492, 10.1021/jacs.7b00452
-
(2017)
J. Am. Chem. Soc.
, vol.139
, pp. 4486-4492
-
-
Long, R.1
Li, Y.2
Liu, Y.3
Chen, S.4
Zheng, X.5
Gao, C.6
He, C.7
Chen, N.8
Qi, Z.9
Song, L.10
Jiang, J.11
Zhu, J.12
Xiong, Y.13
-
219
-
-
84879988491
-
Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts
-
Maeda, K. Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts. ACS Catal. 2013, 3, 1486-1503, 10.1021/cs4002089
-
(2013)
ACS Catal.
, vol.3
, pp. 1486-1503
-
-
Maeda, K.1
-
220
-
-
84944909555
-
2 evolution
-
2 evolution. Nat. Commun. 2015, 6, 8647, 10.1038/ncomms9647
-
(2015)
Nat. Commun.
, vol.6
, pp. 8647
-
-
Bi, W.1
Li, X.2
Zhang, L.3
Jin, T.4
Zhang, L.5
Zhang, Q.6
Luo, Y.7
Wu, C.8
Xie, Y.9
-
222
-
-
40449141643
-
Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ<500 nm)
-
Higashi, M.; Abe, R.; Ishikawa, A.; Takata, T.; Ohtani, B.; Domen, K. Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ<500 nm). Chem. Lett. 2008, 37, 138-139, 10.1246/cl.2008.138
-
(2008)
Chem. Lett.
, vol.37
, pp. 138-139
-
-
Higashi, M.1
Abe, R.2
Ishikawa, A.3
Takata, T.4
Ohtani, B.5
Domen, K.6
-
223
-
-
84905580502
-
All-Solid-State Z-Scheme Photocatalytic Systems
-
Zhou, P.; Yu, J.; Jaroniec, M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920-4935, 10.1002/adma.201400288
-
(2014)
Adv. Mater.
, vol.26
, pp. 4920-4935
-
-
Zhou, P.1
Yu, J.2
Jaroniec, M.3
-
224
-
-
84983465748
-
4, and a Reduced Graphene Oxide Electron Mediator
-
4, and a Reduced Graphene Oxide Electron Mediator. J. Am. Chem. Soc. 2016, 138, 10260-10264, 10.1021/jacs.6b05304
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 10260-10264
-
-
Iwase, A.1
Yoshino, S.2
Takayama, T.3
Ng, Y.H.4
Amal, R.5
Kudo, A.6
-
225
-
-
84944278041
-
2 Reduction Activity
-
2 Reduction Activity. Small 2015, 11, 5262-5271, 10.1002/smll.201500926
-
(2015)
Small
, vol.11
, pp. 5262-5271
-
-
Jin, J.1
Yu, J.2
Guo, D.3
Cui, C.4
Ho, W.5
-
226
-
-
84973161292
-
4: An efficient visible-light-driven photocatalyst for hydrogen evolution
-
4: An efficient visible-light-driven photocatalyst for hydrogen evolution. Appl. Catal., B 2016, 198, 154-161, 10.1016/j.apcatb.2016.05.046
-
(2016)
Appl. Catal., B
, vol.198
, pp. 154-161
-
-
Jia, X.1
Tahir, M.2
Pan, L.3
Huang, Z.-F.4
Zhang, X.5
Wang, L.6
Zou, J.-J.7
-
227
-
-
84904438588
-
Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters
-
Qian, K.; Sweeny, B. C.; Johnston-Peck, A. C.; Niu, W.; Graham, J. O.; DuChene, J. S.; Qiu, J.; Wang, Y.-C.; Engelhard, M. H.; Su, D.; Stach, E. A.; Wei, W. D. Surface Plasmon-Driven Water Reduction: Gold Nanoparticle Size Matters. J. Am. Chem. Soc. 2014, 136, 9842-9845, 10.1021/ja504097v
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 9842-9845
-
-
Qian, K.1
Sweeny, B.C.2
Johnston-Peck, A.C.3
Niu, W.4
Graham, J.O.5
DuChene, J.S.6
Qiu, J.7
Wang, Y.-C.8
Engelhard, M.H.9
Su, D.10
Stach, E.A.11
Wei, W.D.12
-
228
-
-
85044102865
-
Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol
-
Golubev, A. A.; Khlebtsov, B. N.; Rodriguez, R. D.; Chen, Y.; Zahn, D. R. T. Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657-5663, 10.1021/acs.jpcc.7b12101
-
(2018)
J. Phys. Chem. C
, vol.122
, pp. 5657-5663
-
-
Golubev, A.A.1
Khlebtsov, B.N.2
Rodriguez, R.D.3
Chen, Y.4
Zahn, D.R.T.5
-
229
-
-
85043712263
-
Hot Carriers vs. Thermal Effects: Resolving the Enhancement Mechanisms for Plasmon-Mediated Photoelectrochemical Reactions
-
Yu, Y.; Sundaresan, V.; Willets, K. A. Hot Carriers vs. Thermal Effects: Resolving the Enhancement Mechanisms for Plasmon-Mediated Photoelectrochemical Reactions. J. Phys. Chem. C 2018, 122, 5040-5048, 10.1021/acs.jpcc.7b12080
-
(2018)
J. Phys. Chem. C
, vol.122
, pp. 5040-5048
-
-
Yu, Y.1
Sundaresan, V.2
Willets, K.A.3
-
230
-
-
18644374770
-
Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles
-
Schaadt, D. M.; Feng, B.; Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005, 86, 063106, 10.1063/1.1855423
-
(2005)
Appl. Phys. Lett.
, vol.86
-
-
Schaadt, D.M.1
Feng, B.2
Yu, E.T.3
-
231
-
-
84973324711
-
Interface-Engineered Plasmonics in Metal/Semiconductor Heterostructures
-
Jia, C.; Li, X.; Xin, N.; Gong, Y.; Guan, J.; Meng, L.; Meng, S.; Guo, X. Interface-Engineered Plasmonics in Metal/Semiconductor Heterostructures. Adv. Energy Mater. 2016, 6, 1600431, 10.1002/aenm.201600431
-
(2016)
Adv. Energy Mater.
, vol.6
-
-
Jia, C.1
Li, X.2
Xin, N.3
Gong, Y.4
Guan, J.5
Meng, L.6
Meng, S.7
Guo, X.8
-
232
-
-
84971619055
-
Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications
-
Li, X.; Zhu, J.; Wei, B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45, 3145-3187, 10.1039/C6CS00195E
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 3145-3187
-
-
Li, X.1
Zhu, J.2
Wei, B.3
-
233
-
-
84863706607
-
Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles
-
Wang, P.; Huang, B.; Dai, Y.; Whangbo, M.-H. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9813-9825, 10.1039/c2cp40823f
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 9813-9825
-
-
Wang, P.1
Huang, B.2
Dai, Y.3
Whangbo, M.-H.4
-
234
-
-
84866432421
-
Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor
-
Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033-15041, 10.1021/ja305603t
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 15033-15041
-
-
Cushing, S.K.1
Li, J.2
Meng, F.3
Senty, T.R.4
Suri, S.5
Zhi, M.6
Li, M.7
Bristow, A.D.8
Wu, N.9
-
235
-
-
84958059260
-
2 onto Gold Nanorods for Plasmon-Enhanced Hydrogen Production from Water Reduction
-
2 onto Gold Nanorods for Plasmon-Enhanced Hydrogen Production from Water Reduction. J. Am. Chem. Soc. 2016, 138, 1114-1117, 10.1021/jacs.5b11341
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 1114-1117
-
-
Wu, B.1
Liu, D.2
Mubeen, S.3
Chuong, T.T.4
Moskovits, M.5
Stucky, G.D.6
-
236
-
-
84976525476
-
Pt-Au Triangular Nanoprisms with Strong Dipole Plasmon Resonance for Hydrogen Generation Studied by Single-Particle Spectroscopy
-
Lou, Z.; Fujitsuka, M.; Majima, T. Pt-Au Triangular Nanoprisms with Strong Dipole Plasmon Resonance for Hydrogen Generation Studied by Single-Particle Spectroscopy. ACS Nano 2016, 10, 6299-6305, 10.1021/acsnano.6b02494
-
(2016)
ACS Nano
, vol.10
, pp. 6299-6305
-
-
Lou, Z.1
Fujitsuka, M.2
Majima, T.3
-
237
-
-
84877780339
-
2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation
-
2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 2013, 5, 4236-4241, 10.1039/c3nr00517h
-
(2013)
Nanoscale
, vol.5
, pp. 4236-4241
-
-
Zhou, N.1
Polavarapu, L.2
Gao, N.3
Pan, Y.4
Yuan, P.5
Wang, Q.6
Xu, Q.-H.7
-
238
-
-
85016012861
-
2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity
-
2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity. Dalton Trans. 2017, 46, 3887-3894, 10.1039/C7DT00345E
-
(2017)
Dalton Trans.
, vol.46
, pp. 3887-3894
-
-
Sun, H.1
Zeng, S.2
He, Q.3
She, P.4
Xu, K.5
Liu, Z.6
-
239
-
-
84930936521
-
4 interface for photoactivity enhancement
-
4 interface for photoactivity enhancement. Nano Energy 2015, 15, 625-633, 10.1016/j.nanoen.2015.05.024
-
(2015)
Nano Energy
, vol.15
, pp. 625-633
-
-
Van, C.N.1
Chang, W.S.2
Chen, J.-W.3
Tsai, K.-A.4
Tzeng, W.-Y.5
Lin, Y.-C.6
Kuo, H.-H.7
Liu, H.-J.8
Chang, K.-D.9
Chou, W.-C.10
Wu, C.-L.11
Chen, Y.-C.12
Luo, C.-W.13
Hsu, Y.-J.14
Chu, Y.-H.15
-
240
-
-
33846684537
-
Generating heat with metal nanoparticles
-
Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30-38, 10.1016/S1748-0132(07)70017-8
-
(2007)
Nano Today
, vol.2
, pp. 30-38
-
-
Govorov, A.O.1
Richardson, H.H.2
-
241
-
-
84860348407
-
2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation
-
2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation. Adv. Mater. 2012, 24, 2310-2314, 10.1002/adma.201104241
-
(2012)
Adv. Mater.
, vol.24
, pp. 2310-2314
-
-
Seh, Z.W.1
Liu, S.2
Low, M.3
Zhang, S.-Y.4
Liu, Z.5
Mlayah, A.6
Han, M.-Y.7
-
242
-
-
85044567402
-
Surface-Plasmon-Driven Hot Electron Photochemistry
-
Zhang, Y., He, S., Guo, W., Hu, Y., Huang, J., Mulcahy, J. R., Wei, W. D. Surface-Plasmon-Driven Hot Electron Photochemistry. Chem. Rev. 2017, DOI: 10.1021/acs.chemrev.7b00430
-
(2017)
Chem. Rev.
-
-
Zhang, Y.1
He, S.2
Guo, W.3
Hu, Y.4
Huang, J.5
Mulcahy, J.R.6
Wei, W.D.7
-
243
-
-
84990044449
-
Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination
-
Kong, X.-T.; Wang, Z.; Govorov, A. O. Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination. Adv. Opt. Mater. 2017, 5, 1600594, 10.1002/adom.201600594
-
(2017)
Adv. Opt. Mater.
, vol.5
-
-
Kong, X.-T.1
Wang, Z.2
Govorov, A.O.3
-
244
-
-
84898440338
-
Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement
-
Zhang, H.; Govorov, A. O. Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement. J. Phys. Chem. C 2014, 118, 7606-7614, 10.1021/jp500009k
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 7606-7614
-
-
Zhang, H.1
Govorov, A.O.2
-
245
-
-
84906696532
-
Plasmon-Induced Hot Carriers in Metallic Nanoparticles
-
Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-Induced Hot Carriers in Metallic Nanoparticles. ACS Nano 2014, 8, 7630-7638, 10.1021/nn502445f
-
(2014)
ACS Nano
, vol.8
, pp. 7630-7638
-
-
Manjavacas, A.1
Liu, J.G.2
Kulkarni, V.3
Nordlander, P.4
-
246
-
-
84936756700
-
Hot electron-induced reduction of small molecules on photorecycling metal surfaces
-
Xie, W.; Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 2015, 6, 7570, 10.1038/ncomms8570
-
(2015)
Nat. Commun.
, vol.6
, pp. 7570
-
-
Xie, W.1
Schlücker, S.2
-
247
-
-
84900793468
-
Single-Particle Study of Pt-Modified Au Nanorods for Plasmon-Enhanced Hydrogen Generation in Visible to Near-Infrared Region
-
Zheng, Z.; Tachikawa, T.; Majima, T. Single-Particle Study of Pt-Modified Au Nanorods for Plasmon-Enhanced Hydrogen Generation in Visible to Near-Infrared Region. J. Am. Chem. Soc. 2014, 136, 6870-6873, 10.1021/ja502704n
-
(2014)
J. Am. Chem. Soc.
, vol.136
, pp. 6870-6873
-
-
Zheng, Z.1
Tachikawa, T.2
Majima, T.3
-
248
-
-
85013028959
-
Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation
-
Lou, Z.; Fujitsuka, M.; Majima, T. Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation. J. Phys. Chem. Lett. 2017, 8, 844-849, 10.1021/acs.jpclett.6b03045
-
(2017)
J. Phys. Chem. Lett.
, vol.8
, pp. 844-849
-
-
Lou, Z.1
Fujitsuka, M.2
Majima, T.3
-
249
-
-
85018193339
-
In Situ Observation of Single Au Triangular Nanoprism Etching to Various Shapes for Plasmonic Photocatalytic Hydrogen Generation
-
Lou, Z.; Kim, S.; Zhang, P.; Shi, X.; Fujitsuka, M.; Majima, T. In Situ Observation of Single Au Triangular Nanoprism Etching to Various Shapes for Plasmonic Photocatalytic Hydrogen Generation. ACS Nano 2017, 11, 968-974, 10.1021/acsnano.6b07581
-
(2017)
ACS Nano
, vol.11
, pp. 968-974
-
-
Lou, Z.1
Kim, S.2
Zhang, P.3
Shi, X.4
Fujitsuka, M.5
Majima, T.6
-
250
-
-
84955300256
-
The synergistic effect of a well-defined Au@Pt core-shell nanostructure toward photocatalytic hydrogen generation: Interface engineering to improve the Schottky barrier and hydrogen-evolved kinetics
-
Hung, S.-F.; Yu, Y.-C.; Suen, N.-T.; Tzeng, G.-Q.; Tung, C.-W.; Hsu, Y.-Y.; Hsu, C.-S.; Chang, C.-K.; Chan, T.-S.; Sheu, H.-S.; Lee, J.-F.; Chen, H. M. The synergistic effect of a well-defined Au@Pt core-shell nanostructure toward photocatalytic hydrogen generation: interface engineering to improve the Schottky barrier and hydrogen-evolved kinetics. Chem. Commun. 2016, 52, 1567-1570, 10.1039/C5CC08547K
-
(2016)
Chem. Commun.
, vol.52
, pp. 1567-1570
-
-
Hung, S.-F.1
Yu, Y.-C.2
Suen, N.-T.3
Tzeng, G.-Q.4
Tung, C.-W.5
Hsu, Y.-Y.6
Hsu, C.-S.7
Chang, C.-K.8
Chan, T.-S.9
Sheu, H.-S.10
Lee, J.-F.11
Chen, H.M.12
-
251
-
-
83555173343
-
Photocatalytic water splitting using semiconductor particles: History and recent developments
-
Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol., C 2011, 12, 237-268, 10.1016/j.jphotochemrev.2011.07.001
-
(2011)
J. Photochem. Photobiol., C
, vol.12
, pp. 237-268
-
-
Maeda, K.1
-
252
-
-
79851480419
-
Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water
-
Gomes Silva, C.; Juárez, R.; Marino, T.; Molinari, R.; García, H. Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. J. Am. Chem. Soc. 2011, 133, 595-602, 10.1021/ja1086358
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 595-602
-
-
Gomes Silva, C.1
Juárez, R.2
Marino, T.3
Molinari, R.4
García, H.5
-
253
-
-
36849047910
-
2 Nanoparticles
-
2 Nanoparticles. J. Am. Chem. Soc. 2007, 129, 14852-14853, 10.1021/ja076134v
-
(2007)
J. Am. Chem. Soc.
, vol.129
, pp. 14852-14853
-
-
Furube, A.1
Du, L.2
Hara, K.3
Katoh, R.4
Tachiya, M.5
-
254
-
-
84939207299
-
Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition
-
Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632-635, 10.1126/science.aac5443
-
(2015)
Science
, vol.349
, pp. 632-635
-
-
Wu, K.1
Chen, J.2
McBride, J.R.3
Lian, T.4
-
255
-
-
85054355283
-
Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives
-
Kriegel, I.; Scotognella, F.; Manna, L. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Phys. Rep. 2017, 674, 1-52, 10.1016/j.physrep.2017.01.003
-
(2017)
Phys. Rep.
, vol.674
, pp. 1-52
-
-
Kriegel, I.1
Scotognella, F.2
Manna, L.3
-
256
-
-
84876374589
-
An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
-
Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247, 10.1038/nnano.2013.18
-
(2013)
Nat. Nanotechnol.
, vol.8
, pp. 247
-
-
Mubeen, S.1
Lee, J.2
Singh, N.3
Krämer, S.4
Stucky, G.D.5
Moskovits, M.6
-
257
-
-
84924633063
-
2 with Surface Plasmons
-
2 with Surface Plasmons. Nano Lett. 2015, 15, 2132-2136, 10.1021/acs.nanolett.5b00111
-
(2015)
Nano Lett.
, vol.15
, pp. 2132-2136
-
-
Mubeen, S.1
Lee, J.2
Liu, D.3
Stucky, G.D.4
Moskovits, M.5
-
258
-
-
84969610639
-
2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting
-
2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. ACS Nano 2016, 10, 4496-4503, 10.1021/acsnano.6b00263
-
(2016)
ACS Nano
, vol.10
, pp. 4496-4503
-
-
Zhang, J.1
Jin, X.2
Morales-Guzman, P.I.3
Yu, X.4
Liu, H.5
Zhang, H.6
Razzari, L.7
Claverie, J.P.8
-
259
-
-
84979073933
-
Improved Hydrogen Production of Au-Pt-CdS Hetero-Nanostructures by Efficient Plasmon-Induced Multipathway Electron Transfer
-
Ma, L.; Chen, K.; Nan, F.; Wang, J. H.; Yang, D. J.; Zhou, L.; Wang, Q. Q. Improved Hydrogen Production of Au-Pt-CdS Hetero-Nanostructures by Efficient Plasmon-Induced Multipathway Electron Transfer. Adv. Funct. Mater. 2016, 26, 6076-6083, 10.1002/adfm.201601651
-
(2016)
Adv. Funct. Mater.
, vol.26
, pp. 6076-6083
-
-
Ma, L.1
Chen, K.2
Nan, F.3
Wang, J.H.4
Yang, D.J.5
Zhou, L.6
Wang, Q.Q.7
-
260
-
-
84999114911
-
2 Yolk-Shell as Plasmonic Photocatalyst Boosting Multi-Scattering with Enhanced Hydrogen Evolution
-
2 Yolk-Shell as Plasmonic Photocatalyst Boosting Multi-Scattering with Enhanced Hydrogen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 31738-31745, 10.1021/acsami.6b12940
-
(2016)
ACS Appl. Mater. Interfaces
, vol.8
, pp. 31738-31745
-
-
Shi, X.1
Lou, Z.2
Zhang, P.3
Fujitsuka, M.4
Majima, T.5
-
261
-
-
84926671925
-
Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting
-
Sigle, D. O.; Zhang, L.; Ithurria, S.; Dubertret, B.; Baumberg, J. J. Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting. J. Phys. Chem. Lett. 2015, 6, 1099-1103, 10.1021/acs.jpclett.5b00279
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 1099-1103
-
-
Sigle, D.O.1
Zhang, L.2
Ithurria, S.3
Dubertret, B.4
Baumberg, J.J.5
-
262
-
-
79961220808
-
2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions
-
2 to Hydrocarbon Fuels via Plasmon-Enhanced Absorption and Metallic Interband Transitions. ACS Catal. 2011, 1, 929-936, 10.1021/cs2001434
-
(2011)
ACS Catal.
, vol.1
, pp. 929-936
-
-
Hou, W.1
Hung, W.H.2
Pavaskar, P.3
Goeppert, A.4
Aykol, M.5
Cronin, S.B.6
-
263
-
-
85011277741
-
Plasmonic nanostructures in solar energy conversion
-
Ye, W.; Long, R.; Huang, H.; Xiong, Y. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 2017, 5, 1008-1021, 10.1039/C6TC04847A
-
(2017)
J. Mater. Chem. C
, vol.5
, pp. 1008-1021
-
-
Ye, W.1
Long, R.2
Huang, H.3
Xiong, Y.4
-
264
-
-
84982947773
-
Photonic nanostructures for solar energy conversion
-
Zheng, X.; Zhang, L. Photonic nanostructures for solar energy conversion. Energy Environ. Sci. 2016, 9, 2511-2532, 10.1039/C6EE01182A
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 2511-2532
-
-
Zheng, X.1
Zhang, L.2
-
265
-
-
84962603082
-
2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers
-
2 Reduction Catalyzed by Metal-Organic-Framework-Derived Iron Nanoparticles Encapsulated by Ultrathin Carbon Layers. Adv. Mater. 2016, 28, 3703-3710, 10.1002/adma.201505187
-
(2016)
Adv. Mater.
, vol.28
, pp. 3703-3710
-
-
Zhang, H.1
Wang, T.2
Wang, J.3
Liu, H.4
Dao, T.D.5
Li, M.6
Liu, G.7
Meng, X.8
Chang, K.9
Shi, L.10
Nagao, T.11
Ye, J.12
-
266
-
-
85017372373
-
2 Conversion within Metal-Organic Frameworks under Visible Light
-
2 Conversion within Metal-Organic Frameworks under Visible Light. J. Am. Chem. Soc. 2017, 139, 356-362, 10.1021/jacs.6b11027
-
(2017)
J. Am. Chem. Soc.
, vol.139
, pp. 356-362
-
-
Choi, K.M.1
Kim, D.2
Rungtaweevoranit, B.3
Trickett, C.A.4
Barmanbek, J.T.D.5
Alshammari, A.S.6
Yang, P.7
Yaghi, O.M.8
-
267
-
-
84941090983
-
2 into solar fuel
-
2 into solar fuel. APL Mater. 2015, 3, 104416, 10.1063/1.4930043
-
(2015)
APL Mater.
, vol.3
-
-
Feng, S.1
Wang, M.2
Zhou, Y.3
Li, P.4
Tu, W.5
Zou, Z.6
-
268
-
-
84939832947
-
2 to solar fuel via a local electromagnetic field
-
2 to solar fuel via a local electromagnetic field. Nanoscale 2015, 7, 14232-14236, 10.1039/C5NR02943K
-
(2015)
Nanoscale
, vol.7
, pp. 14232-14236
-
-
Tu, W.1
Zhou, Y.2
Li, H.3
Li, P.4
Zou, Z.5
-
269
-
-
84890545036
-
2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion
-
2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion. J. Phys. Chem. C 2013, 117, 25939-25947, 10.1021/jp409311x
-
(2013)
J. Phys. Chem. C
, vol.117
, pp. 25939-25947
-
-
Zhang, Z.1
Wang, Z.2
Cao, S.-W.3
Xue, C.4
-
270
-
-
85006365292
-
2 Hydrogenation
-
2 Hydrogenation. Small 2017, 13, 1602583, 10.1002/smll.201602583
-
(2017)
Small
, vol.13
-
-
Zhang, W.1
Wang, L.2
Wang, K.3
Khan, M.U.4
Wang, M.5
Li, H.6
Zeng, J.7
-
271
-
-
84983084746
-
A perspective on perovskite oxide semiconductor catalysts for gas phase photoreduction of carbon dioxide
-
Huang, C.; Li, Z.; Zou, Z. A perspective on perovskite oxide semiconductor catalysts for gas phase photoreduction of carbon dioxide. MRS Commun. 2016, 6, 216-225, 10.1557/mrc.2016.32
-
(2016)
MRS Commun.
, vol.6
, pp. 216-225
-
-
Huang, C.1
Li, Z.2
Zou, Z.3
-
272
-
-
84919741023
-
A Review on Visible Light Active Perovskite-Based Photocatalysts
-
Kanhere, P.; Chen, Z. A Review on Visible Light Active Perovskite-Based Photocatalysts. Molecules 2014, 19, 19995, 10.3390/molecules191219995
-
(2014)
Molecules
, vol.19
, pp. 19995
-
-
Kanhere, P.1
Chen, Z.2
-
273
-
-
84877146843
-
Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation
-
Moriya, Y.; Takata, T.; Domen, K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 2013, 257, 1957-1969, 10.1016/j.ccr.2013.01.021
-
(2013)
Coord. Chem. Rev.
, vol.257
, pp. 1957-1969
-
-
Moriya, Y.1
Takata, T.2
Domen, K.3
-
274
-
-
84875654346
-
ABO3-based photocatalysts for water splitting
-
Shi, J.; Guo, L. ABO3-based photocatalysts for water splitting. Prog. Nat. Sci. 2012, 22, 592-615, 10.1016/j.pnsc.2012.12.002
-
(2012)
Prog. Nat. Sci.
, vol.22
, pp. 592-615
-
-
Shi, J.1
Guo, L.2
-
275
-
-
84937485231
-
Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment
-
Wang, W.; Tade, M. O.; Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371-5408, 10.1039/C5CS00113G
-
(2015)
Chem. Soc. Rev.
, vol.44
, pp. 5371-5408
-
-
Wang, W.1
Tade, M.O.2
Shao, Z.3
-
276
-
-
84994016195
-
Inorganic perovskite photocatalysts for solar energy utilization
-
Zhang, G.; Liu, G.; Wang, L.; Irvine, J. T. S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951-5984, 10.1039/C5CS00769K
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 5951-5984
-
-
Zhang, G.1
Liu, G.2
Wang, L.3
Irvine, J.T.S.4
-
277
-
-
85007129440
-
Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation
-
Weng, B.; Xiao, Z.; Meng, W.; Grice, C. R.; Poudel, T.; Deng, X.; Yan, Y. Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation. Adv. Energy Mater. 2017, 7, 1602260, 10.1002/aenm.201602260
-
(2017)
Adv. Energy Mater.
, vol.7
-
-
Weng, B.1
Xiao, Z.2
Meng, W.3
Grice, C.R.4
Poudel, T.5
Deng, X.6
Yan, Y.7
-
278
-
-
85007110958
-
A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting
-
Zhu, Y.; Zhou, W.; Zhong, Y.; Bu, Y.; Chen, X.; Zhong, Q.; Liu, M.; Shao, Z. A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1602122, 10.1002/aenm.201602122
-
(2017)
Adv. Energy Mater.
, vol.7
-
-
Zhu, Y.1
Zhou, W.2
Zhong, Y.3
Bu, Y.4
Chen, X.5
Zhong, Q.6
Liu, M.7
Shao, Z.8
-
279
-
-
65649154658
-
2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure
-
2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ. Sci. 2009, 2, 306-314, 10.1039/b818922f
-
(2009)
Energy Environ. Sci.
, vol.2
, pp. 306-314
-
-
Miseki, Y.1
Kato, H.2
Kudo, A.3
-
280
-
-
84859762520
-
3
-
3. J. Phys. Chem. C 2012, 116, 7621-7628, 10.1021/jp210106b
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 7621-7628
-
-
Li, P.1
Ouyang, S.2
Xi, G.3
Kako, T.4
Ye, J.5
-
281
-
-
84856753513
-
3 under visible-light irradiation: An insight from hybrid density-functional calculations
-
3 under visible-light irradiation: an insight from hybrid density-functional calculations. Phys. Chem. Chem. Phys. 2012, 14, 1876-1880, 10.1039/c2cp23348g
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 1876-1880
-
-
Reunchan, P.1
Umezawa, N.2
Ouyang, S.3
Ye, J.4
-
283
-
-
0041827039
-
Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family
-
Eng, H. W.; Barnes, P. W.; Auer, B. M.; Woodward, P. M. Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J. Solid State Chem. 2003, 175, 94-109, 10.1016/S0022-4596(03)00289-5
-
(2003)
J. Solid State Chem.
, vol.175
, pp. 94-109
-
-
Eng, H.W.1
Barnes, P.W.2
Auer, B.M.3
Woodward, P.M.4
-
284
-
-
0000694911
-
3) powder. 1. Structure of the catalysts
-
3) powder. 1. Structure of the catalysts. J. Phys. Chem. 1986, 90, 292-295, 10.1021/j100274a018
-
(1986)
J. Phys. Chem.
, vol.90
, pp. 292-295
-
-
Domen, K.1
Kudo, A.2
Onishi, T.3
Kosugi, N.4
Kuroda, H.5
-
285
-
-
78650370505
-
3 Thin Film for Efficient Water Splitting
-
3 Thin Film for Efficient Water Splitting. Adv. Funct. Mater. 2010, 20, 4287-4294, 10.1002/adfm.201000931
-
(2010)
Adv. Funct. Mater.
, vol.20
, pp. 4287-4294
-
-
Ng, J.1
Xu, S.2
Zhang, X.3
Yang, H.Y.4
Sun, D.D.5
-
286
-
-
33746214653
-
3 Catalyst for the Photocatalytic Splitting of Water
-
3 Catalyst for the Photocatalytic Splitting of Water. Angew. Chem., Int. Ed. 2006, 45, 1420-1422, 10.1002/anie.200503316
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 1420-1422
-
-
Hagiwara, H.1
Ono, N.2
Inoue, T.3
Matsumoto, H.4
Ishihara, T.5
-
287
-
-
0035902363
-
3 (A = Li, Na, and K)
-
3 (A = Li, Na, and K). J. Phys. Chem. B 2001, 105, 4285-4292, 10.1021/jp004386b
-
(2001)
J. Phys. Chem. B
, vol.105
, pp. 4285-4292
-
-
Kato, H.1
Kudo, A.2
-
288
-
-
85027920129
-
A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600 nm
-
Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K. A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600 nm. Angew. Chem., Int. Ed. 2015, 54, 2955-2959, 10.1002/anie.201410961
-
(2015)
Angew. Chem., Int. Ed.
, vol.54
, pp. 2955-2959
-
-
Pan, C.1
Takata, T.2
Nakabayashi, M.3
Matsumoto, T.4
Shibata, N.5
Ikuhara, Y.6
Domen, K.7
-
289
-
-
84959378051
-
8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting
-
8Cl: A Stable Visible Light Responsive Photocatalyst for Water Splitting. J. Am. Chem. Soc. 2016, 138, 2082-2085, 10.1021/jacs.5b11191
-
(2016)
J. Am. Chem. Soc.
, vol.138
, pp. 2082-2085
-
-
Fujito, H.1
Kunioku, H.2
Kato, D.3
Suzuki, H.4
Higashi, M.5
Kageyama, H.6
Abe, R.7
-
290
-
-
0000390086
-
Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites
-
Takata, T.; Furumi, Y.; Shinohara, K.; Tanaka, A.; Hara, M.; Kondo, J. N.; Domen, K. Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites. Chem. Mater. 1997, 9, 1063-1064, 10.1021/cm960612b
-
(1997)
Chem. Mater.
, vol.9
, pp. 1063-1064
-
-
Takata, T.1
Furumi, Y.2
Shinohara, K.3
Tanaka, A.4
Hara, M.5
Kondo, J.N.6
Domen, K.7
-
291
-
-
0000408724
-
7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity
-
7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity. J. Phys. Chem. B 2000, 104, 571-575, 10.1021/jp9919056
-
(2000)
J. Phys. Chem. B
, vol.104
, pp. 571-575
-
-
Kudo, A.1
Kato, H.2
Nakagawa, S.3
-
292
-
-
84986586500
-
Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water
-
Crespo-Quesada, M.; Pazos-Outón, L. M.; Warnan, J.; Kuehnel, M. F.; Friend, R. H.; Reisner, E. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 2016, 7, 12555, 10.1038/ncomms12555
-
(2016)
Nat. Commun.
, vol.7
, pp. 12555
-
-
Crespo-Quesada, M.1
Pazos-Outón, L.M.2
Warnan, J.3
Kuehnel, M.F.4
Friend, R.H.5
Reisner, E.6
-
293
-
-
84990849610
-
Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution
-
Kuang, P.-Y.; Zheng, P.-X.; Liu, Z.-Q.; Lei, J.-L.; Wu, H.; Li, N.; Ma, T.-Y. Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small 2016, 12, 6735-6744, 10.1002/smll.201602870
-
(2016)
Small
, vol.12
, pp. 6735-6744
-
-
Kuang, P.-Y.1
Zheng, P.-X.2
Liu, Z.-Q.3
Lei, J.-L.4
Wu, H.5
Li, N.6
Ma, T.-Y.7
-
294
-
-
84966280406
-
Hierarchical photocatalysts
-
Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603-2636, 10.1039/C5CS00838G
-
(2016)
Chem. Soc. Rev.
, vol.45
, pp. 2603-2636
-
-
Li, X.1
Yu, J.2
Jaroniec, M.3
-
295
-
-
85009833901
-
Recent Progress in Energy-Driven Water Splitting
-
Tee, S. Y.; Win, K. Y.; Teo, W. S.; Koh, L.-D.; Liu, S.; Teng, C. P.; Han, M.-Y. Recent Progress in Energy-Driven Water Splitting. Adv. Sci. 2017, 4, 1600337, 10.1002/advs.201600337
-
(2017)
Adv. Sci.
, vol.4
-
-
Tee, S.Y.1
Win, K.Y.2
Teo, W.S.3
Koh, L.-D.4
Liu, S.5
Teng, C.P.6
Han, M.-Y.7
-
296
-
-
84979272997
-
Photocatalytic Water Splitting - The Untamed Dream: A Review of Recent Advances
-
Jafari, T.; Moharreri, E.; Amin, A.; Miao, R.; Song, W.; Suib, S. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900, 10.3390/molecules21070900
-
(2016)
Molecules
, vol.21
, pp. 900
-
-
Jafari, T.1
Moharreri, E.2
Amin, A.3
Miao, R.4
Song, W.5
Suib, S.6
-
297
-
-
84995555544
-
Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production
-
Zhao, H.; Jin, L.; Zhou, Y.; Bandar, A.; Fan, Z.; Govorov, A. O.; Mi, Z.; Sun, S.; Rosei, F.; Vomiero, A. Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production. Nanotechnology 2016, 27, 495405, 10.1088/0957-4484/27/49/495405
-
(2016)
Nanotechnology
, vol.27
-
-
Zhao, H.1
Jin, L.2
Zhou, Y.3
Bandar, A.4
Fan, Z.5
Govorov, A.O.6
Mi, Z.7
Sun, S.8
Rosei, F.9
Vomiero, A.10
-
298
-
-
84929353094
-
Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst
-
Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. J. Am. Chem. Soc. 2015, 137, 6018-6025, 10.1021/jacs.5b01650
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 6018-6025
-
-
Martindale, B.C.M.1
Hutton, G.A.M.2
Caputo, C.A.3
Reisner, E.4
-
299
-
-
84963720368
-
Progress of Carbon Quantum Dots in Photocatalysis Applications
-
Zhang, Z.; Zheng, T.; Li, X.; Xu, J.; Zeng, H. Progress of Carbon Quantum Dots in Photocatalysis Applications. Part. Part. Syst. Char. 2016, 33, 457-472, 10.1002/ppsc.201500243
-
(2016)
Part. Part. Syst. Char.
, vol.33
, pp. 457-472
-
-
Zhang, Z.1
Zheng, T.2
Li, X.3
Xu, J.4
Zeng, H.5
-
300
-
-
84939261677
-
Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review
-
Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Adv. Funct. Mater. 2015, 25, 4929-4947, 10.1002/adfm.201501250
-
(2015)
Adv. Funct. Mater.
, vol.25
, pp. 4929-4947
-
-
Li, X.1
Rui, M.2
Song, J.3
Shen, Z.4
Zeng, H.5
-
301
-
-
84941729419
-
2 hybrid modified with hydrogenase for visible light driven hydrogen production
-
2 hybrid modified with hydrogenase for visible light driven hydrogen production. Chem. Sci. 2015, 6, 5690-5694, 10.1039/C5SC02017D
-
(2015)
Chem. Sci.
, vol.6
, pp. 5690-5694
-
-
Caputo, C.A.1
Wang, L.2
Beranek, R.3
Reisner, E.4
-
303
-
-
84989348622
-
Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review
-
Zhou, L.; Zhang, H.; Sun, H.; Liu, S.; Tade, M. O.; Wang, S.; Jin, W. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 2016, 6, 7002-7023, 10.1039/C6CY01195K
-
(2016)
Catal. Sci. Technol.
, vol.6
, pp. 7002-7023
-
-
Zhou, L.1
Zhang, H.2
Sun, H.3
Liu, S.4
Tade, M.O.5
Wang, S.6
Jin, W.7
-
304
-
-
84994559835
-
2 Conversion to Solar Fuels
-
2 Conversion to Solar Fuels. ACS Catal. 2016, 6, 7485-7527, 10.1021/acscatal.6b02089
-
(2016)
ACS Catal.
, vol.6
, pp. 7485-7527
-
-
Li, K.1
Peng, B.2
Peng, T.3
-
305
-
-
57849130247
-
A metal-free polymeric photocatalyst for hydrogen production from water under visible light
-
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76, 10.1038/nmat2317
-
(2009)
Nat. Mater.
, vol.8
, pp. 76
-
-
Wang, X.1
Maeda, K.2
Thomas, A.3
Takanabe, K.4
Xin, G.5
Carlsson, J.M.6
Domen, K.7
Antonietti, M.8
-
306
-
-
54049153179
-
Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts
-
Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J.-O.; Schlogl, R.; Carlsson, J. M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893-4908, 10.1039/b800274f
-
(2008)
J. Mater. Chem.
, vol.18
, pp. 4893-4908
-
-
Thomas, A.1
Fischer, A.2
Goettmann, F.3
Antonietti, M.4
Muller, J.-O.5
Schlogl, R.6
Carlsson, J.M.7
-
307
-
-
34250342222
-
Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid-State NMR Spectroscopy, and Theoretical Calculations - Structural Characterization of a Carbon Nitride Polymer
-
Lotsch, B. V.; Döblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.; Schnick, W. Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid-State NMR Spectroscopy, and Theoretical Calculations-Structural Characterization of a Carbon Nitride Polymer. Chem.-Eur. J. 2007, 13, 4969-4980, 10.1002/chem.200601759
-
(2007)
Chem. - Eur. J.
, vol.13
, pp. 4969-4980
-
-
Lotsch, B.V.1
Döblinger, M.2
Sehnert, J.3
Seyfarth, L.4
Senker, J.5
Oeckler, O.6
Schnick, W.7
-
308
-
-
85010297510
-
Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution
-
Zhang, M.; Duan, Y.; Jia, H.; Wang, F.; Wang, L.; Su, Z.; Wang, C. Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution. Catal. Sci. Technol. 2017, 7, 452-458, 10.1039/C6CY02318E
-
(2017)
Catal. Sci. Technol.
, vol.7
, pp. 452-458
-
-
Zhang, M.1
Duan, Y.2
Jia, H.3
Wang, F.4
Wang, L.5
Su, Z.6
Wang, C.7
-
309
-
-
84936859108
-
Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution
-
Li, X.; Hartley, G.; Ward, A. J.; Young, P. A.; Masters, A. F.; Maschmeyer, T. Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 2015, 119, 14938-14946, 10.1021/acs.jpcc.5b03538
-
(2015)
J. Phys. Chem. C
, vol.119
, pp. 14938-14946
-
-
Li, X.1
Hartley, G.2
Ward, A.J.3
Young, P.A.4
Masters, A.F.5
Maschmeyer, T.6
-
310
-
-
84925014602
-
4 realizing an efficient photoreactivity
-
4 realizing an efficient photoreactivity. Nanoscale 2015, 7, 5152-5156, 10.1039/C4NR07645A
-
(2015)
Nanoscale
, vol.7
, pp. 5152-5156
-
-
Wang, H.1
Zhang, X.2
Xie, J.3
Zhang, J.4
Ma, P.5
Pan, B.6
Xie, Y.7
-
311
-
-
84938674732
-
4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance
-
4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance. ACS Appl. Mater. Interfaces 2015, 7, 16850-16856, 10.1021/acsami.5b04947
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 16850-16856
-
-
Zhu, Y.-P.1
Ren, T.-Z.2
Yuan, Z.-Y.3
-
313
-
-
84937877927
-
4 for Efficient Visible Light Photocatalytic Hydrogen Production
-
4 for Efficient Visible Light Photocatalytic Hydrogen Production. Chem. Mater. 2015, 27, 4930-4933, 10.1021/acs.chemmater.5b02344
-
(2015)
Chem. Mater.
, vol.27
, pp. 4930-4933
-
-
Tay, Q.1
Kanhere, P.2
Ng, C.F.3
Chen, S.4
Chakraborty, S.5
Huan, A.C.H.6
Sum, T.C.7
Ahuja, R.8
Chen, Z.9
-
314
-
-
84973494491
-
2 Generation Efficiencies
-
2 Generation Efficiencies. ACS Catal. 2016, 6, 3365-3371, 10.1021/acscatal.6b00879
-
(2016)
ACS Catal.
, vol.6
, pp. 3365-3371
-
-
Wu, W.1
Zhang, J.2
Fan, W.3
Li, Z.4
Wang, L.5
Li, X.6
Wang, Y.7
Wang, R.8
Zheng, J.9
Wu, M.10
Zeng, H.11
-
315
-
-
84978138820
-
Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites
-
Lau, V. W.-h.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165, 10.1038/ncomms12165
-
(2016)
Nat. Commun.
, vol.7
, pp. 12165
-
-
Lau, V.W.-H.1
Moudrakovski, I.2
Botari, T.3
Weinberger, S.4
Mesch, M.B.5
Duppel, V.6
Senker, J.7
Blum, V.8
Lotsch, B.V.9
-
316
-
-
85010966362
-
Urea-Modified Carbon Nitrides: Enhancing Photocatalytic Hydrogen Evolution by Rational Defect Engineering
-
Lau, V. W.-h.; Yu, V. W.-z.; Ehrat, F.; Botari, T.; Moudrakovski, I.; Simon, T.; Duppel, V.; Medina, E.; Stolarczyk, J.; Feldmann, J.; Blum, V.; Lotsch, B. V. Urea-Modified Carbon Nitrides: Enhancing Photocatalytic Hydrogen Evolution by Rational Defect Engineering. Adv. Energy Mater. 2017, 7, 1602251, 10.1002/aenm.201602251
-
(2017)
Adv. Energy Mater.
, vol.7
-
-
Lau, V.W.-H.1
Yu, V.W.-Z.2
Ehrat, F.3
Botari, T.4
Moudrakovski, I.5
Simon, T.6
Duppel, V.7
Medina, E.8
Stolarczyk, J.9
Feldmann, J.10
Blum, V.11
Lotsch, B.V.12
-
317
-
-
84948443711
-
2 production
-
2 production. Energy Environ. Sci. 2015, 8, 3708-3717, 10.1039/C5EE02650D
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 3708-3717
-
-
Ran, J.1
Ma, T.Y.2
Gao, G.3
Du, X.-W.4
Qiao, S.Z.5
-
318
-
-
84895064339
-
Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution
-
Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X. Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution. Adv. Mater. 2014, 26, 805-809, 10.1002/adma.201303611
-
(2014)
Adv. Mater.
, vol.26
, pp. 805-809
-
-
Zhang, G.1
Zhang, M.2
Ye, X.3
Qiu, X.4
Lin, S.5
Wang, X.6
-
319
-
-
84923002592
-
Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution
-
Huang, Z.-F.; Song, J.; Pan, L.; Wang, Z.; Zhang, X.; Zou, J.-J.; Mi, W.; Zhang, X.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646-656, 10.1016/j.nanoen.2015.01.043
-
(2015)
Nano Energy
, vol.12
, pp. 646-656
-
-
Huang, Z.-F.1
Song, J.2
Pan, L.3
Wang, Z.4
Zhang, X.5
Zou, J.-J.6
Mi, W.7
Zhang, X.8
Wang, L.9
-
320
-
-
84955722640
-
Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution
-
Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angew. Chem., Int. Ed. 2016, 55, 1830-1834, 10.1002/anie.201508505
-
(2016)
Angew. Chem., Int. Ed.
, vol.55
, pp. 1830-1834
-
-
Guo, S.1
Deng, Z.2
Li, M.3
Jiang, B.4
Tian, C.5
Pan, Q.6
Fu, H.7
-
321
-
-
85022014675
-
Polymeric carbon nitride for solar hydrogen production
-
Li, X.; Masters, A. F.; Maschmeyer, T. Polymeric carbon nitride for solar hydrogen production. Chem. Commun. 2017, 53, 7438-7446, 10.1039/C7CC02532G
-
(2017)
Chem. Commun.
, vol.53
, pp. 7438-7446
-
-
Li, X.1
Masters, A.F.2
Maschmeyer, T.3
-
322
-
-
84898997643
-
4/NiS Hybrid Photocatalysts with Enhanced Hydrogen Evolution Activity
-
4/NiS Hybrid Photocatalysts with Enhanced Hydrogen Evolution Activity. J. Phys. Chem. C 2014, 118, 7801-7807, 10.1021/jp5000232
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 7801-7807
-
-
Chen, Z.1
Sun, P.2
Fan, B.3
Zhang, Z.4
Fang, X.5
-
323
-
-
84948141896
-
4 nanocomposite: An artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator
-
4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator. Chem. Commun. 2015, 51, 17144-17147, 10.1039/C5CC05323D
-
(2015)
Chem. Commun.
, vol.51
, pp. 17144-17147
-
-
Shi, F.1
Chen, L.2
Chen, M.3
Jiang, D.4
-
324
-
-
84899883842
-
2 nanocomposite
-
2 nanocomposite. J. Mater. Chem. A 2014, 2, 7960-7966, 10.1039/C4TA00275J
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 7960-7966
-
-
Wang, J.1
Guan, Z.2
Huang, J.3
Li, Q.4
Yang, J.5
-
325
-
-
84928503347
-
Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution
-
Yang, X.; Tang, H.; Xu, J.; Antonietti, M.; Shalom, M. Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution. ChemSusChem 2015, 8, 1350-1358, 10.1002/cssc.201403168
-
(2015)
ChemSusChem
, vol.8
, pp. 1350-1358
-
-
Yang, X.1
Tang, H.2
Xu, J.3
Antonietti, M.4
Shalom, M.5
-
326
-
-
84923862249
-
Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
-
Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974, 10.1126/science.aaa3145
-
(2015)
Science
, vol.347
, pp. 970-974
-
-
Liu, J.1
Liu, Y.2
Liu, N.3
Han, Y.4
Zhang, X.5
Huang, H.6
Lifshitz, Y.7
Lee, S.-T.8
Zhong, J.9
Kang, Z.10
-
327
-
-
84897554312
-
4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications
-
4 nanosheet hybrid with reinforced photocurrent for photocatalyst applications. Dalton Trans. 2014, 43, 6295-6299, 10.1039/c3dt53106f
-
(2014)
Dalton Trans.
, vol.43
, pp. 6295-6299
-
-
Dai, K.1
Lu, L.2
Liu, Q.3
Zhu, G.4
Wei, X.5
Bai, J.6
Xuan, L.7
Wang, H.8
-
328
-
-
84948655355
-
4 and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance
-
4 and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance. ACS Appl. Mater. Interfaces 2015, 7, 25693-25701, 10.1021/acsami.5b09503
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 25693-25701
-
-
Tong, Z.1
Yang, D.2
Shi, J.3
Nan, Y.4
Sun, Y.5
Jiang, Z.6
-
329
-
-
84901492759
-
Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination
-
Yeh, T.-F.; Teng, C.-Y.; Chen, S.-J.; Teng, H. Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination. Adv. Mater. 2014, 26, 3297-3303, 10.1002/adma.201305299
-
(2014)
Adv. Mater.
, vol.26
, pp. 3297-3303
-
-
Yeh, T.-F.1
Teng, C.-Y.2
Chen, S.-J.3
Teng, H.4
-
330
-
-
84983505466
-
Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process
-
Chen, L.-C.; Teng, C.-Y.; Lin, C.-Y.; Chang, H.-Y.; Chen, S.-J.; Teng, H. Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process. Adv. Energy Mater. 2016, 6, 1600719, 10.1002/aenm.201600719
-
(2016)
Adv. Energy Mater.
, vol.6
-
-
Chen, L.-C.1
Teng, C.-Y.2
Lin, C.-Y.3
Chang, H.-Y.4
Chen, S.-J.5
Teng, H.6
-
331
-
-
84923880273
-
Pure carbon nanodots for excellent photocatalytic hydrogen generation
-
Yang, P.; Zhao, J.; Wang, J.; Cui, H.; Li, L.; Zhu, Z. Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Adv. 2015, 5, 21332-21335, 10.1039/C5RA01924A
-
(2015)
RSC Adv.
, vol.5
, pp. 21332-21335
-
-
Yang, P.1
Zhao, J.2
Wang, J.3
Cui, H.4
Li, L.5
Zhu, Z.6
-
332
-
-
84923356124
-
The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective
-
Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015, 8, 355-381, 10.1007/s12274-014-0644-3
-
(2015)
Nano Res.
, vol.8
, pp. 355-381
-
-
Zhu, S.1
Song, Y.2
Zhao, X.3
Shao, J.4
Zhang, J.5
Yang, B.6
-
333
-
-
84941102226
-
Carbon Dots: A Unique Fluorescent Cocktail of Polycyclic Aromatic Hydrocarbons
-
Fu, M.; Ehrat, F.; Wang, Y.; Milowska, K. Z.; Reckmeier, C.; Rogach, A. L.; Stolarczyk, J. K.; Urban, A. S.; Feldmann, J. Carbon Dots: A Unique Fluorescent Cocktail of Polycyclic Aromatic Hydrocarbons. Nano Lett. 2015, 15, 6030-6035, 10.1021/acs.nanolett.5b02215
-
(2015)
Nano Lett.
, vol.15
, pp. 6030-6035
-
-
Fu, M.1
Ehrat, F.2
Wang, Y.3
Milowska, K.Z.4
Reckmeier, C.5
Rogach, A.L.6
Stolarczyk, J.K.7
Urban, A.S.8
Feldmann, J.9
-
334
-
-
84899409025
-
Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation
-
Wang, Q.; Li, J.; Bai, Y.; Lian, J.; Huang, H.; Li, Z.; Lei, Z.; Shangguan, W. Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation. Green Chem. 2014, 16, 2728-2735, 10.1039/C3GC42466A
-
(2014)
Green Chem.
, vol.16
, pp. 2728-2735
-
-
Wang, Q.1
Li, J.2
Bai, Y.3
Lian, J.4
Huang, H.5
Li, Z.6
Lei, Z.7
Shangguan, W.8
-
335
-
-
84962199170
-
Luminescent colloidal carbon dots: Optical properties and effects of doping
-
Reckmeier, C. J.; Schneider, J.; Susha, A. S.; Rogach, A. L. Luminescent colloidal carbon dots: optical properties and effects of doping. Opt. Express 2016, 24, A312-A340, 10.1364/OE.24.00A312
-
(2016)
Opt. Express
, vol.24
, pp. A312-A340
-
-
Reckmeier, C.J.1
Schneider, J.2
Susha, A.S.3
Rogach, A.L.4
-
336
-
-
84976557535
-
Photoluminescent Carbon Nanostructures
-
Kozák, O.; Sudolská, M.; Pramanik, G.; Cígler, P.; Otyepka, M.; Zbořil, R. Photoluminescent Carbon Nanostructures. Chem. Mater. 2016, 28, 4085-4128, 10.1021/acs.chemmater.6b01372
-
(2016)
Chem. Mater.
, vol.28
, pp. 4085-4128
-
-
Kozák, O.1
Sudolská, M.2
Pramanik, G.3
Cígler, P.4
Otyepka, M.5
Zbořil, R.6
-
337
-
-
85033704984
-
Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots
-
Bhattacharyya, S.; Ehrat, F.; Urban, P.; Teves, R.; Wyrwich, R.; Döblinger, M.; Feldmann, J.; Urban, A. S.; Stolarczyk, J. K. Effect of nitrogen atom positioning on the trade-off between emissive and photocatalytic properties of carbon dots. Nat. Commun. 2017, 8, 1401, 10.1038/s41467-017-01463-x
-
(2017)
Nat. Commun.
, vol.8
, pp. 1401
-
-
Bhattacharyya, S.1
Ehrat, F.2
Urban, P.3
Teves, R.4
Wyrwich, R.5
Döblinger, M.6
Feldmann, J.7
Urban, A.S.8
Stolarczyk, J.K.9
-
338
-
-
85018997590
-
Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping
-
Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Prantl, S.; Godin, R.; Durrant, J. R.; Reisner, E. Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping. Angew. Chem., Int. Ed. 2017, 56, 6459-6463, 10.1002/anie.201700949
-
(2017)
Angew. Chem., Int. Ed.
, vol.56
, pp. 6459-6463
-
-
Martindale, B.C.M.1
Hutton, G.A.M.2
Caputo, C.A.3
Prantl, S.4
Godin, R.5
Durrant, J.R.6
Reisner, E.7
-
339
-
-
85026772553
-
Carbon dots as photosensitisers for solar-driven catalysis
-
Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 2017, 46, 6111-6123, 10.1039/C7CS00235A
-
(2017)
Chem. Soc. Rev.
, vol.46
, pp. 6111-6123
-
-
Hutton, G.A.M.1
Martindale, B.C.M.2
Reisner, E.3
-
340
-
-
84881516503
-
2-based photocatalysts and dye-sensitized solar cells
-
2-based photocatalysts and dye-sensitized solar cells. Nano Energy 2013, 2, 545-552, 10.1016/j.nanoen.2013.07.010
-
(2013)
Nano Energy
, vol.2
, pp. 545-552
-
-
Zhang, Y.-Q.1
Ma, D.-K.2
Zhang, Y.-G.3
Chen, W.4
Huang, S.-M.5
-
341
-
-
84987704739
-
Smart Utilization of Carbon Dots in Semiconductor Photocatalysis
-
Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Adv. Mater. 2016, 28, 9454-9477, 10.1002/adma.201602581
-
(2016)
Adv. Mater.
, vol.28
, pp. 9454-9477
-
-
Yu, H.1
Shi, R.2
Zhao, Y.3
Waterhouse, G.I.N.4
Wu, L.-Z.5
Tung, C.-H.6
Zhang, T.7
-
342
-
-
84925235612
-
Computational Screening of 2D Materials for Photocatalysis
-
Singh, A. K.; Mathew, K.; Zhuang, H. L.; Hennig, R. G. Computational Screening of 2D Materials for Photocatalysis. J. Phys. Chem. Lett. 2015, 6, 1087-1098, 10.1021/jz502646d
-
(2015)
J. Phys. Chem. Lett.
, vol.6
, pp. 1087-1098
-
-
Singh, A.K.1
Mathew, K.2
Zhuang, H.L.3
Hennig, R.G.4
-
343
-
-
85013220061
-
Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective
-
Li, Y.; Li, Y.-L.; Sa, B.; Ahuja, R. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. Technol. 2017, 7, 545-559, 10.1039/C6CY02178F
-
(2017)
Catal. Sci. Technol.
, vol.7
, pp. 545-559
-
-
Li, Y.1
Li, Y.-L.2
Sa, B.3
Ahuja, R.4
-
344
-
-
84961988007
-
Recent advances in 2D materials for photocatalysis
-
Luo, B.; Liu, G.; Wang, L. Recent advances in 2D materials for photocatalysis. Nanoscale 2016, 8, 6904-6920, 10.1039/C6NR00546B
-
(2016)
Nanoscale
, vol.8
, pp. 6904-6920
-
-
Luo, B.1
Liu, G.2
Wang, L.3
-
345
-
-
84960797542
-
2D phosphorene as a water splitting photocatalyst: Fundamentals to applications
-
Rahman, M. Z.; Kwong, C. W.; Davey, K.; Qiao, S. Z. 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 2016, 9, 709-728, 10.1039/C5EE03732H
-
(2016)
Energy Environ. Sci.
, vol.9
, pp. 709-728
-
-
Rahman, M.Z.1
Kwong, C.W.2
Davey, K.3
Qiao, S.Z.4
-
348
-
-
85024875834
-
2 Ultrathin Nanosheets for Efficient Photocatalytic Hydrogen Evolution
-
2 Ultrathin Nanosheets for Efficient Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 23635-23646, 10.1021/acsami.7b03673
-
(2017)
ACS Appl. Mater. Interfaces
, vol.9
, pp. 23635-23646
-
-
Zhang, S.1
Yang, H.2
Gao, H.3
Cao, R.4
Huang, J.5
Xu, X.6
-
349
-
-
85020252730
-
Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution
-
Zhu, M.; Osakada, Y.; Kim, S.; Fujitsuka, M.; Majima, T. Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal., B 2017, 217, 285-292, 10.1016/j.apcatb.2017.06.002
-
(2017)
Appl. Catal., B
, vol.217
, pp. 285-292
-
-
Zhu, M.1
Osakada, Y.2
Kim, S.3
Fujitsuka, M.4
Majima, T.5
-
350
-
-
84946746822
-
Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets
-
Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y.; Kuno, M. Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets. ACS Catal. 2015, 5, 6615-6623, 10.1021/acscatal.5b01812
-
(2015)
ACS Catal.
, vol.5
, pp. 6615-6623
-
-
Zhukovskyi, M.1
Tongying, P.2
Yashan, H.3
Wang, Y.4
Kuno, M.5
-
351
-
-
84935016902
-
2 Nanosheets
-
2 Nanosheets. J. Am. Chem. Soc. 2015, 137, 7365-7370, 10.1021/jacs.5b01732
-
(2015)
J. Am. Chem. Soc.
, vol.137
, pp. 7365-7370
-
-
Shi, Y.1
Wang, J.2
Wang, C.3
Zhai, T.-T.4
Bao, W.-J.5
Xu, J.-J.6
Xia, X.-H.7
Chen, H.-Y.8
-
352
-
-
84923950775
-
2 photocatalysis in hydrogen evolution
-
2 photocatalysis in hydrogen evolution. Nanoscale 2015, 7, 4482-4488, 10.1039/C4NR07303G
-
(2015)
Nanoscale
, vol.7
, pp. 4482-4488
-
-
Kang, Y.1
Gong, Y.2
Hu, Z.3
Li, Z.4
Qiu, Z.5
Zhu, X.6
Ajayan, P.M.7
Fang, Z.8
-
353
-
-
84994881314
-
2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect
-
2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy 2016, 30, 549-558, 10.1016/j.nanoen.2016.10.047
-
(2016)
Nano Energy
, vol.30
, pp. 549-558
-
-
Li, X.1
Guo, S.2
Kan, C.3
Zhu, J.4
Tong, T.5
Ke, S.6
Choy, W.C.H.7
Wei, B.8
-
354
-
-
79955891162
-
2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction
-
2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299, 10.1021/ja201269b
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 7296-7299
-
-
Li, Y.1
Wang, H.2
Xie, L.3
Liang, Y.4
Hong, G.5
Dai, H.6
-
355
-
-
84905843037
-
2/AlN(GaN) Heterostructures
-
2/AlN(GaN) Heterostructures. J. Phys. Chem. C 2014, 118, 17594-17599, 10.1021/jp5038014
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 17594-17599
-
-
Liao, J.1
Sa, B.2
Zhou, J.3
Ahuja, R.4
Sun, Z.5
-
356
-
-
44949200319
-
2 as Cocatalyst under Visible Light Irradiation
-
2 as Cocatalyst under Visible Light Irradiation. J. Am. Chem. Soc. 2008, 130, 7176-7177, 10.1021/ja8007825
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 7176-7177
-
-
Zong, X.1
Yan, H.2
Wu, G.3
Ma, G.4
Wen, F.5
Wang, L.6
Li, C.7
-
357
-
-
17644368513
-
2 Nanoparticles as Catalyst for Hydrogen Evolution
-
2 Nanoparticles as Catalyst for Hydrogen Evolution. J. Am. Chem. Soc. 2005, 127, 5308-5309, 10.1021/ja0504690
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 5308-5309
-
-
Hinnemann, B.1
Moses, P.G.2
Bonde, J.3
Jørgensen, K.P.4
Nielsen, J.H.5
Horch, S.6
Chorkendorff, I.7
Nørskov, J.K.8
-
358
-
-
85020252730
-
Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution
-
Zhu, M.; Osakada, Y.; Kim, S.; Fujitsuka, M.; Majima, T. Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal., B 2017, 217, 285-292, 10.1016/j.apcatb.2017.06.002
-
(2017)
Appl. Catal., B
, vol.217
, pp. 285-292
-
-
Zhu, M.1
Osakada, Y.2
Kim, S.3
Fujitsuka, M.4
Majima, T.5
-
359
-
-
84979221599
-
MXene: A promising photocatalyst for water splitting
-
Guo, Z.; Zhou, J.; Zhu, L.; Sun, Z. MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 2016, 4, 11446-11452, 10.1039/C6TA04414J
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 11446-11452
-
-
Guo, Z.1
Zhou, J.2
Zhu, L.3
Sun, Z.4
-
360
-
-
85021645063
-
2 reduction
-
2 reduction. J. Mater. Chem. A 2017, 5, 12899-12903, 10.1039/C7TA03557H
-
(2017)
J. Mater. Chem. A
, vol.5
, pp. 12899-12903
-
-
Zhang, X.1
Zhang, Z.2
Li, J.3
Zhao, X.4
Wu, D.5
Zhou, Z.6
-
361
-
-
85008411869
-
2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production
-
2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907, 10.1038/ncomms13907
-
(2017)
Nat. Commun.
, vol.8
, pp. 13907
-
-
Ran, J.1
Gao, G.2
Li, F.-T.3
Ma, T.-Y.4
Du, A.5
Qiao, S.-Z.6
-
362
-
-
85041122224
-
2C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution
-
2C (MXene) Composites and Their Use as Photocatalysts for Hydrogen Evolution. ChemSusChem 2018, 11, 688-699, 10.1002/cssc.201702317
-
(2018)
ChemSusChem
, vol.11
, pp. 688-699
-
-
Su, T.1
Peng, R.2
Hood, Z.D.3
Naguib, M.4
Ivanov, I.N.5
Keum, J.K.6
Qin, Z.7
Guo, Z.8
Wu, Z.9
-
363
-
-
84978793045
-
Nanoparticle Clusters: Assembly and Control over Internal Order, Current Capabilities, and Future Potential
-
Stolarczyk, J. K.; Deak, A.; Brougham, D. F. Nanoparticle Clusters: Assembly and Control Over Internal Order, Current Capabilities, and Future Potential. Adv. Mater. 2016, 28, 5400-5424, 10.1002/adma.201505350
-
(2016)
Adv. Mater.
, vol.28
, pp. 5400-5424
-
-
Stolarczyk, J.K.1
Deak, A.2
Brougham, D.F.3
-
365
-
-
77954294512
-
Theoretical Framework for Nanoparticle Reactivity as a Function of Aggregation State
-
Hotze, E. M.; Bottero, J.-Y.; Wiesner, M. R. Theoretical Framework for Nanoparticle Reactivity as a Function of Aggregation State. Langmuir 2010, 26, 11170-11175, 10.1021/la9046963
-
(2010)
Langmuir
, vol.26
, pp. 11170-11175
-
-
Hotze, E.M.1
Bottero, J.-Y.2
Wiesner, M.R.3
-
367
-
-
84861862668
-
2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges
-
2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges. J. Phys. Chem. Lett. 2012, 3, 1422-1427, 10.1021/jz3005128
-
(2012)
J. Phys. Chem. Lett.
, vol.3
, pp. 1422-1427
-
-
Bian, Z.1
Tachikawa, T.2
Majima, T.3
-
368
-
-
84872180229
-
2
-
2. J. Phys. Chem. Lett. 2013, 4, 189-194, 10.1021/jz301881d
-
(2013)
J. Phys. Chem. Lett.
, vol.4
, pp. 189-194
-
-
Park, Y.1
Kim, W.2
Monllor-Satoca, D.3
Tachikawa, T.4
Majima, T.5
Choi, W.6
-
369
-
-
85017160780
-
Self-assembled Framework Enhances Electronic Communication of Ultra-small Sized Nanoparticles for Exceptional Solar Hydrogen Evolution
-
Li, X.-B.; Gao, Y.-J.; Wang, Y.; Zhan, F.; Zhang, X.-Y.; Kong, Q.; Zhao, N.-J.; Guo, Q.; Wu, H.-L.; Li, Z.-J.; Tao, Y.; Zhang, J.-P.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Self-assembled Framework Enhances Electronic Communication of Ultra-small Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. J. Am. Chem. Soc. 2017, 139, 4789-4796, 10.1021/jacs.6b12976
-
(2017)
J. Am. Chem. Soc.
, vol.139
, pp. 4789-4796
-
-
Li, X.-B.1
Gao, Y.-J.2
Wang, Y.3
Zhan, F.4
Zhang, X.-Y.5
Kong, Q.6
Zhao, N.-J.7
Guo, Q.8
Wu, H.-L.9
Li, Z.-J.10
Tao, Y.11
Zhang, J.-P.12
Chen, B.13
Tung, C.-H.14
Wu, L.-Z.15
-
370
-
-
11144232320
-
Mesoporous Spherical Aggregates of Anatase Nanocrystals with Wormhole-like Framework Structures: Their Chemical Fabrication, Characterization, and Photocatalytic Performance
-
Wang, H.; Miao, J.-J.; Zhu, J.-M.; Ma, H.-M.; Zhu, J.-J.; Chen, H.-Y. Mesoporous Spherical Aggregates of Anatase Nanocrystals with Wormhole-like Framework Structures: Their Chemical Fabrication, Characterization, and Photocatalytic Performance. Langmuir 2004, 20, 11738-11747, 10.1021/la0477892
-
(2004)
Langmuir
, vol.20
, pp. 11738-11747
-
-
Wang, H.1
Miao, J.-J.2
Zhu, J.-M.3
Ma, H.-M.4
Zhu, J.-J.5
Chen, H.-Y.6
-
371
-
-
84926362915
-
4 supraparticles: Construction of dual-level pores for Pt-catalyzed enantioselective hydrogenation
-
4 supraparticles: construction of dual-level pores for Pt-catalyzed enantioselective hydrogenation. Polym. Chem. 2015, 6, 2892-2899, 10.1039/C4PY01611D
-
(2015)
Polym. Chem.
, vol.6
, pp. 2892-2899
-
-
Xu, S.1
Weng, Z.2
Tan, J.3
Guo, J.4
Wang, C.5
|