메뉴 건너뛰기




Volumn 8, Issue 4, 2018, Pages 3602-3635

Challenges and Prospects in Solar Water Splitting and CO2 Reduction with Inorganic and Hybrid Nanostructures

Author keywords

CO2 reduction; defect engineering; photocatalysis; semiconductor nanocrystals; Solar energy; water splitting

Indexed keywords

CARBON DIOXIDE; ENERGY DISSIPATION; GLOBAL WARMING; HYDROGEN STORAGE; LIGHT ABSORPTION; METHANOL FUELS; PEROVSKITE; PHOTOCATALYSIS; PHOTOELECTROCHEMICAL CELLS; PHOTOVOLTAIC CELLS; REDUCTION; REVERSE COMBUSTION; SELF ASSEMBLY; SOLAR ENERGY; SURFACE REACTIONS; SUSTAINABLE DEVELOPMENT;

EID: 85045108296     PISSN: None     EISSN: 21555435     Source Type: Journal    
DOI: 10.1021/acscatal.8b00791     Document Type: Article
Times cited : (407)

References (371)
  • 3
    • 85027954070 scopus 로고    scopus 로고
    • 2
    • 2. Adv. Mater. 2015, 27, 1957-1963, 10.1002/adma.201500116
    • (2015) Adv. Mater. , vol.27 , pp. 1957-1963
    • Ozin, G.A.1
  • 4
    • 80051720417 scopus 로고    scopus 로고
    • Anthropogenic Chemical Carbon Cycle for a Sustainable Future
    • Olah, G. A.; Prakash, G. K. S.; Goeppert, A. Anthropogenic Chemical Carbon Cycle for a Sustainable Future. J. Am. Chem. Soc. 2011, 133, 12881-12898, 10.1021/ja202642y
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 12881-12898
    • Olah, G.A.1    Prakash, G.K.S.2    Goeppert, A.3
  • 5
    • 85017037627 scopus 로고    scopus 로고
    • Intergovernmental Panel on Climate Change (IPCC).; IPCC: Geneva, Switzerland. Available at the following
    • Intergovernmental Panel on Climate Change (IPCC). Fifth Assessment Report 2014; IPCC: Geneva, Switzerland. Available at the following: https://www.ipcc.ch/report/ar5/.
    • Fifth Assessment Report 2014
  • 6
    • 85029366089 scopus 로고    scopus 로고
    • International Energy Agency.; International Energy Agency: Paris, France. Available at the following
    • International Energy Agency. Medium-Term Renewable Energy Market Report 2016; International Energy Agency: Paris, France. Available at the following: https://www.iea.org/newsroom/news/2016/october/medium-term-renewable-energy-market-report-2016.html.
    • Medium-Term Renewable Energy Market Report 2016
  • 7
    • 0035890440 scopus 로고    scopus 로고
    • Issues and challenges facing rechargeable lithium batteries
    • Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367, 10.1038/35104644
    • (2001) Nature , vol.414 , pp. 359-367
    • Tarascon, J.M.1    Armand, M.2
  • 9
    • 84856096310 scopus 로고    scopus 로고
    • Solar-fuel generation: Towards practical implementation
    • Dahl, S.; Chorkendorff, I. Solar-fuel generation: Towards practical implementation. Nat. Mater. 2012, 11, 100-101, 10.1038/nmat3233
    • (2012) Nat. Mater. , vol.11 , pp. 100-101
    • Dahl, S.1    Chorkendorff, I.2
  • 10
    • 33750458683 scopus 로고    scopus 로고
    • Powering the planet: Chemical challenges in solar energy utilization
    • Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 15729-15735, 10.1073/pnas.0603395103
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 15729-15735
    • Lewis, N.S.1    Nocera, D.G.2
  • 11
    • 74549131120 scopus 로고    scopus 로고
    • The teraton challenge. A review of fixation and transformation of carbon dioxide
    • Mikkelsen, M.; Jorgensen, M.; Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 2010, 3, 43-81, 10.1039/B912904A
    • (2010) Energy Environ. Sci. , vol.3 , pp. 43-81
    • Mikkelsen, M.1    Jorgensen, M.2    Krebs, F.C.3
  • 15
    • 84941690718 scopus 로고    scopus 로고
    • Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting
    • Ager, J. W.; Shaner, M. R.; Walczak, K. A.; Sharp, I. D.; Ardo, S. Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting. Energy Environ. Sci. 2015, 8, 2811-2824, 10.1039/C5EE00457H
    • (2015) Energy Environ. Sci. , vol.8 , pp. 2811-2824
    • Ager, J.W.1    Shaner, M.R.2    Walczak, K.A.3    Sharp, I.D.4    Ardo, S.5
  • 16
    • 0032540476 scopus 로고    scopus 로고
    • A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting
    • Khaselev, O.; Turner, J. A. A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production via Water Splitting. Science 1998, 280, 425, 10.1126/science.280.5362.425
    • (1998) Science , vol.280 , pp. 425
    • Khaselev, O.1    Turner, J.A.2
  • 18
    • 84886721800 scopus 로고    scopus 로고
    • Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell
    • Fujii, K.; Nakamura, S.; Sugiyama, M.; Watanabe, K.; Bagheri, B.; Nakano, Y. Characteristics of hydrogen generation from water splitting by polymer electrolyte electrochemical cell directly connected with concentrated photovoltaic cell. Int. J. Hydrogen Energy 2013, 38, 14424-14432, 10.1016/j.ijhydene.2013.07.010
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 14424-14432
    • Fujii, K.1    Nakamura, S.2    Sugiyama, M.3    Watanabe, K.4    Bagheri, B.5    Nakano, Y.6
  • 19
    • 84905734811 scopus 로고    scopus 로고
    • Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting
    • Osterloh, F. E. Boosting the Efficiency of Suspended Photocatalysts for Overall Water Splitting. J. Phys. Chem. Lett. 2014, 5, 2510-2511, 10.1021/jz501342j
    • (2014) J. Phys. Chem. Lett. , vol.5 , pp. 2510-2511
    • Osterloh, F.E.1
  • 21
    • 84902144692 scopus 로고    scopus 로고
    • Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
    • Hisatomi, T.; Kubota, J.; Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 2014, 43, 7520-7535, 10.1039/C3CS60378D
    • (2014) Chem. Soc. Rev. , vol.43 , pp. 7520-7535
    • Hisatomi, T.1    Kubota, J.2    Domen, K.3
  • 22
    • 35348875044 scopus 로고
    • Electrochemical Photolysis of Water at a Semiconductor Electrode
    • Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38, 10.1038/238037a0
    • (1972) Nature , vol.238 , pp. 37-38
    • Fujishima, A.1    Honda, K.2
  • 23
    • 84884879248 scopus 로고    scopus 로고
    • Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move
    • Joya, K. S.; Joya, Y. F.; Ocakoglu, K.; van de Krol, R. Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move. Angew. Chem., Int. Ed. 2013, 52, 10426-10437, 10.1002/anie.201300136
    • (2013) Angew. Chem., Int. Ed. , vol.52 , pp. 10426-10437
    • Joya, K.S.1    Joya, Y.F.2    Ocakoglu, K.3    Van De Krol, R.4
  • 24
    • 84979927797 scopus 로고    scopus 로고
    • Semiconducting materials for photoelectrochemical energy conversion
    • Sivula, K.; van de Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010, 10.1038/natrevmats.2015.10
    • (2016) Nat. Rev. Mater. , vol.1 , pp. 15010
    • Sivula, K.1    Van De Krol, R.2
  • 25
    • 0010019696 scopus 로고
    • Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors
    • Bard, A. J. Photoelectrochemistry and heterogeneous photo-catalysis at semiconductors. J. Photochem. 1979, 10, 59-75, 10.1016/0047-2670(79)80037-4
    • (1979) J. Photochem. , vol.10 , pp. 59-75
    • Bard, A.J.1
  • 26
    • 0000629550 scopus 로고
    • 2 crystals
    • 2 crystals. Nature 1975, 257, 383-386, 10.1038/257383a0
    • (1975) Nature , vol.257 , pp. 383-386
    • Nozik, A.J.1
  • 27
    • 84874461329 scopus 로고    scopus 로고
    • Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
    • Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294-2320, 10.1039/C2CS35266D
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 2294-2320
    • Osterloh, F.E.1
  • 29
    • 85020394547 scopus 로고    scopus 로고
    • Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations
    • Osterloh, F. E. Photocatalysis versus Photosynthesis: A Sensitivity Analysis of Devices for Solar Energy Conversion and Chemical Transformations. ACS Energy Lett. 2017, 2, 445-453, 10.1021/acsenergylett.6b00665
    • (2017) ACS Energy Lett. , vol.2 , pp. 445-453
    • Osterloh, F.E.1
  • 30
    • 57649159482 scopus 로고    scopus 로고
    • Heterogeneous photocatalyst materials for water splitting
    • Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278, 10.1039/B800489G
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 253-278
    • Kudo, A.1    Miseki, Y.2
  • 31
    • 84857757585 scopus 로고    scopus 로고
    • Semiconductor Photocatalysis - Past, Present, and Future Outlook
    • Serpone, N.; Emeline, A. V. Semiconductor Photocatalysis-Past, Present, and Future Outlook. J. Phys. Chem. Lett. 2012, 3, 673-677, 10.1021/jz300071j
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 673-677
    • Serpone, N.1    Emeline, A.V.2
  • 32
    • 78449288259 scopus 로고    scopus 로고
    • Semiconductor-based Photocatalytic Hydrogen Generation
    • Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503-6570, 10.1021/cr1001645
    • (2010) Chem. Rev. , vol.110 , pp. 6503-6570
    • Chen, X.1    Shen, S.2    Guo, L.3    Mao, S.S.4
  • 33
    • 84872285386 scopus 로고    scopus 로고
    • Semiconductor Photocatalysis - Mechanistic and Synthetic Aspects
    • Kisch, H. Semiconductor Photocatalysis-Mechanistic and Synthetic Aspects. Angew. Chem., Int. Ed. 2013, 52, 812-847, 10.1002/anie.201201200
    • (2013) Angew. Chem., Int. Ed. , vol.52 , pp. 812-847
    • Kisch, H.1
  • 34
    • 79957618173 scopus 로고    scopus 로고
    • Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals: Synthesis and Function
    • Vaneski, A.; Susha, A. S.; Rodríguez-Fernández, J.; Berr, M.; Jäckel, F.; Feldmann, J.; Rogach, A. L. Hybrid Colloidal Heterostructures of Anisotropic Semiconductor Nanocrystals Decorated with Noble Metals: Synthesis and Function. Adv. Funct. Mater. 2011, 21, 1547-1556, 10.1002/adfm.201002444
    • (2011) Adv. Funct. Mater. , vol.21 , pp. 1547-1556
    • Vaneski, A.1    Susha, A.S.2    Rodríguez-Fernández, J.3    Berr, M.4    Jäckel, F.5    Feldmann, J.6    Rogach, A.L.7
  • 35
    • 77954327414 scopus 로고    scopus 로고
    • Colloidal Hybrid Nanostructures: A New Type of Functional Materials
    • Costi, R.; Saunders, A. E.; Banin, U. Colloidal Hybrid Nanostructures: A New Type of Functional Materials. Angew. Chem., Int. Ed. 2010, 49, 4878-4897, 10.1002/anie.200906010
    • (2010) Angew. Chem., Int. Ed. , vol.49 , pp. 4878-4897
    • Costi, R.1    Saunders, A.E.2    Banin, U.3
  • 38
    • 84930203012 scopus 로고    scopus 로고
    • Photocatalytic Activity of Inorganic Semiconductor Surfaces: Myths, Hype, and Reality
    • Rajeshwar, K.; Thomas, A.; Janáky, C. Photocatalytic Activity of Inorganic Semiconductor Surfaces: Myths, Hype, and Reality. J. Phys. Chem. Lett. 2015, 6, 139-147, 10.1021/jz502586p
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 139-147
    • Rajeshwar, K.1    Thomas, A.2    Janáky, C.3
  • 39
    • 84858432931 scopus 로고    scopus 로고
    • Advanced Nanoarchitectures for Solar Photocatalytic Applications
    • Kubacka, A.; Fernández-García, M.; Colón, G. Advanced Nanoarchitectures for Solar Photocatalytic Applications. Chem. Rev. 2012, 112, 1555-614, 10.1021/cr100454n
    • (2012) Chem. Rev. , vol.112 , pp. 1555-1614
    • Kubacka, A.1    Fernández-García, M.2    Colón, G.3
  • 40
    • 84907895193 scopus 로고    scopus 로고
    • 2 Nanoparticles as Functional Building Blocks
    • 2 Nanoparticles as Functional Building Blocks. Chem. Rev. 2014, 114, 9283-9318, 10.1021/cr400629p
    • (2014) Chem. Rev. , vol.114 , pp. 9283-9318
    • Sang, L.1    Zhao, Y.2    Burda, C.3
  • 41
    • 1842425986 scopus 로고    scopus 로고
    • 2-assisted photocatalytic degradation of azo dyes in aqueous solution: Kinetic and mechanistic investigations: A review
    • 2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal., B 2004, 49, 1-14, 10.1016/j.apcatb.2003.11.010
    • (2004) Appl. Catal., B , vol.49 , pp. 1-14
    • Konstantinou, I.K.1    Albanis, T.A.2
  • 43
    • 84981731399 scopus 로고    scopus 로고
    • 2 over Heterostructure Semiconductors into Value-Added Chemicals
    • 2 over Heterostructure Semiconductors into Value-Added Chemicals. Chem. Rec. 2016, 16, 1918-1933, 10.1002/tcr.201600008
    • (2016) Chem. Rec. , vol.16 , pp. 1918-1933
    • Guo, L.-J.1    Wang, Y.-J.2    He, T.3
  • 44
    • 84904438276 scopus 로고    scopus 로고
    • 2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects
    • 2 into Renewable Hydrocarbon Fuels: State-of-the-Art Accomplishment, Challenges, and Prospects. Adv. Mater. 2014, 26, 4607-4626, 10.1002/adma.201400087
    • (2014) Adv. Mater. , vol.26 , pp. 4607-4626
    • Tu, W.1    Zhou, Y.2    Zou, Z.3
  • 45
    • 84859354779 scopus 로고    scopus 로고
    • 2O on various titanium oxide photocatalysts
    • 2O on various titanium oxide photocatalysts. RSC Adv. 2012, 2, 3165-3172, 10.1039/c2ra01332k
    • (2012) RSC Adv. , vol.2 , pp. 3165-3172
    • Mori, K.1    Yamashita, H.2    Anpo, M.3
  • 46
    • 34547486889 scopus 로고    scopus 로고
    • Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications
    • Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891-2959, 10.1021/cr0500535
    • (2007) Chem. Rev. , vol.107 , pp. 2891-2959
    • Chen, X.1    Mao, S.S.2
  • 47
    • 36149024282 scopus 로고
    • Optical Properties of Nickel Oxide
    • Newman, R.; Chrenko, R. M. Optical Properties of Nickel Oxide. Phys. Rev. 1959, 114, 1507-1513, 10.1103/PhysRev.114.1507
    • (1959) Phys. Rev. , vol.114 , pp. 1507-1513
    • Newman, R.1    Chrenko, R.M.2
  • 50
    • 34548180960 scopus 로고
    • Detailed Balance Limit of Efficiency of p-n Junction Solar Cells
    • Shockley, W.; Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510-519, 10.1063/1.1736034
    • (1961) J. Appl. Phys. , vol.32 , pp. 510-519
    • Shockley, W.1    Queisser, H.J.2
  • 51
    • 84877828966 scopus 로고    scopus 로고
    • Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers
    • Shalom, M.; Inal, S.; Fettkenhauer, C.; Neher, D.; Antonietti, M. Improving Carbon Nitride Photocatalysis by Supramolecular Preorganization of Monomers. J. Am. Chem. Soc. 2013, 135, 7118-7121, 10.1021/ja402521s
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 7118-7121
    • Shalom, M.1    Inal, S.2    Fettkenhauer, C.3    Neher, D.4    Antonietti, M.5
  • 53
    • 84866716771 scopus 로고    scopus 로고
    • Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution
    • Chen, S.; Wang, L.-W. Thermodynamic Oxidation and Reduction Potentials of Photocatalytic Semiconductors in Aqueous Solution. Chem. Mater. 2012, 24, 3659-3666, 10.1021/cm302533s
    • (2012) Chem. Mater. , vol.24 , pp. 3659-3666
    • Chen, S.1    Wang, L.-W.2
  • 54
    • 0035850521 scopus 로고    scopus 로고
    • Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols
    • Aldana, J.; Wang, Y. A.; Peng, X. Photochemical Instability of CdSe Nanocrystals Coated by Hydrophilic Thiols. J. Am. Chem. Soc. 2001, 123, 8844-8850, 10.1021/ja016424q
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 8844-8850
    • Aldana, J.1    Wang, Y.A.2    Peng, X.3
  • 55
    • 0024032632 scopus 로고
    • Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential
    • Meissner, D.; Memming, R.; Kastening, B. Photoelectrochemistry of cadmium sulfide. 1. Reanalysis of photocorrosion and flat-band potential. J. Phys. Chem. 1988, 92, 3476-3483, 10.1021/j100323a032
    • (1988) J. Phys. Chem. , vol.92 , pp. 3476-3483
    • Meissner, D.1    Memming, R.2    Kastening, B.3
  • 56
    • 84862133673 scopus 로고    scopus 로고
    • Hole Scavenger Redox Potentials Determine Quantum Efficiency and Stability of Pt-decorated CdS Nanorods for Photocatalytic Hydrogen Generation
    • Berr, M. J.; Wagner, P.; Fischbach, S.; Vaneski, A.; Schneider, J.; Susha, A. S.; Rogach, A. L.; Jackel, F.; Feldmann, J. Hole Scavenger Redox Potentials Determine Quantum Efficiency and Stability of Pt-decorated CdS Nanorods for Photocatalytic Hydrogen Generation. Appl. Phys. Lett. 2012, 100, 223903-3, 10.1063/1.4723575
    • (2012) Appl. Phys. Lett. , vol.100
    • Berr, M.J.1    Wagner, P.2    Fischbach, S.3    Vaneski, A.4    Schneider, J.5    Susha, A.S.6    Rogach, A.L.7    Jackel, F.8    Feldmann, J.9
  • 57
    • 84897492602 scopus 로고    scopus 로고
    • Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative
    • Tarafder, K.; Surendranath, Y.; Olshansky, J. H.; Alivisatos, A. P.; Wang, L.-W. Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative. J. Am. Chem. Soc. 2014, 136, 5121-5131, 10.1021/ja500936n
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 5121-5131
    • Tarafder, K.1    Surendranath, Y.2    Olshansky, J.H.3    Alivisatos, A.P.4    Wang, L.-W.5
  • 58
    • 84901700644 scopus 로고    scopus 로고
    • 2 Generation Efficiency in CdS-Pt and CdSe/CdS-Pt Semiconductor Nanorod-Metal Tip Heterostructures
    • 2 Generation Efficiency in CdS-Pt and CdSe/CdS-Pt Semiconductor Nanorod-Metal Tip Heterostructures. J. Am. Chem. Soc. 2014, 136, 7708-7716, 10.1021/ja5023893
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 7708-7716
    • Wu, K.1    Chen, Z.2    Lv, H.3    Zhu, H.4    Hill, C.L.5    Lian, T.6
  • 59
    • 84960540100 scopus 로고    scopus 로고
    • Perfect Photon-to-Hydrogen Conversion Efficiency
    • Kalisman, P.; Nakibli, Y.; Amirav, L. Perfect Photon-to-Hydrogen Conversion Efficiency. Nano Lett. 2016, 16, 1776-1781, 10.1021/acs.nanolett.5b04813
    • (2016) Nano Lett. , vol.16 , pp. 1776-1781
    • Kalisman, P.1    Nakibli, Y.2    Amirav, L.3
  • 64
    • 0036056289 scopus 로고    scopus 로고
    • An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm)
    • Hitoki, G.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K. An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem. Commun. 2002, 1698-1699, 10.1039/B202393H
    • (2002) Chem. Commun. , pp. 1698-1699
    • Hitoki, G.1    Takata, T.2    Kondo, J.N.3    Hara, M.4    Kobayashi, H.5    Domen, K.6
  • 65
    • 0242669302 scopus 로고    scopus 로고
    • 3 Photocatalysts with High Crystallinity and Surface Nanostructure
    • 3 Photocatalysts with High Crystallinity and Surface Nanostructure. J. Am. Chem. Soc. 2003, 125, 3082-3089, 10.1021/ja027751g
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 3082-3089
    • Kato, H.1    Asakura, K.2    Kudo, A.3
  • 67
    • 0010884753 scopus 로고
    • On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I
    • Marcus, R. A. On the Theory of Oxidation-Reduction Reactions Involving Electron Transfer. I. J. Chem. Phys. 1956, 24, 966-978, 10.1063/1.1742723
    • (1956) J. Chem. Phys. , vol.24 , pp. 966-978
    • Marcus, R.A.1
  • 69
    • 84855454904 scopus 로고    scopus 로고
    • Nano-photocatalytic Materials: Possibilities and Challenges
    • Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic Materials: Possibilities and Challenges. Adv. Mater. 2012, 24, 229-251, 10.1002/adma.201102752
    • (2012) Adv. Mater. , vol.24 , pp. 229-251
    • Tong, H.1    Ouyang, S.2    Bi, Y.3    Umezawa, N.4    Oshikiri, M.5    Ye, J.6
  • 72
    • 84946553567 scopus 로고    scopus 로고
    • Controlling upconversion nanocrystals for emerging applications
    • Zhou, B.; Shi, B.; Jin, D.; Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 2015, 10, 924-936, 10.1038/nnano.2015.251
    • (2015) Nat. Nanotechnol. , vol.10 , pp. 924-936
    • Zhou, B.1    Shi, B.2    Jin, D.3    Liu, X.4
  • 73
    • 79959194595 scopus 로고    scopus 로고
    • Upconverting Nanoparticles
    • Haase, M.; Schäfer, H. Upconverting Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808-5829, 10.1002/anie.201005159
    • (2011) Angew. Chem., Int. Ed. , vol.50 , pp. 5808-5829
    • Haase, M.1    Schäfer, H.2
  • 76
    • 85013290702 scopus 로고    scopus 로고
    • Heterogeneous Semiconductor Shells Sequentially Coated on Upconversion Nanoplates for NIR-Light Enhanced Photocatalysis
    • Cui, C.; Tou, M.; Li, M.; Luo, Z.; Xiao, L.; Bai, S.; Li, Z. Heterogeneous Semiconductor Shells Sequentially Coated on Upconversion Nanoplates for NIR-Light Enhanced Photocatalysis. Inorg. Chem. 2017, 56, 2328-2336, 10.1021/acs.inorgchem.6b03079
    • (2017) Inorg. Chem. , vol.56 , pp. 2328-2336
    • Cui, C.1    Tou, M.2    Li, M.3    Luo, Z.4    Xiao, L.5    Bai, S.6    Li, Z.7
  • 77
    • 85014860424 scopus 로고    scopus 로고
    • Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting
    • Zhang, J.; Huang, Y.; Jin, L.; Rosei, F.; Vetrone, F.; Claverie, J. P. Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting. ACS Appl. Mater. Interfaces 2017, 9, 8142-8150, 10.1021/acsami.7b00158
    • (2017) ACS Appl. Mater. Interfaces , vol.9 , pp. 8142-8150
    • Zhang, J.1    Huang, Y.2    Jin, L.3    Rosei, F.4    Vetrone, F.5    Claverie, J.P.6
  • 80
    • 84896948496 scopus 로고    scopus 로고
    • Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting
    • Fan, W.; Bai, H.; Shi, W. Semiconductors with NIR driven upconversion performance for photocatalysis and photoelectrochemical water splitting. CrystEngComm 2014, 16, 3059-3067, 10.1039/c3ce42337a
    • (2014) CrystEngComm , vol.16 , pp. 3059-3067
    • Fan, W.1    Bai, H.2    Shi, W.3
  • 81
    • 84863229840 scopus 로고    scopus 로고
    • Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis
    • Zhuo, S.; Shao, M.; Lee, S.-T. Upconversion and Downconversion Fluorescent Graphene Quantum Dots: Ultrasonic Preparation and Photocatalysis. ACS Nano 2012, 6, 1059-1064, 10.1021/nn2040395
    • (2012) ACS Nano , vol.6 , pp. 1059-1064
    • Zhuo, S.1    Shao, M.2    Lee, S.-T.3
  • 85
    • 72949117426 scopus 로고    scopus 로고
    • Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors
    • Youngblood, W. J.; Lee, S.-H. A.; Maeda, K.; Mallouk, T. E. Visible Light Water Splitting Using Dye-Sensitized Oxide Semiconductors. Acc. Chem. Res. 2009, 42, 1966-1973, 10.1021/ar9002398
    • (2009) Acc. Chem. Res. , vol.42 , pp. 1966-1973
    • Youngblood, W.J.1    Lee, S.-H.A.2    Maeda, K.3    Mallouk, T.E.4
  • 86
    • 81555200698 scopus 로고    scopus 로고
    • 2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics
    • 2 Photocatalysis under UV/Visible Light: Selected Results and Related Mechanisms on Interfacial Charge Carrier Transfer Dynamics. J. Phys. Chem. A 2011, 115, 13211-13241, 10.1021/jp204364a
    • (2011) J. Phys. Chem. A , vol.115 , pp. 13211-13241
    • Kumar, S.G.1    Devi, L.G.2
  • 88
    • 33748256726 scopus 로고    scopus 로고
    • 2 on Hydrogen Production under Visible Light
    • 2 on Hydrogen Production under Visible Light. J. Phys. Chem. B 2006, 110, 14792-14799, 10.1021/jp062540+
    • (2006) J. Phys. Chem. B , vol.110 , pp. 14792-14799
    • Bae, E.1    Choi, W.2
  • 89
    • 57049129787 scopus 로고    scopus 로고
    • Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation
    • Maeda, K.; Eguchi, M.; Youngblood, W. J.; Mallouk, T. E. Niobium Oxide Nanoscrolls as Building Blocks for Dye-Sensitized Hydrogen Production from Water under Visible Light Irradiation. Chem. Mater. 2008, 20, 6770-6778, 10.1021/cm801807b
    • (2008) Chem. Mater. , vol.20 , pp. 6770-6778
    • Maeda, K.1    Eguchi, M.2    Youngblood, W.J.3    Mallouk, T.E.4
  • 92
    • 84857695659 scopus 로고    scopus 로고
    • Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design
    • Kamat, P. V. Manipulation of Charge Transfer Across Semiconductor Interface. A Criterion That Cannot Be Ignored in Photocatalyst Design. J. Phys. Chem. Lett. 2012, 3, 663-672, 10.1021/jz201629p
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 663-672
    • Kamat, P.V.1
  • 94
    • 76749158974 scopus 로고    scopus 로고
    • 2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation
    • 2 Nanostructures for Photoelectrochemical Solar Hydrogen Generation. Nano Lett. 2010, 10, 478-483, 10.1021/nl903217w
    • (2010) Nano Lett. , vol.10 , pp. 478-483
    • Hensel, J.1    Wang, G.2    Li, Y.3    Zhang, J.Z.4
  • 95
    • 77949465889 scopus 로고    scopus 로고
    • Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation
    • Wang, G.; Yang, X.; Qian, F.; Zhang, J. Z.; Li, Y. Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation. Nano Lett. 2010, 10, 1088-1092, 10.1021/nl100250z
    • (2010) Nano Lett. , vol.10 , pp. 1088-1092
    • Wang, G.1    Yang, X.2    Qian, F.3    Zhang, J.Z.4    Li, Y.5
  • 97
    • 84861853299 scopus 로고    scopus 로고
    • Electronic Modulation of a Copper/Zinc Oxide Catalyst by a Heterojunction for Selective Hydrogenation of Carbon Dioxide to Methanol
    • Liao, F.; Zeng, Z.; Eley, C.; Lu, Q.; Hong, X.; Tsang, S. C. E. Electronic Modulation of a Copper/Zinc Oxide Catalyst by a Heterojunction for Selective Hydrogenation of Carbon Dioxide to Methanol. Angew. Chem., Int. Ed. 2012, 51, 5832-5836, 10.1002/anie.201200903
    • (2012) Angew. Chem., Int. Ed. , vol.51 , pp. 5832-5836
    • Liao, F.1    Zeng, Z.2    Eley, C.3    Lu, Q.4    Hong, X.5    Tsang, S.C.E.6
  • 98
    • 82055161674 scopus 로고    scopus 로고
    • Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy
    • Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911-921, 10.1038/nmat3151
    • (2011) Nat. Mater. , vol.10 , pp. 911-921
    • Linic, S.1    Christopher, P.2    Ingram, D.B.3
  • 99
    • 84929359074 scopus 로고    scopus 로고
    • Nanocrystal engineering of noble metals and metal chalcogenides: Controlling the morphology, composition and crystallinity
    • Polavarapu, L.; Mourdikoudis, S.; Pastoriza-Santos, I.; Perez-Juste, J. Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm 2015, 17, 3727-3762, 10.1039/C5CE00112A
    • (2015) CrystEngComm , vol.17 , pp. 3727-3762
    • Polavarapu, L.1    Mourdikoudis, S.2    Pastoriza-Santos, I.3    Perez-Juste, J.4
  • 100
    • 30344445988 scopus 로고    scopus 로고
    • Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles
    • Liz-Marzán, L. M. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles. Langmuir 2006, 22, 32-41, 10.1021/la0513353
    • (2006) Langmuir , vol.22 , pp. 32-41
    • Liz-Marzán, L.M.1
  • 101
    • 84875869408 scopus 로고    scopus 로고
    • A Review of Surface Plasmon Resonance-Enhanced Photocatalysis
    • Hou, W.; Cronin, S. B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612-1619, 10.1002/adfm.201202148
    • (2013) Adv. Funct. Mater. , vol.23 , pp. 1612-1619
    • Hou, W.1    Cronin, S.B.2
  • 102
    • 85003443683 scopus 로고    scopus 로고
    • Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites
    • Wang, M.; Ye, M.; Iocozzia, J.; Lin, C.; Lin, Z. Plasmon-Mediated Solar Energy Conversion via Photocatalysis in Noble Metal/Semiconductor Composites. Adv. Sci. 2016, 3, 1600024, 10.1002/advs.201600024
    • (2016) Adv. Sci. , vol.3
    • Wang, M.1    Ye, M.2    Iocozzia, J.3    Lin, C.4    Lin, Z.5
  • 103
    • 84926373419 scopus 로고    scopus 로고
    • Plasmon-enhanced light harvesting: Applications in enhanced photocatalysis, photodynamic therapy and photovoltaics
    • Zhou, N.; Lopez-Puente, V.; Wang, Q.; Polavarapu, L.; Pastoriza-Santos, I.; Xu, Q.-H. Plasmon-enhanced light harvesting: applications in enhanced photocatalysis, photodynamic therapy and photovoltaics. RSC Adv. 2015, 5, 29076-29097, 10.1039/C5RA01819F
    • (2015) RSC Adv. , vol.5 , pp. 29076-29097
    • Zhou, N.1    Lopez-Puente, V.2    Wang, Q.3    Polavarapu, L.4    Pastoriza-Santos, I.5    Xu, Q.-H.6
  • 104
    • 84973401363 scopus 로고    scopus 로고
    • Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles
    • Yan, L.; Wang, F.; Meng, S. Quantum Mode Selectivity of Plasmon-Induced Water Splitting on Gold Nanoparticles. ACS Nano 2016, 10, 5452-5458, 10.1021/acsnano.6b01840
    • (2016) ACS Nano , vol.10 , pp. 5452-5458
    • Yan, L.1    Wang, F.2    Meng, S.3
  • 105
    • 84956590466 scopus 로고    scopus 로고
    • Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes
    • Ueno, K.; Oshikiri, T.; Misawa, H. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes. ChemPhysChem 2016, 17, 199-215, 10.1002/cphc.201500761
    • (2016) ChemPhysChem , vol.17 , pp. 199-215
    • Ueno, K.1    Oshikiri, T.2    Misawa, H.3
  • 106
    • 34250779498 scopus 로고    scopus 로고
    • New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light
    • Maeda, K.; Domen, K. New Non-Oxide Photocatalysts Designed for Overall Water Splitting under Visible Light. J. Phys. Chem. C 2007, 111, 7851-7861, 10.1021/jp070911w
    • (2007) J. Phys. Chem. C , vol.111 , pp. 7851-7861
    • Maeda, K.1    Domen, K.2
  • 107
    • 85026888793 scopus 로고    scopus 로고
    • 5: Electronic Band Structures and Absolute Band Edges
    • 5: Electronic Band Structures and Absolute Band Edges. J. Phys. Chem. C 2017, 121, 3241-3251, 10.1021/acs.jpcc.6b12370
    • (2017) J. Phys. Chem. C , vol.121 , pp. 3241-3251
    • Cui, Z.-H.1    Jiang, H.2
  • 108
    • 84934948925 scopus 로고    scopus 로고
    • 2 Reduction with Visible Light Using a Hybrid of a Perovskite Tantalum Oxynitride and a Binuclear Ruthenium(II) Complex
    • 2 Reduction with Visible Light Using a Hybrid of a Perovskite Tantalum Oxynitride and a Binuclear Ruthenium(II) Complex. ACS Appl. Mater. Interfaces 2015, 7, 13092-13097, 10.1021/acsami.5b03509
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 13092-13097
    • Yoshitomi, F.1    Sekizawa, K.2    Maeda, K.3    Ishitani, O.4
  • 111
    • 77952476871 scopus 로고    scopus 로고
    • Highly active tantalum(v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation
    • Yuliati, L.; Yang, J.-H.; Wang, X.; Maeda, K.; Takata, T.; Antonietti, M.; Domen, K. Highly active tantalum(v) nitride nanoparticles prepared from a mesoporous carbon nitride template for photocatalytic hydrogen evolution under visible light irradiation. J. Mater. Chem. 2010, 20, 4295-4298, 10.1039/c0jm00341g
    • (2010) J. Mater. Chem. , vol.20 , pp. 4295-4298
    • Yuliati, L.1    Yang, J.-H.2    Wang, X.3    Maeda, K.4    Takata, T.5    Antonietti, M.6    Domen, K.7
  • 112
    • 55749110209 scopus 로고    scopus 로고
    • Nitrogen-doped Lamellar Niobic Acid with Visible Light-responsive Photocatalytic Activity
    • Li, X.; Kikugawa, N.; Ye, J. Nitrogen-doped Lamellar Niobic Acid with Visible Light-responsive Photocatalytic Activity. Adv. Mater. 2008, 20, 3816-3819, 10.1002/adma.200702975
    • (2008) Adv. Mater. , vol.20 , pp. 3816-3819
    • Li, X.1    Kikugawa, N.2    Ye, J.3
  • 117
    • 0037028162 scopus 로고    scopus 로고
    • 3 (M: Ta and Nb) with the Perovskite Structure
    • 3 (M: Ta and Nb) with the Perovskite Structure. J. Phys. Chem. B 2002, 106, 12441-12447, 10.1021/jp025974n
    • (2002) J. Phys. Chem. B , vol.106 , pp. 12441-12447
    • Kato, H.1    Kobayashi, H.2    Kudo, A.3
  • 119
    • 63049089269 scopus 로고    scopus 로고
    • x with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity
    • x with Modulated Band Structure and Enhanced Visible-Light Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 3785-3792, 10.1021/jp807393a
    • (2009) J. Phys. Chem. C , vol.113 , pp. 3785-3792
    • Wang, D.1    Kako, T.2    Ye, J.3
  • 121
    • 84987720556 scopus 로고    scopus 로고
    • Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion
    • Sullivan, I.; Zoellner, B.; Maggard, P. A. Copper(I)-Based p-Type Oxides for Photoelectrochemical and Photovoltaic Solar Energy Conversion. Chem. Mater. 2016, 28, 5999-6016, 10.1021/acs.chemmater.6b00926
    • (2016) Chem. Mater. , vol.28 , pp. 5999-6016
    • Sullivan, I.1    Zoellner, B.2    Maggard, P.A.3
  • 122
    • 77956824030 scopus 로고    scopus 로고
    • Semiconducting Oxides to Facilitate the Conversion of Solar Energy to Chemical Fuels
    • Joshi, U. A.; Palasyuk, A.; Arney, D.; Maggard, P. A. Semiconducting Oxides to Facilitate the Conversion of Solar Energy to Chemical Fuels. J. Phys. Chem. Lett. 2010, 1, 2719-2726, 10.1021/jz100961d
    • (2010) J. Phys. Chem. Lett. , vol.1 , pp. 2719-2726
    • Joshi, U.A.1    Palasyuk, A.2    Arney, D.3    Maggard, P.A.4
  • 125
    • 22944456204 scopus 로고    scopus 로고
    • 6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts
    • 6 Nanoplates as High-Activity Visible-Light-Driven Photocatalysts. Chem. Mater. 2005, 17, 3537-3545, 10.1021/cm0501517
    • (2005) Chem. Mater. , vol.17 , pp. 3537-3545
    • Zhang, C.1    Zhu, Y.2
  • 126
    • 84896735953 scopus 로고    scopus 로고
    • 4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting
    • 4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343, 990, 10.1126/science.1246913
    • (2014) Science , vol.343 , pp. 990
    • Kim, T.W.1    Choi, K.-S.2
  • 127
  • 128
    • 85008600471 scopus 로고    scopus 로고
    • 4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges
    • 4 Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes and Scale-Up Challenges. Catalysts 2017, 7, 13, 10.3390/catal7010013
    • (2017) Catalysts , vol.7 , pp. 13
    • Tolod, R.K.1    Hernández, S.2    Russo, N.3
  • 130
    • 0035673336 scopus 로고    scopus 로고
    • 4 with Scheelite Structure and Their Photocatalytic Properties
    • 4 with Scheelite Structure and Their Photocatalytic Properties. Chem. Mater. 2001, 13, 4624-4628, 10.1021/cm0103390
    • (2001) Chem. Mater. , vol.13 , pp. 4624-4628
    • Tokunaga, S.1    Kato, H.2    Kudo, A.3
  • 133
    • 84878087040 scopus 로고    scopus 로고
    • 6 Improved Photocatalytic Water Oxidation with Zn Doping
    • 6 Improved Photocatalytic Water Oxidation with Zn Doping. J. Phys. Chem. C 2013, 117, 9633-9640, 10.1021/jp308629q
    • (2013) J. Phys. Chem. C , vol.117 , pp. 9633-9640
    • Bhattacharya, C.1    Lee, H.C.2    Bard, A.J.3
  • 134
    • 80053483649 scopus 로고    scopus 로고
    • 6 Inverse Opals: Facile Fabrication and Efficient Visible-Light-Driven Photocatalytic and Photoelectrochemical Water-Splitting Activity
    • 6 Inverse Opals: Facile Fabrication and Efficient Visible-Light-Driven Photocatalytic and Photoelectrochemical Water-Splitting Activity. Small 2011, 7, 2714-2720, 10.1002/smll.201101152
    • (2011) Small , vol.7 , pp. 2714-2720
    • Zhang, L.1    Baumanis, C.2    Robben, L.3    Kandiel, T.4    Bahnemann, D.5
  • 137
    • 79951513799 scopus 로고    scopus 로고
    • Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals
    • Chen, X.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals. Science 2011, 331, 746, 10.1126/science.1200448
    • (2011) Science , vol.331 , pp. 746
    • Chen, X.1    Liu, L.2    Yu, P.Y.3    Mao, S.S.4
  • 138
    • 84870621164 scopus 로고    scopus 로고
    • 2 for the Photocatalytic Splitting of Water
    • 2 for the Photocatalytic Splitting of Water. Angew. Chem., Int. Ed. 2012, 51, 12410-12412, 10.1002/anie.201206375
    • (2012) Angew. Chem., Int. Ed. , vol.51 , pp. 12410-12412
    • Hu, Y.H.1
  • 139
    • 84941935350 scopus 로고    scopus 로고
    • Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy
    • Huang, Z.-F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.-J. Tungsten Oxides for Photocatalysis, Electrochemistry, and Phototherapy. Adv. Mater. 2015, 27, 5309-5327, 10.1002/adma.201501217
    • (2015) Adv. Mater. , vol.27 , pp. 5309-5327
    • Huang, Z.-F.1    Song, J.2    Pan, L.3    Zhang, X.4    Wang, L.5    Zou, J.-J.6
  • 140
    • 84941695097 scopus 로고    scopus 로고
    • Ultrathin tungsten oxide nanowires: Oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties
    • Liu, F.; Chen, X.; Xia, Q.; Tian, L.; Chen, X. Ultrathin tungsten oxide nanowires: oleylamine assisted nonhydrolytic growth, oxygen vacancies and good photocatalytic properties. RSC Adv. 2015, 5, 77423-77428, 10.1039/C5RA12993A
    • (2015) RSC Adv. , vol.5 , pp. 77423-77428
    • Liu, F.1    Chen, X.2    Xia, Q.3    Tian, L.4    Chen, X.5
  • 141
    • 84863244464 scopus 로고    scopus 로고
    • 49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide
    • 49 Nanowires with Diameters below 1 nm: Synthesis, Near-Infrared Absorption, Photoluminescence, and Photochemical Reduction of Carbon Dioxide. Angew. Chem., Int. Ed. 2012, 51, 2395-2399, 10.1002/anie.201107681
    • (2012) Angew. Chem., Int. Ed. , vol.51 , pp. 2395-2399
    • Xi, G.1    Ouyang, S.2    Li, P.3    Ye, J.4    Ma, Q.5    Su, N.6    Bai, H.7    Wang, C.8
  • 142
    • 5644259577 scopus 로고
    • 2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?
    • 2 Particles: Size Quantization versus Direct Transitions in This Indirect Semiconductor?. J. Phys. Chem. 1995, 99, 16646-16654, 10.1021/j100045a026
    • (1995) J. Phys. Chem. , vol.99 , pp. 16646-16654
    • Serpone, N.1    Lawless, D.2    Khairutdinov, R.3
  • 144
    • 84855982993 scopus 로고    scopus 로고
    • Delayed Photoelectron Transfer in Pt-Decorated CdS Nanorods under Hydrogen Generation Conditions
    • Berr, M. J.; Vaneski, A.; Mauser, C.; Fischbach, S.; Susha, A. S.; Rogach, A. L.; Jäckel, F.; Feldmann, J. Delayed Photoelectron Transfer in Pt-Decorated CdS Nanorods under Hydrogen Generation Conditions. Small 2012, 8, 291-297, 10.1002/smll.201101317
    • (2012) Small , vol.8 , pp. 291-297
    • Berr, M.J.1    Vaneski, A.2    Mauser, C.3    Fischbach, S.4    Susha, A.S.5    Rogach, A.L.6    Jäckel, F.7    Feldmann, J.8
  • 145
    • 54249114499 scopus 로고    scopus 로고
    • 2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry
    • 2. Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. J. Am. Chem. Soc. 2008, 130, 13885-13891, 10.1021/ja8034637
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 13885-13891
    • Tang, J.1    Durrant, J.R.2    Klug, D.R.3
  • 147
    • 77956838396 scopus 로고    scopus 로고
    • Photocatalytic Water Splitting: Recent Progress and Future Challenges
    • Maeda, K.; Domen, K. Photocatalytic Water Splitting: Recent Progress and Future Challenges. J. Phys. Chem. Lett. 2010, 1, 2655-2661, 10.1021/jz1007966
    • (2010) J. Phys. Chem. Lett. , vol.1 , pp. 2655-2661
    • Maeda, K.1    Domen, K.2
  • 149
    • 84883159260 scopus 로고    scopus 로고
    • Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review
    • Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.; Safdar, M.; He, J. Visible light driven type II heterostructures and their enhanced photocatalysis properties: a review. Nanoscale 2013, 5, 8326-8339, 10.1039/c3nr01577g
    • (2013) Nanoscale , vol.5 , pp. 8326-8339
    • Wang, Y.1    Wang, Q.2    Zhan, X.3    Wang, F.4    Safdar, M.5    He, J.6
  • 151
    • 84883772810 scopus 로고    scopus 로고
    • Charge Separation in Type-II Semiconductor Heterodimers
    • Teranishi, T.; Sakamoto, M. Charge Separation in Type-II Semiconductor Heterodimers. J. Phys. Chem. Lett. 2013, 4, 2867-2873, 10.1021/jz4013504
    • (2013) J. Phys. Chem. Lett. , vol.4 , pp. 2867-2873
    • Teranishi, T.1    Sakamoto, M.2
  • 152
    • 0001124831 scopus 로고
    • Reduction potential of the carbon dioxide/carbon dioxide radical anion: A comparison with other C1 radicals
    • Koppenol, W. H.; Rush, J. D. Reduction potential of the carbon dioxide/carbon dioxide radical anion: a comparison with other C1 radicals. J. Phys. Chem. 1987, 91, 4429-4430, 10.1021/j100300a045
    • (1987) J. Phys. Chem. , vol.91 , pp. 4429-4430
    • Koppenol, W.H.1    Rush, J.D.2
  • 154
    • 84978416135 scopus 로고    scopus 로고
    • 2 activation and reaction on surfaces of photocatalysts
    • 2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177-2196, 10.1039/C6EE00383D
    • (2016) Energy Environ. Sci. , vol.9 , pp. 2177-2196
    • Chang, X.1    Wang, T.2    Gong, J.3
  • 155
    • 84938654811 scopus 로고    scopus 로고
    • Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation
    • Coridan, R. H.; Nielander, A. C.; Francis, S. A.; McDowell, M. T.; Dix, V.; Chatman, S. M.; Lewis, N. S. Methods for comparing the performance of energy-conversion systems for use in solar fuels and solar electricity generation. Energy Environ. Sci. 2015, 8, 2886-2901, 10.1039/C5EE00777A
    • (2015) Energy Environ. Sci. , vol.8 , pp. 2886-2901
    • Coridan, R.H.1    Nielander, A.C.2    Francis, S.A.3    McDowell, M.T.4    Dix, V.5    Chatman, S.M.6    Lewis, N.S.7
  • 156
    • 71649086534 scopus 로고    scopus 로고
    • Opportunities and prospects in the chemical recycling of carbon dioxide to fuels
    • Centi, G.; Perathoner, S. Opportunities and prospects in the chemical recycling of carbon dioxide to fuels. Catal. Today 2009, 148, 191-205, 10.1016/j.cattod.2009.07.075
    • (2009) Catal. Today , vol.148 , pp. 191-205
    • Centi, G.1    Perathoner, S.2
  • 157
    • 84878833421 scopus 로고    scopus 로고
    • 2 conversion: A key technology for rapid introduction of renewable energy in the value chain of chemical industries
    • 2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ. Sci. 2013, 6, 1711-1731, 10.1039/c3ee00056g
    • (2013) Energy Environ. Sci. , vol.6 , pp. 1711-1731
    • Centi, G.1    Quadrelli, E.A.2    Perathoner, S.3
  • 158
    • 33748595686 scopus 로고
    • Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure
    • Thampi, K. R.; Kiwi, J.; Grätzel, M. Methanation and photo-methanation of carbon dioxide at room temperature and atmospheric pressure. Nature 1987, 327, 506, 10.1038/327506a0
    • (1987) Nature , vol.327 , pp. 506
    • Thampi, K.R.1    Kiwi, J.2    Grätzel, M.3
  • 159
    • 84973514422 scopus 로고    scopus 로고
    • 2 conversion to liquid fuels
    • 2 conversion to liquid fuels. RSC Adv. 2016, 6, 49675-49691, 10.1039/C6RA05414E
    • (2016) RSC Adv. , vol.6 , pp. 49675-49691
    • Daza, Y.A.1    Kuhn, J.N.2
  • 161
    • 85029366915 scopus 로고    scopus 로고
    • 2 reduction through mechanistic understanding
    • 2 reduction through mechanistic understanding. Nat. Commun. 2017, 8, 513, 10.1038/s41467-017-00558-9
    • (2017) Nat. Commun. , vol.8 , pp. 513
    • Wang, X.1    Shi, H.2    Szanyi, J.3
  • 166
    • 85006784380 scopus 로고    scopus 로고
    • 2 reduction of Ti-oxide-based nanomaterials
    • 2 reduction of Ti-oxide-based nanomaterials. Appl. Surf. Sci. 2017, 396, 1696-1711, 10.1016/j.apsusc.2016.11.240
    • (2017) Appl. Surf. Sci. , vol.396 , pp. 1696-1711
    • Sohn, Y.1    Huang, W.2    Taghipour, F.3
  • 174
    • 85006173288 scopus 로고    scopus 로고
    • 2(101) Surface: The Essential Role of Oxygen Vacancy
    • 2(101) Surface: The Essential Role of Oxygen Vacancy. J. Am. Chem. Soc. 2016, 138, 15896-15902, 10.1021/jacs.6b05695
    • (2016) J. Am. Chem. Soc. , vol.138 , pp. 15896-15902
    • Ji, Y.1    Luo, Y.2
  • 175
    • 85020880870 scopus 로고    scopus 로고
    • 2(110) in Water: An Ab Initio Molecular Dynamics Study
    • 2(110) in Water: An Ab Initio Molecular Dynamics Study. J. Phys. Chem. C 2017, 121, 10476-10483, 10.1021/acs.jpcc.7b02777
    • (2017) J. Phys. Chem. C , vol.121 , pp. 10476-10483
    • Klyukin, K.1    Alexandrov, V.2
  • 176
    • 77956117728 scopus 로고    scopus 로고
    • How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
    • Peterson, A. A.; Abild-Pedersen, F.; Studt, F.; Rossmeisl, J.; Norskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 2010, 3, 1311-1315, 10.1039/c0ee00071j
    • (2010) Energy Environ. Sci. , vol.3 , pp. 1311-1315
    • Peterson, A.A.1    Abild-Pedersen, F.2    Studt, F.3    Rossmeisl, J.4    Norskov, J.K.5
  • 179
  • 185
    • 84878100645 scopus 로고    scopus 로고
    • Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure
    • Zhai, Q.; Xie, S.; Fan, W.; Zhang, Q.; Wang, Y.; Deng, W.; Wang, Y. Photocatalytic Conversion of Carbon Dioxide with Water into Methane: Platinum and Copper(I) Oxide Co-catalysts with a Core-Shell Structure. Angew. Chem., Int. Ed. 2013, 52, 5776-5779, 10.1002/anie.201301473
    • (2013) Angew. Chem., Int. Ed. , vol.52 , pp. 5776-5779
    • Zhai, Q.1    Xie, S.2    Fan, W.3    Zhang, Q.4    Wang, Y.5    Deng, W.6    Wang, Y.7
  • 190
    • 77950555311 scopus 로고    scopus 로고
    • Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures
    • Amirav, L.; Alivisatos, A. P. Photocatalytic Hydrogen Production with Tunable Nanorod Heterostructures. J. Phys. Chem. Lett. 2010, 1, 1051-1054, 10.1021/jz100075c
    • (2010) J. Phys. Chem. Lett. , vol.1 , pp. 1051-1054
    • Amirav, L.1    Alivisatos, A.P.2
  • 191
    • 84964425413 scopus 로고    scopus 로고
    • Nickel-based cocatalysts for photocatalytic hydrogen production
    • Xu, Y.; Xu, R. Nickel-based cocatalysts for photocatalytic hydrogen production. Appl. Surf. Sci. 2015, 351, 779-793, 10.1016/j.apsusc.2015.05.171
    • (2015) Appl. Surf. Sci. , vol.351 , pp. 779-793
    • Xu, Y.1    Xu, R.2
  • 192
    • 84908539756 scopus 로고    scopus 로고
    • Mesoporous Nickel Ferrites with Spinel Structure Prepared by an Aerosol Spray Pyrolysis Method for Photocatalytic Hydrogen Evolution
    • Hong, D.; Yamada, Y.; Sheehan, M.; Shikano, S.; Kuo, C.-H.; Tian, M.; Tsung, C.-K.; Fukuzumi, S. Mesoporous Nickel Ferrites with Spinel Structure Prepared by an Aerosol Spray Pyrolysis Method for Photocatalytic Hydrogen Evolution. ACS Sustainable Chem. Eng. 2014, 2, 2588-2594, 10.1021/sc500484b
    • (2014) ACS Sustainable Chem. Eng. , vol.2 , pp. 2588-2594
    • Hong, D.1    Yamada, Y.2    Sheehan, M.3    Shikano, S.4    Kuo, C.-H.5    Tian, M.6    Tsung, C.-K.7    Fukuzumi, S.8
  • 193
    • 84865849123 scopus 로고    scopus 로고
    • 4 nanoparticles and its visible-light-driven photoactivity for hydrogen production
    • 4 nanoparticles and its visible-light-driven photoactivity for hydrogen production. Catal. Commun. 2012, 28, 116-119, 10.1016/j.catcom.2012.08.031
    • (2012) Catal. Commun. , vol.28 , pp. 116-119
    • Peng, T.1    Zhang, X.2    Lv, H.3    Zan, L.4
  • 194
    • 84924242305 scopus 로고    scopus 로고
    • Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation
    • Cao, S.; Chen, Y.; Hou, C.-C.; Lv, X.-J.; Fu, W.-F. Cobalt phosphide as a highly active non-precious metal cocatalyst for photocatalytic hydrogen production under visible light irradiation. J. Mater. Chem. A 2015, 3, 6096-6101, 10.1039/C4TA07149B
    • (2015) J. Mater. Chem. A , vol.3 , pp. 6096-6101
    • Cao, S.1    Chen, Y.2    Hou, C.-C.3    Lv, X.-J.4    Fu, W.-F.5
  • 195
    • 84929095604 scopus 로고    scopus 로고
    • Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation
    • Cao, S.; Chen, Y.; Wang, C.-J.; Lv, X.-J.; Fu, W.-F. Spectacular photocatalytic hydrogen evolution using metal-phosphide/CdS hybrid catalysts under sunlight irradiation. Chem. Commun. 2015, 51, 8708-8711, 10.1039/C5CC01799H
    • (2015) Chem. Commun. , vol.51 , pp. 8708-8711
    • Cao, S.1    Chen, Y.2    Wang, C.-J.3    Lv, X.-J.4    Fu, W.-F.5
  • 196
    • 84978431889 scopus 로고    scopus 로고
    • Quantum Confined Colloidal Nanorod Heterostructures for Solar-to-Fuel Conversion
    • Wu, K.; Lian, T. Quantum Confined Colloidal Nanorod Heterostructures for Solar-to-Fuel Conversion. Chem. Soc. Rev. 2016, 45, 3781-810, 10.1039/C5CS00472A
    • (2016) Chem. Soc. Rev. , vol.45 , pp. 3781-3810
    • Wu, K.1    Lian, T.2
  • 199
    • 85002816366 scopus 로고    scopus 로고
    • Why do Hydrogen and Oxygen Yields from Semiconductor-Based Photocatalyzed Water Splitting Remain Disappointingly Low? Intrinsic and Extrinsic Factors Impacting Surface Redox Reactions
    • Serpone, N.; Emeline, A. V.; Ryabchuk, V. K.; Kuznetsov, V. N.; Artem'ev, Y. M.; Horikoshi, S. Why do Hydrogen and Oxygen Yields from Semiconductor-Based Photocatalyzed Water Splitting Remain Disappointingly Low? Intrinsic and Extrinsic Factors Impacting Surface Redox Reactions. ACS Energy Lett. 2016, 1, 931-948, 10.1021/acsenergylett.6b00391
    • (2016) ACS Energy Lett. , vol.1 , pp. 931-948
    • Serpone, N.1    Emeline, A.V.2    Ryabchuk, V.K.3    Kuznetsov, V.N.4    Artem'Ev, Y.M.5    Horikoshi, S.6
  • 200
    • 85015153485 scopus 로고    scopus 로고
    • 3 Anode for Efficient Photoelectrochemical Water Oxidation
    • 3 Anode for Efficient Photoelectrochemical Water Oxidation. ACS Catal. 2017, 7, 1841-1845, 10.1021/acscatal.7b00022
    • (2017) ACS Catal. , vol.7 , pp. 1841-1845
    • Huang, J.1    Zhang, Y.2    Ding, Y.3
  • 201
    • 64549112181 scopus 로고    scopus 로고
    • 10 -related electronic configurations
    • 10 -related electronic configurations. Energy Environ. Sci. 2009, 2, 364-386, 10.1039/b816677n
    • (2009) Energy Environ. Sci. , vol.2 , pp. 364-386
    • Inoue, Y.1
  • 203
    • 84922759698 scopus 로고    scopus 로고
    • Photochemical oxidation on nanorod photocatalysts
    • Kalisman, P.; Kauffmann, Y.; Amirav, L. Photochemical oxidation on nanorod photocatalysts. J. Mater. Chem. A 2015, 3, 3261-3265, 10.1039/C4TA06164K
    • (2015) J. Mater. Chem. A , vol.3 , pp. 3261-3265
    • Kalisman, P.1    Kauffmann, Y.2    Amirav, L.3
  • 205
    • 84876586843 scopus 로고    scopus 로고
    • Transition metal oxide alloys as potential solar energy conversion materials
    • Toroker, M. C.; Carter, E. A. Transition metal oxide alloys as potential solar energy conversion materials. J. Mater. Chem. A 2013, 1, 2474-2484, 10.1039/c2ta00816e
    • (2013) J. Mater. Chem. A , vol.1 , pp. 2474-2484
    • Toroker, M.C.1    Carter, E.A.2
  • 207
    • 84900346581 scopus 로고    scopus 로고
    • Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation
    • Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753, 10.1021/ja502379c
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 6744-6753
    • Trotochaud, L.1    Young, S.L.2    Ranney, J.K.3    Boettcher, S.W.4
  • 210
    • 84876741607 scopus 로고    scopus 로고
    • 2 with oxygen vacancies: Synthesis, properties and photocatalytic applications
    • 2 with oxygen vacancies: synthesis, properties and photocatalytic applications. Nanoscale 2013, 5, 3601-3614, 10.1039/c3nr00476g
    • (2013) Nanoscale , vol.5 , pp. 3601-3614
    • Pan, X.1    Yang, M.-Q.2    Fu, X.3    Zhang, N.4    Xu, Y.-J.5
  • 212
    • 84923330638 scopus 로고    scopus 로고
    • Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production
    • Li, L.; Yan, J.; Wang, T.; Zhao, Z.-J.; Zhang, J.; Gong, J.; Guan, N. Sub-10 nm rutile titanium dioxide nanoparticles for efficient visible-light-driven photocatalytic hydrogen production. Nat. Commun. 2015, 6, 5881, 10.1038/ncomms6881
    • (2015) Nat. Commun. , vol.6 , pp. 5881
    • Li, L.1    Yan, J.2    Wang, T.3    Zhao, Z.-J.4    Zhang, J.5    Gong, J.6    Guan, N.7
  • 219
    • 84879988491 scopus 로고    scopus 로고
    • Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts
    • Maeda, K. Z-Scheme Water Splitting Using Two Different Semiconductor Photocatalysts. ACS Catal. 2013, 3, 1486-1503, 10.1021/cs4002089
    • (2013) ACS Catal. , vol.3 , pp. 1486-1503
    • Maeda, K.1
  • 222
    • 40449141643 scopus 로고    scopus 로고
    • Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ<500 nm)
    • Higashi, M.; Abe, R.; Ishikawa, A.; Takata, T.; Ohtani, B.; Domen, K. Z-scheme Overall Water Splitting on Modified-TaON Photocatalysts under Visible Light (λ<500 nm). Chem. Lett. 2008, 37, 138-139, 10.1246/cl.2008.138
    • (2008) Chem. Lett. , vol.37 , pp. 138-139
    • Higashi, M.1    Abe, R.2    Ishikawa, A.3    Takata, T.4    Ohtani, B.5    Domen, K.6
  • 223
    • 84905580502 scopus 로고    scopus 로고
    • All-Solid-State Z-Scheme Photocatalytic Systems
    • Zhou, P.; Yu, J.; Jaroniec, M. All-Solid-State Z-Scheme Photocatalytic Systems. Adv. Mater. 2014, 26, 4920-4935, 10.1002/adma.201400288
    • (2014) Adv. Mater. , vol.26 , pp. 4920-4935
    • Zhou, P.1    Yu, J.2    Jaroniec, M.3
  • 228
    • 85044102865 scopus 로고    scopus 로고
    • Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol
    • Golubev, A. A.; Khlebtsov, B. N.; Rodriguez, R. D.; Chen, Y.; Zahn, D. R. T. Plasmonic Heating Plays a Dominant Role in the Plasmon-Induced Photocatalytic Reduction of 4-Nitrobenzenethiol. J. Phys. Chem. C 2018, 122, 5657-5663, 10.1021/acs.jpcc.7b12101
    • (2018) J. Phys. Chem. C , vol.122 , pp. 5657-5663
    • Golubev, A.A.1    Khlebtsov, B.N.2    Rodriguez, R.D.3    Chen, Y.4    Zahn, D.R.T.5
  • 229
    • 85043712263 scopus 로고    scopus 로고
    • Hot Carriers vs. Thermal Effects: Resolving the Enhancement Mechanisms for Plasmon-Mediated Photoelectrochemical Reactions
    • Yu, Y.; Sundaresan, V.; Willets, K. A. Hot Carriers vs. Thermal Effects: Resolving the Enhancement Mechanisms for Plasmon-Mediated Photoelectrochemical Reactions. J. Phys. Chem. C 2018, 122, 5040-5048, 10.1021/acs.jpcc.7b12080
    • (2018) J. Phys. Chem. C , vol.122 , pp. 5040-5048
    • Yu, Y.1    Sundaresan, V.2    Willets, K.A.3
  • 230
    • 18644374770 scopus 로고    scopus 로고
    • Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles
    • Schaadt, D. M.; Feng, B.; Yu, E. T. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 2005, 86, 063106, 10.1063/1.1855423
    • (2005) Appl. Phys. Lett. , vol.86
    • Schaadt, D.M.1    Feng, B.2    Yu, E.T.3
  • 231
    • 84973324711 scopus 로고    scopus 로고
    • Interface-Engineered Plasmonics in Metal/Semiconductor Heterostructures
    • Jia, C.; Li, X.; Xin, N.; Gong, Y.; Guan, J.; Meng, L.; Meng, S.; Guo, X. Interface-Engineered Plasmonics in Metal/Semiconductor Heterostructures. Adv. Energy Mater. 2016, 6, 1600431, 10.1002/aenm.201600431
    • (2016) Adv. Energy Mater. , vol.6
    • Jia, C.1    Li, X.2    Xin, N.3    Gong, Y.4    Guan, J.5    Meng, L.6    Meng, S.7    Guo, X.8
  • 232
    • 84971619055 scopus 로고    scopus 로고
    • Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications
    • Li, X.; Zhu, J.; Wei, B. Hybrid nanostructures of metal/two-dimensional nanomaterials for plasmon-enhanced applications. Chem. Soc. Rev. 2016, 45, 3145-3187, 10.1039/C6CS00195E
    • (2016) Chem. Soc. Rev. , vol.45 , pp. 3145-3187
    • Li, X.1    Zhu, J.2    Wei, B.3
  • 233
    • 84863706607 scopus 로고    scopus 로고
    • Plasmonic photocatalysts: Harvesting visible light with noble metal nanoparticles
    • Wang, P.; Huang, B.; Dai, Y.; Whangbo, M.-H. Plasmonic photocatalysts: harvesting visible light with noble metal nanoparticles. Phys. Chem. Chem. Phys. 2012, 14, 9813-9825, 10.1039/c2cp40823f
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 9813-9825
    • Wang, P.1    Huang, B.2    Dai, Y.3    Whangbo, M.-H.4
  • 234
    • 84866432421 scopus 로고    scopus 로고
    • Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor
    • Cushing, S. K.; Li, J.; Meng, F.; Senty, T. R.; Suri, S.; Zhi, M.; Li, M.; Bristow, A. D.; Wu, N. Photocatalytic Activity Enhanced by Plasmonic Resonant Energy Transfer from Metal to Semiconductor. J. Am. Chem. Soc. 2012, 134, 15033-15041, 10.1021/ja305603t
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 15033-15041
    • Cushing, S.K.1    Li, J.2    Meng, F.3    Senty, T.R.4    Suri, S.5    Zhi, M.6    Li, M.7    Bristow, A.D.8    Wu, N.9
  • 236
    • 84976525476 scopus 로고    scopus 로고
    • Pt-Au Triangular Nanoprisms with Strong Dipole Plasmon Resonance for Hydrogen Generation Studied by Single-Particle Spectroscopy
    • Lou, Z.; Fujitsuka, M.; Majima, T. Pt-Au Triangular Nanoprisms with Strong Dipole Plasmon Resonance for Hydrogen Generation Studied by Single-Particle Spectroscopy. ACS Nano 2016, 10, 6299-6305, 10.1021/acsnano.6b02494
    • (2016) ACS Nano , vol.10 , pp. 6299-6305
    • Lou, Z.1    Fujitsuka, M.2    Majima, T.3
  • 237
    • 84877780339 scopus 로고    scopus 로고
    • 2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation
    • 2 coated Au/Ag nanorods with enhanced photocatalytic activity under visible light irradiation. Nanoscale 2013, 5, 4236-4241, 10.1039/c3nr00517h
    • (2013) Nanoscale , vol.5 , pp. 4236-4241
    • Zhou, N.1    Polavarapu, L.2    Gao, N.3    Pan, Y.4    Yuan, P.5    Wang, Q.6    Xu, Q.-H.7
  • 238
    • 85016012861 scopus 로고    scopus 로고
    • 2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity
    • 2/Au nanorod plasmonic photocatalysts with enhanced visible-light photocatalytic activity. Dalton Trans. 2017, 46, 3887-3894, 10.1039/C7DT00345E
    • (2017) Dalton Trans. , vol.46 , pp. 3887-3894
    • Sun, H.1    Zeng, S.2    He, Q.3    She, P.4    Xu, K.5    Liu, Z.6
  • 240
    • 33846684537 scopus 로고    scopus 로고
    • Generating heat with metal nanoparticles
    • Govorov, A. O.; Richardson, H. H. Generating heat with metal nanoparticles. Nano Today 2007, 2, 30-38, 10.1016/S1748-0132(07)70017-8
    • (2007) Nano Today , vol.2 , pp. 30-38
    • Govorov, A.O.1    Richardson, H.H.2
  • 241
    • 84860348407 scopus 로고    scopus 로고
    • 2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation
    • 2 Photocatalysts with Strong Localization of Plasmonic Near-Fields for Efficient Visible-Light Hydrogen Generation. Adv. Mater. 2012, 24, 2310-2314, 10.1002/adma.201104241
    • (2012) Adv. Mater. , vol.24 , pp. 2310-2314
    • Seh, Z.W.1    Liu, S.2    Low, M.3    Zhang, S.-Y.4    Liu, Z.5    Mlayah, A.6    Han, M.-Y.7
  • 243
    • 84990044449 scopus 로고    scopus 로고
    • Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination
    • Kong, X.-T.; Wang, Z.; Govorov, A. O. Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination. Adv. Opt. Mater. 2017, 5, 1600594, 10.1002/adom.201600594
    • (2017) Adv. Opt. Mater. , vol.5
    • Kong, X.-T.1    Wang, Z.2    Govorov, A.O.3
  • 244
    • 84898440338 scopus 로고    scopus 로고
    • Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement
    • Zhang, H.; Govorov, A. O. Optical Generation of Hot Plasmonic Carriers in Metal Nanocrystals: The Effects of Shape and Field Enhancement. J. Phys. Chem. C 2014, 118, 7606-7614, 10.1021/jp500009k
    • (2014) J. Phys. Chem. C , vol.118 , pp. 7606-7614
    • Zhang, H.1    Govorov, A.O.2
  • 245
    • 84906696532 scopus 로고    scopus 로고
    • Plasmon-Induced Hot Carriers in Metallic Nanoparticles
    • Manjavacas, A.; Liu, J. G.; Kulkarni, V.; Nordlander, P. Plasmon-Induced Hot Carriers in Metallic Nanoparticles. ACS Nano 2014, 8, 7630-7638, 10.1021/nn502445f
    • (2014) ACS Nano , vol.8 , pp. 7630-7638
    • Manjavacas, A.1    Liu, J.G.2    Kulkarni, V.3    Nordlander, P.4
  • 246
    • 84936756700 scopus 로고    scopus 로고
    • Hot electron-induced reduction of small molecules on photorecycling metal surfaces
    • Xie, W.; Schlücker, S. Hot electron-induced reduction of small molecules on photorecycling metal surfaces. Nat. Commun. 2015, 6, 7570, 10.1038/ncomms8570
    • (2015) Nat. Commun. , vol.6 , pp. 7570
    • Xie, W.1    Schlücker, S.2
  • 247
    • 84900793468 scopus 로고    scopus 로고
    • Single-Particle Study of Pt-Modified Au Nanorods for Plasmon-Enhanced Hydrogen Generation in Visible to Near-Infrared Region
    • Zheng, Z.; Tachikawa, T.; Majima, T. Single-Particle Study of Pt-Modified Au Nanorods for Plasmon-Enhanced Hydrogen Generation in Visible to Near-Infrared Region. J. Am. Chem. Soc. 2014, 136, 6870-6873, 10.1021/ja502704n
    • (2014) J. Am. Chem. Soc. , vol.136 , pp. 6870-6873
    • Zheng, Z.1    Tachikawa, T.2    Majima, T.3
  • 248
    • 85013028959 scopus 로고    scopus 로고
    • Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation
    • Lou, Z.; Fujitsuka, M.; Majima, T. Two-Dimensional Au-Nanoprism/Reduced Graphene Oxide/Pt-Nanoframe as Plasmonic Photocatalysts with Multiplasmon Modes Boosting Hot Electron Transfer for Hydrogen Generation. J. Phys. Chem. Lett. 2017, 8, 844-849, 10.1021/acs.jpclett.6b03045
    • (2017) J. Phys. Chem. Lett. , vol.8 , pp. 844-849
    • Lou, Z.1    Fujitsuka, M.2    Majima, T.3
  • 249
    • 85018193339 scopus 로고    scopus 로고
    • In Situ Observation of Single Au Triangular Nanoprism Etching to Various Shapes for Plasmonic Photocatalytic Hydrogen Generation
    • Lou, Z.; Kim, S.; Zhang, P.; Shi, X.; Fujitsuka, M.; Majima, T. In Situ Observation of Single Au Triangular Nanoprism Etching to Various Shapes for Plasmonic Photocatalytic Hydrogen Generation. ACS Nano 2017, 11, 968-974, 10.1021/acsnano.6b07581
    • (2017) ACS Nano , vol.11 , pp. 968-974
    • Lou, Z.1    Kim, S.2    Zhang, P.3    Shi, X.4    Fujitsuka, M.5    Majima, T.6
  • 250
    • 84955300256 scopus 로고    scopus 로고
    • The synergistic effect of a well-defined Au@Pt core-shell nanostructure toward photocatalytic hydrogen generation: Interface engineering to improve the Schottky barrier and hydrogen-evolved kinetics
    • Hung, S.-F.; Yu, Y.-C.; Suen, N.-T.; Tzeng, G.-Q.; Tung, C.-W.; Hsu, Y.-Y.; Hsu, C.-S.; Chang, C.-K.; Chan, T.-S.; Sheu, H.-S.; Lee, J.-F.; Chen, H. M. The synergistic effect of a well-defined Au@Pt core-shell nanostructure toward photocatalytic hydrogen generation: interface engineering to improve the Schottky barrier and hydrogen-evolved kinetics. Chem. Commun. 2016, 52, 1567-1570, 10.1039/C5CC08547K
    • (2016) Chem. Commun. , vol.52 , pp. 1567-1570
    • Hung, S.-F.1    Yu, Y.-C.2    Suen, N.-T.3    Tzeng, G.-Q.4    Tung, C.-W.5    Hsu, Y.-Y.6    Hsu, C.-S.7    Chang, C.-K.8    Chan, T.-S.9    Sheu, H.-S.10    Lee, J.-F.11    Chen, H.M.12
  • 251
    • 83555173343 scopus 로고    scopus 로고
    • Photocatalytic water splitting using semiconductor particles: History and recent developments
    • Maeda, K. Photocatalytic water splitting using semiconductor particles: History and recent developments. J. Photochem. Photobiol., C 2011, 12, 237-268, 10.1016/j.jphotochemrev.2011.07.001
    • (2011) J. Photochem. Photobiol., C , vol.12 , pp. 237-268
    • Maeda, K.1
  • 252
    • 79851480419 scopus 로고    scopus 로고
    • Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water
    • Gomes Silva, C.; Juárez, R.; Marino, T.; Molinari, R.; García, H. Influence of Excitation Wavelength (UV or Visible Light) on the Photocatalytic Activity of Titania Containing Gold Nanoparticles for the Generation of Hydrogen or Oxygen from Water. J. Am. Chem. Soc. 2011, 133, 595-602, 10.1021/ja1086358
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 595-602
    • Gomes Silva, C.1    Juárez, R.2    Marino, T.3    Molinari, R.4    García, H.5
  • 254
    • 84939207299 scopus 로고    scopus 로고
    • Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition
    • Wu, K.; Chen, J.; McBride, J. R.; Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 2015, 349, 632-635, 10.1126/science.aac5443
    • (2015) Science , vol.349 , pp. 632-635
    • Wu, K.1    Chen, J.2    McBride, J.R.3    Lian, T.4
  • 255
    • 85054355283 scopus 로고    scopus 로고
    • Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives
    • Kriegel, I.; Scotognella, F.; Manna, L. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives. Phys. Rep. 2017, 674, 1-52, 10.1016/j.physrep.2017.01.003
    • (2017) Phys. Rep. , vol.674 , pp. 1-52
    • Kriegel, I.1    Scotognella, F.2    Manna, L.3
  • 256
    • 84876374589 scopus 로고    scopus 로고
    • An autonomous photosynthetic device in which all charge carriers derive from surface plasmons
    • Mubeen, S.; Lee, J.; Singh, N.; Krämer, S.; Stucky, G. D.; Moskovits, M. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 2013, 8, 247, 10.1038/nnano.2013.18
    • (2013) Nat. Nanotechnol. , vol.8 , pp. 247
    • Mubeen, S.1    Lee, J.2    Singh, N.3    Krämer, S.4    Stucky, G.D.5    Moskovits, M.6
  • 259
    • 84979073933 scopus 로고    scopus 로고
    • Improved Hydrogen Production of Au-Pt-CdS Hetero-Nanostructures by Efficient Plasmon-Induced Multipathway Electron Transfer
    • Ma, L.; Chen, K.; Nan, F.; Wang, J. H.; Yang, D. J.; Zhou, L.; Wang, Q. Q. Improved Hydrogen Production of Au-Pt-CdS Hetero-Nanostructures by Efficient Plasmon-Induced Multipathway Electron Transfer. Adv. Funct. Mater. 2016, 26, 6076-6083, 10.1002/adfm.201601651
    • (2016) Adv. Funct. Mater. , vol.26 , pp. 6076-6083
    • Ma, L.1    Chen, K.2    Nan, F.3    Wang, J.H.4    Yang, D.J.5    Zhou, L.6    Wang, Q.Q.7
  • 260
    • 84999114911 scopus 로고    scopus 로고
    • 2 Yolk-Shell as Plasmonic Photocatalyst Boosting Multi-Scattering with Enhanced Hydrogen Evolution
    • 2 Yolk-Shell as Plasmonic Photocatalyst Boosting Multi-Scattering with Enhanced Hydrogen Evolution. ACS Appl. Mater. Interfaces 2016, 8, 31738-31745, 10.1021/acsami.6b12940
    • (2016) ACS Appl. Mater. Interfaces , vol.8 , pp. 31738-31745
    • Shi, X.1    Lou, Z.2    Zhang, P.3    Fujitsuka, M.4    Majima, T.5
  • 261
    • 84926671925 scopus 로고    scopus 로고
    • Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting
    • Sigle, D. O.; Zhang, L.; Ithurria, S.; Dubertret, B.; Baumberg, J. J. Ultrathin CdSe in Plasmonic Nanogaps for Enhanced Photocatalytic Water Splitting. J. Phys. Chem. Lett. 2015, 6, 1099-1103, 10.1021/acs.jpclett.5b00279
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 1099-1103
    • Sigle, D.O.1    Zhang, L.2    Ithurria, S.3    Dubertret, B.4    Baumberg, J.J.5
  • 263
    • 85011277741 scopus 로고    scopus 로고
    • Plasmonic nanostructures in solar energy conversion
    • Ye, W.; Long, R.; Huang, H.; Xiong, Y. Plasmonic nanostructures in solar energy conversion. J. Mater. Chem. C 2017, 5, 1008-1021, 10.1039/C6TC04847A
    • (2017) J. Mater. Chem. C , vol.5 , pp. 1008-1021
    • Ye, W.1    Long, R.2    Huang, H.3    Xiong, Y.4
  • 264
    • 84982947773 scopus 로고    scopus 로고
    • Photonic nanostructures for solar energy conversion
    • Zheng, X.; Zhang, L. Photonic nanostructures for solar energy conversion. Energy Environ. Sci. 2016, 9, 2511-2532, 10.1039/C6EE01182A
    • (2016) Energy Environ. Sci. , vol.9 , pp. 2511-2532
    • Zheng, X.1    Zhang, L.2
  • 268
    • 84939832947 scopus 로고    scopus 로고
    • 2 to solar fuel via a local electromagnetic field
    • 2 to solar fuel via a local electromagnetic field. Nanoscale 2015, 7, 14232-14236, 10.1039/C5NR02943K
    • (2015) Nanoscale , vol.7 , pp. 14232-14236
    • Tu, W.1    Zhou, Y.2    Li, H.3    Li, P.4    Zou, Z.5
  • 269
    • 84890545036 scopus 로고    scopus 로고
    • 2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion
    • 2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion. J. Phys. Chem. C 2013, 117, 25939-25947, 10.1021/jp409311x
    • (2013) J. Phys. Chem. C , vol.117 , pp. 25939-25947
    • Zhang, Z.1    Wang, Z.2    Cao, S.-W.3    Xue, C.4
  • 271
    • 84983084746 scopus 로고    scopus 로고
    • A perspective on perovskite oxide semiconductor catalysts for gas phase photoreduction of carbon dioxide
    • Huang, C.; Li, Z.; Zou, Z. A perspective on perovskite oxide semiconductor catalysts for gas phase photoreduction of carbon dioxide. MRS Commun. 2016, 6, 216-225, 10.1557/mrc.2016.32
    • (2016) MRS Commun. , vol.6 , pp. 216-225
    • Huang, C.1    Li, Z.2    Zou, Z.3
  • 272
    • 84919741023 scopus 로고    scopus 로고
    • A Review on Visible Light Active Perovskite-Based Photocatalysts
    • Kanhere, P.; Chen, Z. A Review on Visible Light Active Perovskite-Based Photocatalysts. Molecules 2014, 19, 19995, 10.3390/molecules191219995
    • (2014) Molecules , vol.19 , pp. 19995
    • Kanhere, P.1    Chen, Z.2
  • 273
    • 84877146843 scopus 로고    scopus 로고
    • Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation
    • Moriya, Y.; Takata, T.; Domen, K. Recent progress in the development of (oxy)nitride photocatalysts for water splitting under visible-light irradiation. Coord. Chem. Rev. 2013, 257, 1957-1969, 10.1016/j.ccr.2013.01.021
    • (2013) Coord. Chem. Rev. , vol.257 , pp. 1957-1969
    • Moriya, Y.1    Takata, T.2    Domen, K.3
  • 274
    • 84875654346 scopus 로고    scopus 로고
    • ABO3-based photocatalysts for water splitting
    • Shi, J.; Guo, L. ABO3-based photocatalysts for water splitting. Prog. Nat. Sci. 2012, 22, 592-615, 10.1016/j.pnsc.2012.12.002
    • (2012) Prog. Nat. Sci. , vol.22 , pp. 592-615
    • Shi, J.1    Guo, L.2
  • 275
    • 84937485231 scopus 로고    scopus 로고
    • Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment
    • Wang, W.; Tade, M. O.; Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371-5408, 10.1039/C5CS00113G
    • (2015) Chem. Soc. Rev. , vol.44 , pp. 5371-5408
    • Wang, W.1    Tade, M.O.2    Shao, Z.3
  • 276
    • 84994016195 scopus 로고    scopus 로고
    • Inorganic perovskite photocatalysts for solar energy utilization
    • Zhang, G.; Liu, G.; Wang, L.; Irvine, J. T. S. Inorganic perovskite photocatalysts for solar energy utilization. Chem. Soc. Rev. 2016, 45, 5951-5984, 10.1039/C5CS00769K
    • (2016) Chem. Soc. Rev. , vol.45 , pp. 5951-5984
    • Zhang, G.1    Liu, G.2    Wang, L.3    Irvine, J.T.S.4
  • 277
    • 85007129440 scopus 로고    scopus 로고
    • Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation
    • Weng, B.; Xiao, Z.; Meng, W.; Grice, C. R.; Poudel, T.; Deng, X.; Yan, Y. Bandgap Engineering of Barium Bismuth Niobate Double Perovskite for Photoelectrochemical Water Oxidation. Adv. Energy Mater. 2017, 7, 1602260, 10.1002/aenm.201602260
    • (2017) Adv. Energy Mater. , vol.7
    • Weng, B.1    Xiao, Z.2    Meng, W.3    Grice, C.R.4    Poudel, T.5    Deng, X.6    Yan, Y.7
  • 278
    • 85007110958 scopus 로고    scopus 로고
    • A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting
    • Zhu, Y.; Zhou, W.; Zhong, Y.; Bu, Y.; Chen, X.; Zhong, Q.; Liu, M.; Shao, Z. A Perovskite Nanorod as Bifunctional Electrocatalyst for Overall Water Splitting. Adv. Energy Mater. 2017, 7, 1602122, 10.1002/aenm.201602122
    • (2017) Adv. Energy Mater. , vol.7
    • Zhu, Y.1    Zhou, W.2    Zhong, Y.3    Bu, Y.4    Chen, X.5    Zhong, Q.6    Liu, M.7    Shao, Z.8
  • 279
    • 65649154658 scopus 로고    scopus 로고
    • 2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure
    • 2 over niobate and titanate photocatalysts with (111) plane-type layered perovskite structure. Energy Environ. Sci. 2009, 2, 306-314, 10.1039/b818922f
    • (2009) Energy Environ. Sci. , vol.2 , pp. 306-314
    • Miseki, Y.1    Kato, H.2    Kudo, A.3
  • 281
    • 84856753513 scopus 로고    scopus 로고
    • 3 under visible-light irradiation: An insight from hybrid density-functional calculations
    • 3 under visible-light irradiation: an insight from hybrid density-functional calculations. Phys. Chem. Chem. Phys. 2012, 14, 1876-1880, 10.1039/c2cp23348g
    • (2012) Phys. Chem. Chem. Phys. , vol.14 , pp. 1876-1880
    • Reunchan, P.1    Umezawa, N.2    Ouyang, S.3    Ye, J.4
  • 283
    • 0041827039 scopus 로고    scopus 로고
    • Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family
    • Eng, H. W.; Barnes, P. W.; Auer, B. M.; Woodward, P. M. Investigations of the electronic structure of d0 transition metal oxides belonging to the perovskite family. J. Solid State Chem. 2003, 175, 94-109, 10.1016/S0022-4596(03)00289-5
    • (2003) J. Solid State Chem. , vol.175 , pp. 94-109
    • Eng, H.W.1    Barnes, P.W.2    Auer, B.M.3    Woodward, P.M.4
  • 287
    • 0035902363 scopus 로고    scopus 로고
    • 3 (A = Li, Na, and K)
    • 3 (A = Li, Na, and K). J. Phys. Chem. B 2001, 105, 4285-4292, 10.1021/jp004386b
    • (2001) J. Phys. Chem. B , vol.105 , pp. 4285-4292
    • Kato, H.1    Kudo, A.2
  • 288
    • 85027920129 scopus 로고    scopus 로고
    • A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600 nm
    • Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K. A Complex Perovskite-Type Oxynitride: The First Photocatalyst for Water Splitting Operable at up to 600 nm. Angew. Chem., Int. Ed. 2015, 54, 2955-2959, 10.1002/anie.201410961
    • (2015) Angew. Chem., Int. Ed. , vol.54 , pp. 2955-2959
    • Pan, C.1    Takata, T.2    Nakabayashi, M.3    Matsumoto, T.4    Shibata, N.5    Ikuhara, Y.6    Domen, K.7
  • 290
    • 0000390086 scopus 로고    scopus 로고
    • Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites
    • Takata, T.; Furumi, Y.; Shinohara, K.; Tanaka, A.; Hara, M.; Kondo, J. N.; Domen, K. Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites. Chem. Mater. 1997, 9, 1063-1064, 10.1021/cm960612b
    • (1997) Chem. Mater. , vol.9 , pp. 1063-1064
    • Takata, T.1    Furumi, Y.2    Shinohara, K.3    Tanaka, A.4    Hara, M.5    Kondo, J.N.6    Domen, K.7
  • 291
    • 0000408724 scopus 로고    scopus 로고
    • 7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity
    • 7 (M = Nb and Ta) Photocatalysts with Layered Perovskite Structures: Factors Affecting the Photocatalytic Activity. J. Phys. Chem. B 2000, 104, 571-575, 10.1021/jp9919056
    • (2000) J. Phys. Chem. B , vol.104 , pp. 571-575
    • Kudo, A.1    Kato, H.2    Nakagawa, S.3
  • 292
    • 84986586500 scopus 로고    scopus 로고
    • Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water
    • Crespo-Quesada, M.; Pazos-Outón, L. M.; Warnan, J.; Kuehnel, M. F.; Friend, R. H.; Reisner, E. Metal-encapsulated organolead halide perovskite photocathode for solar-driven hydrogen evolution in water. Nat. Commun. 2016, 7, 12555, 10.1038/ncomms12555
    • (2016) Nat. Commun. , vol.7 , pp. 12555
    • Crespo-Quesada, M.1    Pazos-Outón, L.M.2    Warnan, J.3    Kuehnel, M.F.4    Friend, R.H.5    Reisner, E.6
  • 293
    • 84990849610 scopus 로고    scopus 로고
    • Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution
    • Kuang, P.-Y.; Zheng, P.-X.; Liu, Z.-Q.; Lei, J.-L.; Wu, H.; Li, N.; Ma, T.-Y. Embedding Au Quantum Dots in Rimous Cadmium Sulfide Nanospheres for Enhanced Photocatalytic Hydrogen Evolution. Small 2016, 12, 6735-6744, 10.1002/smll.201602870
    • (2016) Small , vol.12 , pp. 6735-6744
    • Kuang, P.-Y.1    Zheng, P.-X.2    Liu, Z.-Q.3    Lei, J.-L.4    Wu, H.5    Li, N.6    Ma, T.-Y.7
  • 294
    • 84966280406 scopus 로고    scopus 로고
    • Hierarchical photocatalysts
    • Li, X.; Yu, J.; Jaroniec, M. Hierarchical photocatalysts. Chem. Soc. Rev. 2016, 45, 2603-2636, 10.1039/C5CS00838G
    • (2016) Chem. Soc. Rev. , vol.45 , pp. 2603-2636
    • Li, X.1    Yu, J.2    Jaroniec, M.3
  • 296
    • 84979272997 scopus 로고    scopus 로고
    • Photocatalytic Water Splitting - The Untamed Dream: A Review of Recent Advances
    • Jafari, T.; Moharreri, E.; Amin, A.; Miao, R.; Song, W.; Suib, S. Photocatalytic Water Splitting-The Untamed Dream: A Review of Recent Advances. Molecules 2016, 21, 900, 10.3390/molecules21070900
    • (2016) Molecules , vol.21 , pp. 900
    • Jafari, T.1    Moharreri, E.2    Amin, A.3    Miao, R.4    Song, W.5    Suib, S.6
  • 297
    • 84995555544 scopus 로고    scopus 로고
    • Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production
    • Zhao, H.; Jin, L.; Zhou, Y.; Bandar, A.; Fan, Z.; Govorov, A. O.; Mi, Z.; Sun, S.; Rosei, F.; Vomiero, A. Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production. Nanotechnology 2016, 27, 495405, 10.1088/0957-4484/27/49/495405
    • (2016) Nanotechnology , vol.27
    • Zhao, H.1    Jin, L.2    Zhou, Y.3    Bandar, A.4    Fan, Z.5    Govorov, A.O.6    Mi, Z.7    Sun, S.8    Rosei, F.9    Vomiero, A.10
  • 298
    • 84929353094 scopus 로고    scopus 로고
    • Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst
    • Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Reisner, E. Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst. J. Am. Chem. Soc. 2015, 137, 6018-6025, 10.1021/jacs.5b01650
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 6018-6025
    • Martindale, B.C.M.1    Hutton, G.A.M.2    Caputo, C.A.3    Reisner, E.4
  • 299
    • 84963720368 scopus 로고    scopus 로고
    • Progress of Carbon Quantum Dots in Photocatalysis Applications
    • Zhang, Z.; Zheng, T.; Li, X.; Xu, J.; Zeng, H. Progress of Carbon Quantum Dots in Photocatalysis Applications. Part. Part. Syst. Char. 2016, 33, 457-472, 10.1002/ppsc.201500243
    • (2016) Part. Part. Syst. Char. , vol.33 , pp. 457-472
    • Zhang, Z.1    Zheng, T.2    Li, X.3    Xu, J.4    Zeng, H.5
  • 300
    • 84939261677 scopus 로고    scopus 로고
    • Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review
    • Li, X.; Rui, M.; Song, J.; Shen, Z.; Zeng, H. Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review. Adv. Funct. Mater. 2015, 25, 4929-4947, 10.1002/adfm.201501250
    • (2015) Adv. Funct. Mater. , vol.25 , pp. 4929-4947
    • Li, X.1    Rui, M.2    Song, J.3    Shen, Z.4    Zeng, H.5
  • 301
    • 84941729419 scopus 로고    scopus 로고
    • 2 hybrid modified with hydrogenase for visible light driven hydrogen production
    • 2 hybrid modified with hydrogenase for visible light driven hydrogen production. Chem. Sci. 2015, 6, 5690-5694, 10.1039/C5SC02017D
    • (2015) Chem. Sci. , vol.6 , pp. 5690-5694
    • Caputo, C.A.1    Wang, L.2    Beranek, R.3    Reisner, E.4
  • 303
    • 84989348622 scopus 로고    scopus 로고
    • Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: A historic review
    • Zhou, L.; Zhang, H.; Sun, H.; Liu, S.; Tade, M. O.; Wang, S.; Jin, W. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 2016, 6, 7002-7023, 10.1039/C6CY01195K
    • (2016) Catal. Sci. Technol. , vol.6 , pp. 7002-7023
    • Zhou, L.1    Zhang, H.2    Sun, H.3    Liu, S.4    Tade, M.O.5    Wang, S.6    Jin, W.7
  • 304
    • 84994559835 scopus 로고    scopus 로고
    • 2 Conversion to Solar Fuels
    • 2 Conversion to Solar Fuels. ACS Catal. 2016, 6, 7485-7527, 10.1021/acscatal.6b02089
    • (2016) ACS Catal. , vol.6 , pp. 7485-7527
    • Li, K.1    Peng, B.2    Peng, T.3
  • 306
    • 54049153179 scopus 로고    scopus 로고
    • Graphitic carbon nitride materials: Variation of structure and morphology and their use as metal-free catalysts
    • Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Muller, J.-O.; Schlogl, R.; Carlsson, J. M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893-4908, 10.1039/b800274f
    • (2008) J. Mater. Chem. , vol.18 , pp. 4893-4908
    • Thomas, A.1    Fischer, A.2    Goettmann, F.3    Antonietti, M.4    Muller, J.-O.5    Schlogl, R.6    Carlsson, J.M.7
  • 307
    • 34250342222 scopus 로고    scopus 로고
    • Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid-State NMR Spectroscopy, and Theoretical Calculations - Structural Characterization of a Carbon Nitride Polymer
    • Lotsch, B. V.; Döblinger, M.; Sehnert, J.; Seyfarth, L.; Senker, J.; Oeckler, O.; Schnick, W. Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid-State NMR Spectroscopy, and Theoretical Calculations-Structural Characterization of a Carbon Nitride Polymer. Chem.-Eur. J. 2007, 13, 4969-4980, 10.1002/chem.200601759
    • (2007) Chem. - Eur. J. , vol.13 , pp. 4969-4980
    • Lotsch, B.V.1    Döblinger, M.2    Sehnert, J.3    Seyfarth, L.4    Senker, J.5    Oeckler, O.6    Schnick, W.7
  • 308
    • 85010297510 scopus 로고    scopus 로고
    • Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution
    • Zhang, M.; Duan, Y.; Jia, H.; Wang, F.; Wang, L.; Su, Z.; Wang, C. Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution. Catal. Sci. Technol. 2017, 7, 452-458, 10.1039/C6CY02318E
    • (2017) Catal. Sci. Technol. , vol.7 , pp. 452-458
    • Zhang, M.1    Duan, Y.2    Jia, H.3    Wang, F.4    Wang, L.5    Su, Z.6    Wang, C.7
  • 309
    • 84936859108 scopus 로고    scopus 로고
    • Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution
    • Li, X.; Hartley, G.; Ward, A. J.; Young, P. A.; Masters, A. F.; Maschmeyer, T. Hydrogenated Defects in Graphitic Carbon Nitride Nanosheets for Improved Photocatalytic Hydrogen Evolution. J. Phys. Chem. C 2015, 119, 14938-14946, 10.1021/acs.jpcc.5b03538
    • (2015) J. Phys. Chem. C , vol.119 , pp. 14938-14946
    • Li, X.1    Hartley, G.2    Ward, A.J.3    Young, P.A.4    Masters, A.F.5    Maschmeyer, T.6
  • 311
    • 84938674732 scopus 로고    scopus 로고
    • 4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance
    • 4 Nanostructured Flowers with Superior Photocatalytic Hydrogen Evolution Performance. ACS Appl. Mater. Interfaces 2015, 7, 16850-16856, 10.1021/acsami.5b04947
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 16850-16856
    • Zhu, Y.-P.1    Ren, T.-Z.2    Yuan, Z.-Y.3
  • 315
    • 84978138820 scopus 로고    scopus 로고
    • Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites
    • Lau, V. W.-h.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165, 10.1038/ncomms12165
    • (2016) Nat. Commun. , vol.7 , pp. 12165
    • Lau, V.W.-H.1    Moudrakovski, I.2    Botari, T.3    Weinberger, S.4    Mesch, M.B.5    Duppel, V.6    Senker, J.7    Blum, V.8    Lotsch, B.V.9
  • 318
    • 84895064339 scopus 로고    scopus 로고
    • Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution
    • Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X. Iodine Modified Carbon Nitride Semiconductors as Visible Light Photocatalysts for Hydrogen Evolution. Adv. Mater. 2014, 26, 805-809, 10.1002/adma.201303611
    • (2014) Adv. Mater. , vol.26 , pp. 805-809
    • Zhang, G.1    Zhang, M.2    Ye, X.3    Qiu, X.4    Lin, S.5    Wang, X.6
  • 319
    • 84923002592 scopus 로고    scopus 로고
    • Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution
    • Huang, Z.-F.; Song, J.; Pan, L.; Wang, Z.; Zhang, X.; Zou, J.-J.; Mi, W.; Zhang, X.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646-656, 10.1016/j.nanoen.2015.01.043
    • (2015) Nano Energy , vol.12 , pp. 646-656
    • Huang, Z.-F.1    Song, J.2    Pan, L.3    Wang, Z.4    Zhang, X.5    Zou, J.-J.6    Mi, W.7    Zhang, X.8    Wang, L.9
  • 320
    • 84955722640 scopus 로고    scopus 로고
    • Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution
    • Guo, S.; Deng, Z.; Li, M.; Jiang, B.; Tian, C.; Pan, Q.; Fu, H. Phosphorus-Doped Carbon Nitride Tubes with a Layered Micro-nanostructure for Enhanced Visible-Light Photocatalytic Hydrogen Evolution. Angew. Chem., Int. Ed. 2016, 55, 1830-1834, 10.1002/anie.201508505
    • (2016) Angew. Chem., Int. Ed. , vol.55 , pp. 1830-1834
    • Guo, S.1    Deng, Z.2    Li, M.3    Jiang, B.4    Tian, C.5    Pan, Q.6    Fu, H.7
  • 321
    • 85022014675 scopus 로고    scopus 로고
    • Polymeric carbon nitride for solar hydrogen production
    • Li, X.; Masters, A. F.; Maschmeyer, T. Polymeric carbon nitride for solar hydrogen production. Chem. Commun. 2017, 53, 7438-7446, 10.1039/C7CC02532G
    • (2017) Chem. Commun. , vol.53 , pp. 7438-7446
    • Li, X.1    Masters, A.F.2    Maschmeyer, T.3
  • 322
    • 84898997643 scopus 로고    scopus 로고
    • 4/NiS Hybrid Photocatalysts with Enhanced Hydrogen Evolution Activity
    • 4/NiS Hybrid Photocatalysts with Enhanced Hydrogen Evolution Activity. J. Phys. Chem. C 2014, 118, 7801-7807, 10.1021/jp5000232
    • (2014) J. Phys. Chem. C , vol.118 , pp. 7801-7807
    • Chen, Z.1    Sun, P.2    Fan, B.3    Zhang, Z.4    Fang, X.5
  • 323
    • 84948141896 scopus 로고    scopus 로고
    • 4 nanocomposite: An artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator
    • 4 nanocomposite: an artificial Z-scheme visible-light photocatalytic system using nanocarbon as the electron mediator. Chem. Commun. 2015, 51, 17144-17147, 10.1039/C5CC05323D
    • (2015) Chem. Commun. , vol.51 , pp. 17144-17147
    • Shi, F.1    Chen, L.2    Chen, M.3    Jiang, D.4
  • 325
    • 84928503347 scopus 로고    scopus 로고
    • Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution
    • Yang, X.; Tang, H.; Xu, J.; Antonietti, M.; Shalom, M. Silver Phosphate/Graphitic Carbon Nitride as an Efficient Photocatalytic Tandem System for Oxygen Evolution. ChemSusChem 2015, 8, 1350-1358, 10.1002/cssc.201403168
    • (2015) ChemSusChem , vol.8 , pp. 1350-1358
    • Yang, X.1    Tang, H.2    Xu, J.3    Antonietti, M.4    Shalom, M.5
  • 326
    • 84923862249 scopus 로고    scopus 로고
    • Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
    • Liu, J.; Liu, Y.; Liu, N.; Han, Y.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S.-T.; Zhong, J.; Kang, Z. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970-974, 10.1126/science.aaa3145
    • (2015) Science , vol.347 , pp. 970-974
    • Liu, J.1    Liu, Y.2    Liu, N.3    Han, Y.4    Zhang, X.5    Huang, H.6    Lifshitz, Y.7    Lee, S.-T.8    Zhong, J.9    Kang, Z.10
  • 328
    • 84948655355 scopus 로고    scopus 로고
    • 4 and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance
    • 4 and Graphene Oxide Nanosheets with Excellent Visible-Light Photocatalytic Performance. ACS Appl. Mater. Interfaces 2015, 7, 25693-25701, 10.1021/acsami.5b09503
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 25693-25701
    • Tong, Z.1    Yang, D.2    Shi, J.3    Nan, Y.4    Sun, Y.5    Jiang, Z.6
  • 329
    • 84901492759 scopus 로고    scopus 로고
    • Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination
    • Yeh, T.-F.; Teng, C.-Y.; Chen, S.-J.; Teng, H. Nitrogen-Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water-Splitting under Visible Light Illumination. Adv. Mater. 2014, 26, 3297-3303, 10.1002/adma.201305299
    • (2014) Adv. Mater. , vol.26 , pp. 3297-3303
    • Yeh, T.-F.1    Teng, C.-Y.2    Chen, S.-J.3    Teng, H.4
  • 330
    • 84983505466 scopus 로고    scopus 로고
    • Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process
    • Chen, L.-C.; Teng, C.-Y.; Lin, C.-Y.; Chang, H.-Y.; Chen, S.-J.; Teng, H. Architecting Nitrogen Functionalities on Graphene Oxide Photocatalysts for Boosting Hydrogen Production in Water Decomposition Process. Adv. Energy Mater. 2016, 6, 1600719, 10.1002/aenm.201600719
    • (2016) Adv. Energy Mater. , vol.6
    • Chen, L.-C.1    Teng, C.-Y.2    Lin, C.-Y.3    Chang, H.-Y.4    Chen, S.-J.5    Teng, H.6
  • 331
    • 84923880273 scopus 로고    scopus 로고
    • Pure carbon nanodots for excellent photocatalytic hydrogen generation
    • Yang, P.; Zhao, J.; Wang, J.; Cui, H.; Li, L.; Zhu, Z. Pure carbon nanodots for excellent photocatalytic hydrogen generation. RSC Adv. 2015, 5, 21332-21335, 10.1039/C5RA01924A
    • (2015) RSC Adv. , vol.5 , pp. 21332-21335
    • Yang, P.1    Zhao, J.2    Wang, J.3    Cui, H.4    Li, L.5    Zhu, Z.6
  • 332
    • 84923356124 scopus 로고    scopus 로고
    • The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): Current state and future perspective
    • Zhu, S.; Song, Y.; Zhao, X.; Shao, J.; Zhang, J.; Yang, B. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 2015, 8, 355-381, 10.1007/s12274-014-0644-3
    • (2015) Nano Res. , vol.8 , pp. 355-381
    • Zhu, S.1    Song, Y.2    Zhao, X.3    Shao, J.4    Zhang, J.5    Yang, B.6
  • 334
    • 84899409025 scopus 로고    scopus 로고
    • Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation
    • Wang, Q.; Li, J.; Bai, Y.; Lian, J.; Huang, H.; Li, Z.; Lei, Z.; Shangguan, W. Photochemical preparation of Cd/CdS photocatalysts and their efficient photocatalytic hydrogen production under visible light irradiation. Green Chem. 2014, 16, 2728-2735, 10.1039/C3GC42466A
    • (2014) Green Chem. , vol.16 , pp. 2728-2735
    • Wang, Q.1    Li, J.2    Bai, Y.3    Lian, J.4    Huang, H.5    Li, Z.6    Lei, Z.7    Shangguan, W.8
  • 335
    • 84962199170 scopus 로고    scopus 로고
    • Luminescent colloidal carbon dots: Optical properties and effects of doping
    • Reckmeier, C. J.; Schneider, J.; Susha, A. S.; Rogach, A. L. Luminescent colloidal carbon dots: optical properties and effects of doping. Opt. Express 2016, 24, A312-A340, 10.1364/OE.24.00A312
    • (2016) Opt. Express , vol.24 , pp. A312-A340
    • Reckmeier, C.J.1    Schneider, J.2    Susha, A.S.3    Rogach, A.L.4
  • 338
    • 85018997590 scopus 로고    scopus 로고
    • Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping
    • Martindale, B. C. M.; Hutton, G. A. M.; Caputo, C. A.; Prantl, S.; Godin, R.; Durrant, J. R.; Reisner, E. Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping. Angew. Chem., Int. Ed. 2017, 56, 6459-6463, 10.1002/anie.201700949
    • (2017) Angew. Chem., Int. Ed. , vol.56 , pp. 6459-6463
    • Martindale, B.C.M.1    Hutton, G.A.M.2    Caputo, C.A.3    Prantl, S.4    Godin, R.5    Durrant, J.R.6    Reisner, E.7
  • 339
    • 85026772553 scopus 로고    scopus 로고
    • Carbon dots as photosensitisers for solar-driven catalysis
    • Hutton, G. A. M.; Martindale, B. C. M.; Reisner, E. Carbon dots as photosensitisers for solar-driven catalysis. Chem. Soc. Rev. 2017, 46, 6111-6123, 10.1039/C7CS00235A
    • (2017) Chem. Soc. Rev. , vol.46 , pp. 6111-6123
    • Hutton, G.A.M.1    Martindale, B.C.M.2    Reisner, E.3
  • 341
    • 84987704739 scopus 로고    scopus 로고
    • Smart Utilization of Carbon Dots in Semiconductor Photocatalysis
    • Yu, H.; Shi, R.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Adv. Mater. 2016, 28, 9454-9477, 10.1002/adma.201602581
    • (2016) Adv. Mater. , vol.28 , pp. 9454-9477
    • Yu, H.1    Shi, R.2    Zhao, Y.3    Waterhouse, G.I.N.4    Wu, L.-Z.5    Tung, C.-H.6    Zhang, T.7
  • 342
    • 84925235612 scopus 로고    scopus 로고
    • Computational Screening of 2D Materials for Photocatalysis
    • Singh, A. K.; Mathew, K.; Zhuang, H. L.; Hennig, R. G. Computational Screening of 2D Materials for Photocatalysis. J. Phys. Chem. Lett. 2015, 6, 1087-1098, 10.1021/jz502646d
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 1087-1098
    • Singh, A.K.1    Mathew, K.2    Zhuang, H.L.3    Hennig, R.G.4
  • 343
    • 85013220061 scopus 로고    scopus 로고
    • Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective
    • Li, Y.; Li, Y.-L.; Sa, B.; Ahuja, R. Review of two-dimensional materials for photocatalytic water splitting from a theoretical perspective. Catal. Sci. Technol. 2017, 7, 545-559, 10.1039/C6CY02178F
    • (2017) Catal. Sci. Technol. , vol.7 , pp. 545-559
    • Li, Y.1    Li, Y.-L.2    Sa, B.3    Ahuja, R.4
  • 344
    • 84961988007 scopus 로고    scopus 로고
    • Recent advances in 2D materials for photocatalysis
    • Luo, B.; Liu, G.; Wang, L. Recent advances in 2D materials for photocatalysis. Nanoscale 2016, 8, 6904-6920, 10.1039/C6NR00546B
    • (2016) Nanoscale , vol.8 , pp. 6904-6920
    • Luo, B.1    Liu, G.2    Wang, L.3
  • 345
    • 84960797542 scopus 로고    scopus 로고
    • 2D phosphorene as a water splitting photocatalyst: Fundamentals to applications
    • Rahman, M. Z.; Kwong, C. W.; Davey, K.; Qiao, S. Z. 2D phosphorene as a water splitting photocatalyst: fundamentals to applications. Energy Environ. Sci. 2016, 9, 709-728, 10.1039/C5EE03732H
    • (2016) Energy Environ. Sci. , vol.9 , pp. 709-728
    • Rahman, M.Z.1    Kwong, C.W.2    Davey, K.3    Qiao, S.Z.4
  • 349
    • 85020252730 scopus 로고    scopus 로고
    • Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution
    • Zhu, M.; Osakada, Y.; Kim, S.; Fujitsuka, M.; Majima, T. Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal., B 2017, 217, 285-292, 10.1016/j.apcatb.2017.06.002
    • (2017) Appl. Catal., B , vol.217 , pp. 285-292
    • Zhu, M.1    Osakada, Y.2    Kim, S.3    Fujitsuka, M.4    Majima, T.5
  • 350
    • 84946746822 scopus 로고    scopus 로고
    • Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets
    • Zhukovskyi, M.; Tongying, P.; Yashan, H.; Wang, Y.; Kuno, M. Efficient Photocatalytic Hydrogen Generation from Ni Nanoparticle Decorated CdS Nanosheets. ACS Catal. 2015, 5, 6615-6623, 10.1021/acscatal.5b01812
    • (2015) ACS Catal. , vol.5 , pp. 6615-6623
    • Zhukovskyi, M.1    Tongying, P.2    Yashan, H.3    Wang, Y.4    Kuno, M.5
  • 353
    • 84994881314 scopus 로고    scopus 로고
    • 2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect
    • 2 hybrid structures for efficient photocatalytical hydrogen production via strongly plasmonic coupling effect. Nano Energy 2016, 30, 549-558, 10.1016/j.nanoen.2016.10.047
    • (2016) Nano Energy , vol.30 , pp. 549-558
    • Li, X.1    Guo, S.2    Kan, C.3    Zhu, J.4    Tong, T.5    Ke, S.6    Choy, W.C.H.7    Wei, B.8
  • 354
    • 79955891162 scopus 로고    scopus 로고
    • 2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction
    • 2 Nanoparticles Grown on Graphene: An Advanced Catalyst for the Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299, 10.1021/ja201269b
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 7296-7299
    • Li, Y.1    Wang, H.2    Xie, L.3    Liang, Y.4    Hong, G.5    Dai, H.6
  • 358
    • 85020252730 scopus 로고    scopus 로고
    • Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution
    • Zhu, M.; Osakada, Y.; Kim, S.; Fujitsuka, M.; Majima, T. Black phosphorus: A promising two dimensional visible and near-infrared-activated photocatalyst for hydrogen evolution. Appl. Catal., B 2017, 217, 285-292, 10.1016/j.apcatb.2017.06.002
    • (2017) Appl. Catal., B , vol.217 , pp. 285-292
    • Zhu, M.1    Osakada, Y.2    Kim, S.3    Fujitsuka, M.4    Majima, T.5
  • 359
    • 84979221599 scopus 로고    scopus 로고
    • MXene: A promising photocatalyst for water splitting
    • Guo, Z.; Zhou, J.; Zhu, L.; Sun, Z. MXene: a promising photocatalyst for water splitting. J. Mater. Chem. A 2016, 4, 11446-11452, 10.1039/C6TA04414J
    • (2016) J. Mater. Chem. A , vol.4 , pp. 11446-11452
    • Guo, Z.1    Zhou, J.2    Zhu, L.3    Sun, Z.4
  • 361
    • 85008411869 scopus 로고    scopus 로고
    • 2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production
    • 2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907, 10.1038/ncomms13907
    • (2017) Nat. Commun. , vol.8 , pp. 13907
    • Ran, J.1    Gao, G.2    Li, F.-T.3    Ma, T.-Y.4    Du, A.5    Qiao, S.-Z.6
  • 363
    • 84978793045 scopus 로고    scopus 로고
    • Nanoparticle Clusters: Assembly and Control over Internal Order, Current Capabilities, and Future Potential
    • Stolarczyk, J. K.; Deak, A.; Brougham, D. F. Nanoparticle Clusters: Assembly and Control Over Internal Order, Current Capabilities, and Future Potential. Adv. Mater. 2016, 28, 5400-5424, 10.1002/adma.201505350
    • (2016) Adv. Mater. , vol.28 , pp. 5400-5424
    • Stolarczyk, J.K.1    Deak, A.2    Brougham, D.F.3
  • 365
    • 77954294512 scopus 로고    scopus 로고
    • Theoretical Framework for Nanoparticle Reactivity as a Function of Aggregation State
    • Hotze, E. M.; Bottero, J.-Y.; Wiesner, M. R. Theoretical Framework for Nanoparticle Reactivity as a Function of Aggregation State. Langmuir 2010, 26, 11170-11175, 10.1021/la9046963
    • (2010) Langmuir , vol.26 , pp. 11170-11175
    • Hotze, E.M.1    Bottero, J.-Y.2    Wiesner, M.R.3
  • 367
    • 84861862668 scopus 로고    scopus 로고
    • 2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges
    • 2 Crystalline Nanoparticles Yields Effective Conduction Pathways for Photogenerated Charges. J. Phys. Chem. Lett. 2012, 3, 1422-1427, 10.1021/jz3005128
    • (2012) J. Phys. Chem. Lett. , vol.3 , pp. 1422-1427
    • Bian, Z.1    Tachikawa, T.2    Majima, T.3
  • 370
    • 11144232320 scopus 로고    scopus 로고
    • Mesoporous Spherical Aggregates of Anatase Nanocrystals with Wormhole-like Framework Structures: Their Chemical Fabrication, Characterization, and Photocatalytic Performance
    • Wang, H.; Miao, J.-J.; Zhu, J.-M.; Ma, H.-M.; Zhu, J.-J.; Chen, H.-Y. Mesoporous Spherical Aggregates of Anatase Nanocrystals with Wormhole-like Framework Structures: Their Chemical Fabrication, Characterization, and Photocatalytic Performance. Langmuir 2004, 20, 11738-11747, 10.1021/la0477892
    • (2004) Langmuir , vol.20 , pp. 11738-11747
    • Wang, H.1    Miao, J.-J.2    Zhu, J.-M.3    Ma, H.-M.4    Zhu, J.-J.5    Chen, H.-Y.6
  • 371
    • 84926362915 scopus 로고    scopus 로고
    • 4 supraparticles: Construction of dual-level pores for Pt-catalyzed enantioselective hydrogenation
    • 4 supraparticles: construction of dual-level pores for Pt-catalyzed enantioselective hydrogenation. Polym. Chem. 2015, 6, 2892-2899, 10.1039/C4PY01611D
    • (2015) Polym. Chem. , vol.6 , pp. 2892-2899
    • Xu, S.1    Weng, Z.2    Tan, J.3    Guo, J.4    Wang, C.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.