-
1
-
-
35348875044
-
Electrochemical photolysis of water at a semiconductor electrode
-
Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (2008).
-
(2008)
Nature
, vol.238
, pp. 37-38
-
-
Fujishima, A.1
Honda, K.2
-
2
-
-
0039129509
-
Environmental applications of semiconductor photocatalysis
-
Hoffmann, M. et al. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69-96 (1995).
-
(1995)
Chem. Rev.
, vol.95
, pp. 69-96
-
-
Hoffmann, M.1
-
3
-
-
33751239787
-
2-new photochemical processes
-
2-new photochemical processes. Chem. Rev. 106, 4428-4453 (2006).
-
(2006)
Chem. Rev.
, vol.106
, pp. 4428-4453
-
-
Thompson, L.1
Yates, J.2
-
4
-
-
68949099203
-
Photocatalysis. A multi-faceted concept for green chemistry
-
Ravelli, D. et al. Photocatalysis. A multi-faceted concept for green chemistry. Chem. Soc. Rev. 39, 1999-2011 (2009).
-
(2009)
Chem. Soc. Rev.
, vol.39
, pp. 1999-2011
-
-
Ravelli, D.1
-
6
-
-
34547486889
-
Titanium dioxide nanomaterials: Synthesis, properties, modifications and application
-
Chen, X. & Mao, S. S. Titanium dioxide nanomaterials: synthesis, properties, modifications and application. Chem. Rev. 107, 2891-2959 (2007).
-
(2007)
Chem. Rev.
, vol.107
, pp. 2891-2959
-
-
Chen, X.1
Mao, S.S.2
-
7
-
-
0035854541
-
Visible-light photocatalysis in nitrogen-doped titanium oxides
-
Asahi, R. et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269-271 (2001).
-
(2001)
Science
, vol.293
, pp. 269-271
-
-
Asahi, R.1
-
9
-
-
0242355022
-
Daylight photocatalysis by carbon-modified titanium dioxide
-
Sakthivel, S. & Kisch, H. Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908-4911 (2003).
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, pp. 4908-4911
-
-
Sakthivel, S.1
Kisch, H.2
-
10
-
-
31544439938
-
2 nanotube arrays with high aspect ratios for efficient solar water splitting
-
2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24-28 (2006).
-
(2006)
Nano Lett.
, vol.6
, pp. 24-28
-
-
Park, J.H.1
Kim, S.2
Bard, A.J.3
-
11
-
-
84855810124
-
2 nanowires
-
2 nanowires. Nano Lett. 12, 26-32 (2002).
-
(2002)
Nano Lett.
, vol.12
, pp. 26-32
-
-
Hoang, S.1
-
12
-
-
1842852041
-
x under visible irradiation
-
x under visible irradiation. J. Am. Chem. Soc. 126, 4782-4783 (2004).
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 4782-4783
-
-
Zhao, W.1
-
13
-
-
79956013025
-
Band gap narrowing of titanium dioxide by sulfur doping
-
Umebayashi, T. et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl. Phys. Lett. 81, 454-456 (2002).
-
(2002)
Appl. Phys. Lett.
, vol.81
, pp. 454-456
-
-
Umebayashi, T.1
-
14
-
-
33845554646
-
Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles
-
Borgarello, E. et al. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc. 104, 2996-3002 (1982).
-
(1982)
J. Am. Chem. Soc.
, vol.104
, pp. 2996-3002
-
-
Borgarello, E.1
-
15
-
-
84880021663
-
Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts
-
Liu, M. et al. Energy-level matching of Fe(III) ions grafted at surface and doped in bulk for efficient visible-light photocatalysts. J. Am. Chem. Soc. 135, 10064-10072 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 10064-10072
-
-
Liu, M.1
-
18
-
-
78449288259
-
Semiconductor-based photocatalytic hydrogen generation
-
Chen, X. et al. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503-6570 (2010).
-
(2010)
Chem. Rev.
, vol.110
, pp. 6503-6570
-
-
Chen, X.1
-
19
-
-
0037010170
-
Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis
-
Justicia, I. et al. Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 14, 1399-1402 (2002).
-
(2002)
Adv. Mater.
, vol.14
, pp. 1399-1402
-
-
Justicia, I.1
-
20
-
-
77956070968
-
3+ enhanced photocatalyst for hydrogen production under visible light
-
3+ enhanced photocatalyst for hydrogen production under visible light. J. Am. Chem. Soc. 132, 11856-11857 (2010).
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 11856-11857
-
-
Zuo, F.1
-
21
-
-
84862690487
-
2: An effective strategy to improve the visible-light photocatalytic activity
-
2: an effective strategy to improve the visible-light photocatalytic activity. Angew. Chem. Int. Ed. 124, 6223-6226 (2012).
-
(2012)
Angew. Chem. Int. Ed.
, vol.124
, pp. 6223-6226
-
-
Zuo, F.1
-
22
-
-
79951513799
-
Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals
-
Chen, X. et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746-750 (2011).
-
(2011)
Science
, vol.331
, pp. 746-750
-
-
Chen, X.1
-
23
-
-
84860875015
-
2 nanoparticles
-
2 nanoparticles. J. Am. Chem. Soc. 134, 7600-7603 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 7600-7603
-
-
Naldoni, A.1
-
24
-
-
84875801885
-
Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation
-
Chen, X. et al. Properties of disorder-engineered black titanium dioxide nanoparticles through hydrogenation. Sci. Rep. 3, 1510 (2013).
-
(2013)
Sci. Rep.
, vol.3
, pp. 1510
-
-
Chen, X.1
-
25
-
-
84862091073
-
Hydrogenated titania: Synergy of surface modification and morphology improvement for enhanced photocatalytic activity
-
Zheng, Z. et al. Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. Chem. Commun. 48, 5733-5735 (2012).
-
(2012)
Chem. Commun.
, vol.48
, pp. 5733-5735
-
-
Zheng, Z.1
-
26
-
-
84892421133
-
2 for solar splitting of water to hydrogen
-
2 for solar splitting of water to hydrogen. Angew. Chem. Int. Ed. 51, 2-5 (2012).
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 2-5
-
-
Hu, Y.1
-
27
-
-
84884573529
-
Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania
-
Wang, Z. et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. Energy Environ. Sci. 6, 3007-3014 (2013).
-
(2013)
Energy Environ. Sci.
, vol.6
, pp. 3007-3014
-
-
Wang, Z.1
-
28
-
-
84889254665
-
Core-shell nanostructured "Black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping
-
Yang, C. et al. Core-shell nanostructured "Black" rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. J. Am. Chem. Soc. 135, 17831-17838 (2013).
-
(2013)
J. Am. Chem. Soc.
, vol.135
, pp. 17831-17838
-
-
Yang, C.1
-
29
-
-
79960245034
-
2 nanowire arrays for photoelectrochemical water splitting
-
2 nanowire arrays for photoelectrochemical water splitting. Nano Lett. 11, 3026-3033 (2011).
-
(2011)
Nano Lett.
, vol.11
, pp. 3026-3033
-
-
Wang, G.1
-
31
-
-
70350077480
-
2 (001)
-
2 (001). J. Am. Chem. Soc. 131, 14670-14672 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 14670-14672
-
-
Ariga, H.1
-
33
-
-
3042681783
-
3 solutions under hydrothermal conditions
-
3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 126, 7790-7791 (2004).
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 7790-7791
-
-
Hosono, E.1
-
34
-
-
0033771278
-
Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers
-
Aruna, S. T., Tirosh, S. & Zaban, A. Nanosize rutile titania particle synthesis via a hydrothermal method without mineralizers. J. Mater. Chem. 10, 2388-2391 (2000).
-
(2000)
J. Mater. Chem.
, vol.10
, pp. 2388-2391
-
-
Aruna, S.T.1
Tirosh, S.2
Zaban, A.3
-
35
-
-
38949180550
-
2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water
-
2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J. Am. Chem. Soc. 130, 1568-1569 (2008).
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 1568-1569
-
-
Yurdakal, S.1
-
37
-
-
6044224766
-
2) nanocrystals with controlled size and shape by low-temperature hydrolysis: Effects of solvent composition
-
2) nanocrystals with controlled size and shape by low-temperature hydrolysis: effects of solvent composition. J. Phys. Chem. B 108, 14789-14792 (2004).
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 14789-14792
-
-
Wang, W.1
-
39
-
-
77949588667
-
Titanium dioxide synthesized using titanium chloride: Size effect study using Raman spectroscopy and photoluminescence
-
Gupta, S. K. et al. Titanium dioxide synthesized using titanium chloride: size effect study using Raman spectroscopy and photoluminescence. J. Raman Spectr. 41, 350-355 (2010).
-
(2010)
J. Raman Spectr.
, vol.41
, pp. 350-355
-
-
Gupta, S.K.1
-
42
-
-
34347362977
-
2 (110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy
-
2 (110) surfaces revealed by ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. C 111, 8278-8282 (2007).
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 8278-8282
-
-
Ketteler, G.1
-
44
-
-
25144456909
-
Defect dynamics in annealed ZnO by positron annihilation spectroscopy
-
Dutta, S. et al. Defect dynamics in annealed ZnO by positron annihilation spectroscopy. J. Appl. Phys. 98, 053513 (2005).
-
(2005)
J. Appl. Phys.
, vol.98
-
-
Dutta, S.1
-
45
-
-
84867852640
-
2: A positron annihilation study
-
2: a positron annihilation study. J. Phys. Chem. C 116, 22619-22624 (2012).
-
(2012)
J. Phys. Chem. C
, vol.116
, pp. 22619-22624
-
-
Jiang, X.1
-
46
-
-
80054733962
-
2 nanocrystals leads to high photocatalytic efficiency
-
2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 133, 16414-16417 (2012).
-
(2012)
J. Am. Chem. Soc.
, vol.133
, pp. 16414-16417
-
-
Kong, M.1
-
47
-
-
70449565580
-
Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods
-
Liu, X. et al. Oxygen vacancy clusters promoting reducibility and activity of ceria nanorods. J. Am. Chem. Soc. 131, 3140-3141 (2009).
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3140-3141
-
-
Liu, X.1
-
49
-
-
0000798647
-
First principles calculation of chemical shifts in ELNES/NEXAFS of titanium oxides
-
Yaoshiya, M., Tanaka, I., Kaneko, K. & Adachi, H. First principles calculation of chemical shifts in ELNES/NEXAFS of titanium oxides. J. Phys. Condens. Mater. 11, 3217-3228 (1999).
-
(1999)
J. Phys. Condens. Mater.
, vol.11
, pp. 3217-3228
-
-
Yaoshiya, M.1
Tanaka, I.2
Kaneko, K.3
Adachi, H.4
-
50
-
-
67649083890
-
2 by electron diffraction and electron energy-loss spectroscopy
-
2 by electron diffraction and electron energy-loss spectroscopy. Appl. Phys. Lett. 94, 233116 (2009).
-
(2009)
Appl. Phys. Lett.
, vol.94
-
-
Wang, C.M.1
-
51
-
-
0037233037
-
The surface science of titanium dioxide
-
Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53-229 (2003).
-
(2003)
Surf. Sci. Rep.
, vol.48
, pp. 53-229
-
-
Diebold, U.1
-
52
-
-
84884249164
-
2 nanorod arrays for visible-light driven photoelectrochemical water splitting
-
2 nanorod arrays for visible-light driven photoelectrochemical water splitting. Nanoscale 5, 9001-9009 (2013).
-
(2013)
Nanoscale
, vol.5
, pp. 9001-9009
-
-
Su, F.1
-
53
-
-
39149102842
-
Inorganic materials as catalysts for photochemical splitting of water
-
Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 20, 35-54 (2008).
-
(2008)
Chem. Mater.
, vol.20
, pp. 35-54
-
-
Osterloh, F.E.1
-
54
-
-
84870667497
-
2 in water using semiconductor nanocrystals and a nickel catalyst
-
2 in water using semiconductor nanocrystals and a nickel catalyst. Science 238, 1321-1324 (2012).
-
(2012)
Science
, vol.238
, pp. 1321-1324
-
-
Han, Z.1
-
55
-
-
84983501569
-
2 generation on Ni-decorated CdS nanorods
-
2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013-1018 (2014).
-
(2014)
Nat. Mater.
, vol.13
, pp. 1013-1018
-
-
Simon, T.1
-
59
-
-
0026375811
-
Quantum crystallites and nonlinear optics
-
Brus, L. Quantum crystallites and nonlinear optics. Appl. Phys. A 53, 465-474 (1991).
-
(1991)
Appl. Phys. A
, vol.53
, pp. 465-474
-
-
Brus, L.1
-
60
-
-
0024281867
-
Preparation and characterization of quantum-size titanium dioxide
-
Kormann, C., Bahnemann, D. W. & Hoffmann, M. R. Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem. 92, 5196-5201 (1988).
-
(1988)
J. Phys. Chem.
, vol.92
, pp. 5196-5201
-
-
Kormann, C.1
Bahnemann, D.W.2
Hoffmann, M.R.3
-
61
-
-
84870865938
-
2 nanoparticles with a high-performance photocatalysis
-
2 nanoparticles with a high-performance photocatalysis. J. Catal. 297, 236-243 (2013).
-
(2013)
J. Catal.
, vol.297
, pp. 236-243
-
-
Xing, M.1
-
63
-
-
84892773892
-
2 nanoparticles
-
2 nanoparticles. J. Phys. Chem. C 118, 1111-1117 (2014).
-
(2014)
J. Phys. Chem. C
, vol.118
, pp. 1111-1117
-
-
Ma, J.1
-
64
-
-
84881090410
-
2: Anatase versus rutile
-
2: anatase versus rutile. Phys. Chem. Chem. Phys. 15, 10978-10988 (2013).
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 10978-10988
-
-
Yan, J.1
-
66
-
-
2442537377
-
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
-
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 169-186 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 169-186
-
-
Kresse, G.1
Furthmüller, J.2
-
67
-
-
33845518500
-
Influence of the exchange screening parameter on the performance of screened hybrid functionals
-
Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).
-
(2006)
J. Chem. Phys.
, vol.125
-
-
Krukau, A.V.1
Vydrov, O.A.2
Izmaylov, A.F.3
Scuseria, G.E.4
-
68
-
-
25744460922
-
Projector augmented-wave method
-
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953-17979 (1994).
-
(1994)
Phys. Rev. B
, vol.50
, pp. 17953-17979
-
-
Blöchl, P.E.1
-
69
-
-
1842816907
-
Special points for Brillouin-zone integrations
-
Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188-5192 (1976).
-
(1976)
Phys. Rev. B
, vol.13
, pp. 5188-5192
-
-
Monkhorst, H.J.1
Pack, J.D.2
|