-
1
-
-
79551490035
-
Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis
-
Machielsen R, Siezen RJ, van Hijum SA, van Hylckama Vlieg JE. 2011. Molecular description and industrial potential of Tn6098 conjugative transfer conferring alpha-galactoside metabolism in Lactococcus lactis. Appl Environ Microbiol 77:555-563. https://doi.org/10.1128/AEM.02283-10
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 555-563
-
-
Machielsen, R.1
Siezen, R.J.2
van Hijum, S.A.3
van Hylckama Vlieg, J.E.4
-
2
-
-
0030943594
-
Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis
-
van Kranenburg R, Marugg JD, Van Swam II, Willem NJ, de Vos WM. 1997. Molecular characterization of the plasmid-encoded eps gene cluster essential for exopolysaccharide biosynthesis in Lactococcus lactis. Mol Microbiol 24:387-397. https://doi.org/10.1046/j.1365-2958.1997.3521720.x
-
(1997)
Mol Microbiol
, vol.24
, pp. 387-397
-
-
van Kranenburg, R.1
Marugg, J.D.2
Van Swam, I.I.3
Willem, N.J.4
de Vos, W.M.5
-
3
-
-
0026573214
-
Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis
-
Rauch PJ, De Vos WM. 1992. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J Bacteriol 174:1280-1287. https://doi.org/10.1128/jb.174.4.1280-1287.1992
-
(1992)
J Bacteriol
, vol.174
, pp. 1280-1287
-
-
Rauch, P.J.1
De Vos, W.M.2
-
4
-
-
0036692993
-
Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application
-
Coffey A, Ross RP. 2002. Bacteriophage-resistance systems in dairy starter strains: molecular analysis to application. Antonie Van Leeuwenhoek 82:303-321. https://doi.org/10.1023/A:1020639717181
-
(2002)
Antonie Van Leeuwenhoek
, vol.82
, pp. 303-321
-
-
Coffey, A.1
Ross, R.P.2
-
5
-
-
85042444724
-
The evolution of gene regulation research in Lactococcus lactis
-
Kok J, van Gijtenbeek LA, de Jong A, van der Meulen SB, Solopova A, Kuipers OP. 2017. The evolution of gene regulation research in Lactococcus lactis. FEMS Microbiol Rev 41:S220-S243. https://doi.org/10.1093/ femsre/fux028
-
(2017)
FEMS Microbiol Rev
, vol.41
, pp. S220-S243
-
-
Kok, J.1
van Gijtenbeek, L.A.2
de Jong, A.3
van der Meulen, S.B.4
Solopova, A.5
Kuipers, O.P.6
-
6
-
-
0023600057
-
Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product
-
Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429-5433. https://doi.org/10.1128/jb.169.12.5429-5433.1987
-
(1987)
J Bacteriol
, vol.169
, pp. 5429-5433
-
-
Ishino, Y.1
Shinagawa, H.2
Makino, K.3
Amemura, M.4
Nakata, A.5
-
7
-
-
0034034401
-
Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria
-
Mojica FJ, Diez-Villasenor C, Soria E, Juez G. 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244-246. https://doi.org/ 10.1046/j.1365-2958.2000.01838.x
-
(2000)
Mol Microbiol
, vol.36
, pp. 244-246
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Soria, E.3
Juez, G.4
-
8
-
-
0036267740
-
Identification of genes that are associated with DNA repeats in prokaryotes
-
Jansen R, Embden JD, Gaastra W, Schouls LM. 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565-1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x
-
(2002)
Mol Microbiol
, vol.43
, pp. 1565-1575
-
-
Jansen, R.1
Embden, J.D.2
Gaastra, W.3
Schouls, L.M.4
-
9
-
-
15844390228
-
CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies
-
Pourcel C, Salvignol G, Vergnaud G. 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151: 653-663. https://doi.org/10.1099/mic.0.27437-0
-
(2005)
Microbiology
, vol.151
, pp. 653-663
-
-
Pourcel, C.1
Salvignol, G.2
Vergnaud, G.3
-
10
-
-
16444385662
-
Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements
-
Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E. 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174-182. https://doi.org/10.1007/s00239-004-0046-3
-
(2005)
J Mol Evol
, vol.60
, pp. 174-182
-
-
Mojica, F.J.1
Diez-Villasenor, C.2
Garcia-Martinez, J.3
Soria, E.4
-
11
-
-
23844505202
-
Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin
-
Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551-2561. https://doi.org/10.1099/mic.0.28048-0
-
(2005)
Microbiology
, vol.151
, pp. 2551-2561
-
-
Bolotin, A.1
Quinquis, B.2
Sorokin, A.3
Ehrlich, S.D.4
-
12
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960-964. https://doi.org/10.1126/science.1159689
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.5
Snijders, A.P.6
Dickman, M.J.7
Makarova, K.S.8
Koonin, E.V.9
van der Oost, J.10
-
13
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-1712. https://doi.org/ 10.1126/science.1138140
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
Moineau, S.6
Romero, D.A.7
Horvath, P.8
-
14
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67-71. https://doi.org/10.1038/nature09523
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
Boyaval, P.6
Fremaux, C.7
Horvath, P.8
Magadan, A.H.9
Moineau, S.10
-
15
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602-607. https://doi.org/10.1038/nature09886
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
Pirzada, Z.A.6
Eckert, M.R.7
Vogel, J.8
Charpentier, E.9
-
16
-
-
38949123143
-
Phage response to CRISPRvan encoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S. 2008. Phage response to CRISPRvan encoded resistance in Streptococcus thermophilus. J Bacteriol 190: 1390-1400. https://doi.org/10.1128/JB.01412-07
-
(2008)
J Bacteriol
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonte, J.4
Fremaux, C.5
Boyaval, P.6
Romero, D.A.7
Horvath, P.8
Moineau, S.9
-
17
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science.1225829
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
18
-
-
84974717567
-
CRISPR/Cas9 in genome editing and beyond
-
Wang H, La Russa M, Qi LS. 2016. CRISPR/Cas9 in genome editing and beyond. Annu Rev Biochem 85:227-264. https://doi.org/10.1146/ annurev-biochem-060815-014607
-
(2016)
Annu Rev Biochem
, vol.85
, pp. 227-264
-
-
Wang, H.1
La Russa, M.2
Qi, L.S.3
-
19
-
-
84873729095
-
Multiplex genome engineering using CRISPR/Cas systems
-
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823. https://doi.org/10.1126/ science.1231143
-
(2013)
Science
, vol.339
, pp. 819-823
-
-
Cong, L.1
Ran, F.A.2
Cox, D.3
Lin, S.4
Barretto, R.5
Habib, N.6
Hsu, P.D.7
Wu, X.8
Jiang, W.9
Marraffini, L.A.10
Zhang, F.11
-
20
-
-
84964063204
-
DNA double strand break repair via nonhomologous end-joining
-
Davis AJ, Chen DJ. 2013. DNA double strand break repair via nonhomologous end-joining. Transl Cancer Res 2:130-143
-
(2013)
Transl Cancer Res
, vol.2
, pp. 130-143
-
-
Davis, A.J.1
Chen, D.J.2
-
21
-
-
84876567971
-
RNA-programmed genome editing in human cells
-
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. 2013. RNA-programmed genome editing in human cells. Elife 2:e00471. https://doi.org/10.7554/ eLife.00471
-
(2013)
Elife
, vol.2
-
-
Jinek, M.1
East, A.2
Cheng, A.3
Lin, S.4
Ma, E.5
Doudna, J.6
-
22
-
-
84970046200
-
Consequences of Cas9 cleavage in the chromosome of Escherichia coli
-
Cui L, Bikard D. 2016. Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res 44:4243-4251. https://doi.org/10.1093/nar/gkw223
-
(2016)
Nucleic Acids Res
, vol.44
, pp. 4243-4251
-
-
Cui, L.1
Bikard, D.2
-
23
-
-
84901070543
-
Chromosomal targeting by CRISPRCas systems can contribute to genome plasticity in bacteria
-
Dy RL, Pitman AR, Fineran PC. 2013. Chromosomal targeting by CRISPRCas systems can contribute to genome plasticity in bacteria. Mob Genet Elements 3:e26831. https://doi.org/10.4161/mge.26831
-
(2013)
Mob Genet Elements
, vol.3
-
-
Dy, R.L.1
Pitman, A.R.2
Fineran, P.C.3
-
24
-
-
84871111437
-
Mobile CRISPR/Casmediated bacteriophage resistance in Lactococcus lactis
-
Millen AM, Horvath P, Boyaval P, Romero DA. 2012. Mobile CRISPR/Casmediated bacteriophage resistance in Lactococcus lactis. PLoS One 7:e51663. https://doi.org/10.1371/journal.pone.0051663
-
(2012)
PLoS One
, vol.7
-
-
Millen, A.M.1
Horvath, P.2
Boyaval, P.3
Romero, D.A.4
-
25
-
-
85020703557
-
Genome engineering of virulent lactococcal phages using CRISPR-Cas9
-
Lemay ML, Tremblay DM, Moineau S. 2017. Genome engineering of virulent lactococcal phages using CRISPR-Cas9. ACS Synth Biol 6:1351-1358
-
(2017)
ACS Synth Biol
, vol.6
, pp. 1351-1358
-
-
Lemay, M.L.1
Tremblay, D.M.2
Moineau, S.3
-
26
-
-
84906828539
-
Precision genome engineering in lactic acid bacteria
-
van Pijkeren JP, Britton RA. 2014. Precision genome engineering in lactic acid bacteria. Microb Cell Fact 13(Suppl 1):S10. https://doi.org/10.1186/ 1475-2859-13-S1-S10
-
(2014)
Microb Cell Fact
, vol.13
, pp. S10
-
-
van Pijkeren, J.P.1
Britton, R.A.2
-
27
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh JH, van Pijkeren JP. 2014. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res 42:e131. https://doi.org/10.1093/ nar/gku623
-
(2014)
Nucleic Acids Res
, vol.42
-
-
Oh, J.H.1
van Pijkeren, J.P.2
-
28
-
-
85032683575
-
CRISPR-Cas9D10A nickaseassisted genome editing in Lactobacillus casei
-
Song X, Huang H, Xiong Z, Ai L, Yang S. 2017. CRISPR-Cas9D10A nickaseassisted genome editing in Lactobacillus casei. Appl Environ Microbiol 83:e01259-17
-
(2017)
Appl Environ Microbiol
, vol.83
-
-
Song, X.1
Huang, H.2
Xiong, Z.3
Ai, L.4
Yang, S.5
-
29
-
-
84937886246
-
CRISPR-based screening of genomic island excision events in bacteria
-
Selle K, Klaenhammer TR, Barrangou R. 2015. CRISPR-based screening of genomic island excision events in bacteria. Proc Natl Acad Sci U S A 112:8076-8081. https://doi.org/10.1073/pnas.1508525112
-
(2015)
Proc Natl Acad Sci U S A
, vol.112
, pp. 8076-8081
-
-
Selle, K.1
Klaenhammer, T.R.2
Barrangou, R.3
-
30
-
-
84906216646
-
CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages
-
Martel B, Moineau S. 2014. CRISPR-Cas: an efficient tool for genome engineering of virulent bacteriophages. Nucleic Acids Res 42: 9504-9513. https://doi.org/10.1093/nar/gku628
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 9504-9513
-
-
Martel, B.1
Moineau, S.2
-
31
-
-
85018762216
-
Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system
-
Jang YJ, Seo SO, Kim SA, Li L, Kim TJ, Kim SC, Jin YS, Han NS. 2017. Elimination of the cryptic plasmid in Leuconostoc citreum by CRISPR/Cas9 system. J Biotechnol 251:151-155. https://doi.org/10.1016/j.jbiotec.2017.04.018
-
(2017)
J Biotechnol
, vol.251
, pp. 151-155
-
-
Jang, Y.J.1
Seo, S.O.2
Kim, S.A.3
Li, L.4
Kim, T.J.5
Kim, S.C.6
Jin, Y.S.7
Han, N.S.8
-
32
-
-
0023992075
-
Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis
-
Simon D, Chopin A. 1988. Construction of a vector plasmid family and its use for molecular cloning in Streptococcus lactis. Biochimie 70:559-566. https://doi.org/10.1016/0300-9084(88)90093-4
-
(1988)
Biochimie
, vol.70
, pp. 559-566
-
-
Simon, D.1
Chopin, A.2
-
33
-
-
0028179540
-
Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria
-
Platteeuw C, Simons G, de Vos WM. 1994. Use of the Escherichia coli beta-glucuronidase (gusA) gene as a reporter gene for analyzing promoters in lactic acid bacteria. Appl Environ Microbiol 60:587-593
-
(1994)
Appl Environ Microbiol
, vol.60
, pp. 587-593
-
-
Platteeuw, C.1
Simons, G.2
de Vos, W.M.3
-
34
-
-
27544451339
-
10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis
-
Mierau I, Kleerebezem M. 2005. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol 68:705-717. https://doi.org/10.1007/s00253-005-0107-6
-
(2005)
Appl Microbiol Biotechnol
, vol.68
, pp. 705-717
-
-
Mierau, I.1
Kleerebezem, M.2
-
35
-
-
0345471372
-
Quorum sensing-controlled gene expression in lactic acid bacteria
-
Kuipers OP, de Ruyter PGGA, Kleerebezem M, de Vos WM. 1998. Quorum sensing-controlled gene expression in lactic acid bacteria. J Biotechnol 64:15-21. https://doi.org/10.1016/S0168-1656(98)00100-X
-
(1998)
J Biotechnol
, vol.64
, pp. 15-21
-
-
Kuipers, O.P.1
de Ruyter, P.G.G.A.2
Kleerebezem, M.3
de Vos, W.M.4
-
36
-
-
0024538493
-
A maturation protein is essential for production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope
-
Vos P, van Asseldonk M, van Jeveren F, Siezen R, Simons G, de Vos WM. 1989. A maturation protein is essential for production of active forms of Lactococcus lactis SK11 serine proteinase located in or secreted from the cell envelope. J Bacteriol 171:2795-2802. https://doi.org/10.1128/jb.171.5.2795-2802.1989
-
(1989)
J Bacteriol
, vol.171
, pp. 2795-2802
-
-
Vos, P.1
van Asseldonk, M.2
van Jeveren, F.3
Siezen, R.4
Simons, G.5
de Vos, W.M.6
-
37
-
-
0035253405
-
Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations
-
Chopin A, Bolotin A, Sorokin A, Ehrlich SD, Chopin M. 2001. Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res 29: 644-651. https://doi.org/10.1093/nar/29.3.644
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 644-651
-
-
Chopin, A.1
Bolotin, A.2
Sorokin, A.3
Ehrlich, S.D.4
Chopin, M.5
-
38
-
-
85037563627
-
The hidden life of integrative and conjugative elements
-
Delavat F, Miyazaki R, Carraro N, Pradervand N, van der Meer JR. 2017. The hidden life of integrative and conjugative elements. FEMS Microbiol Rev 41:512-537. https://doi.org/10.1093/femsre/fux008
-
(2017)
FEMS Microbiol Rev
, vol.41
, pp. 512-537
-
-
Delavat, F.1
Miyazaki, R.2
Carraro, N.3
Pradervand, N.4
van der Meer, J.R.5
-
39
-
-
84920828858
-
Impact of spontaneous prophage induction on the fitness of bacterial populations and hostmicrobe interactions
-
Nanda AM, Thormann K, Frunzke J. 2015. Impact of spontaneous prophage induction on the fitness of bacterial populations and hostmicrobe interactions. J Bacteriol 197:410-419. https://doi.org/10.1128/ JB.02230-14
-
(2015)
J Bacteriol
, vol.197
, pp. 410-419
-
-
Nanda, A.M.1
Thormann, K.2
Frunzke, J.3
-
40
-
-
77749279743
-
A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius
-
Fontaine L, Boutry C, de Frahan MH, Delplace B, Fremaux C, Horvath P, Boyaval P, Hols P. 2010. A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. J Bacteriol 192:1444-1454. https:// doi.org/10.1128/JB.01251-09
-
(2010)
J Bacteriol
, vol.192
, pp. 1444-1454
-
-
Fontaine, L.1
Boutry, C.2
de Frahan, M.H.3
Delplace, B.4
Fremaux, C.5
Horvath, P.6
Boyaval, P.7
Hols, P.8
-
41
-
-
0026079801
-
Genetic competence in Bacillus subtilis
-
Dubnau D. 1991. Genetic competence in Bacillus subtilis. Microbiol Rev 55:395-424
-
(1991)
Microbiol Rev
, vol.55
, pp. 395-424
-
-
Dubnau, D.1
-
42
-
-
80755145195
-
The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli
-
Sapranauskas R, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V. 2011. The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res 39:9275-9282. https://doi.org/10.1093/nar/gkr606
-
(2011)
Nucleic Acids Res
, vol.39
, pp. 9275-9282
-
-
Sapranauskas, R.1
Gasiunas, G.2
Fremaux, C.3
Barrangou, R.4
Horvath, P.5
Siksnys, V.6
-
43
-
-
84911465571
-
Target specificity of the CRISPR-Cas9 system
-
Wu X, Kriz AJ, Sharp PA. 2014. Target specificity of the CRISPR-Cas9 system. Quant Biol 2:59-70. https://doi.org/10.1007/s40484-014-0030-x
-
(2014)
Quant Biol
, vol.2
, pp. 59-70
-
-
Wu, X.1
Kriz, A.J.2
Sharp, P.A.3
-
44
-
-
0027230871
-
Improved cloning vectors and transformation procedure for Lactococcus lactis
-
Wells JM, Wilson PW, Le Page RW. 1993. Improved cloning vectors and transformation procedure for Lactococcus lactis. J Appl Bacteriol 74: 629-636. https://doi.org/10.1111/j.1365-2672.1993.tb05195.x
-
(1993)
J Appl Bacteriol
, vol.74
, pp. 629-636
-
-
Wells, J.M.1
Wilson, P.W.2
Le Page, R.W.3
-
45
-
-
0027229928
-
Gene splicing by overlap extension
-
Horton RM, Ho SN, Pullen JK, Hunt HD, Cai Z, Pease LR. 1993. Gene splicing by overlap extension. Methods Enzymol 217:270-279. https:// doi.org/10.1016/0076-6879(93)17067-F
-
(1993)
Methods Enzymol
, vol.217
, pp. 270-279
-
-
Horton, R.M.1
Ho, S.N.2
Pullen, J.K.3
Hunt, H.D.4
Cai, Z.5
Pease, L.R.6
-
46
-
-
84957605863
-
Optimized sgRNA design to maximize activity and minimize offtarget effects of CRISPR-Cas9
-
Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE. 2016. Optimized sgRNA design to maximize activity and minimize offtarget effects of CRISPR-Cas9. Nat Biotechnol 34:184-191. https://doi.org/10.1038/nbt.3437
-
(2016)
Nat Biotechnol
, vol.34
, pp. 184-191
-
-
Doench, J.G.1
Fusi, N.2
Sullender, M.3
Hegde, M.4
Vaimberg, E.W.5
Donovan, K.F.6
Smith, I.7
Tothova, Z.8
Wilen, C.9
Orchard, R.10
Virgin, H.W.11
Listgarten, J.12
Root, D.E.13
-
47
-
-
84884165315
-
DNA targeting specificity of RNA-guided Cas9 nucleases
-
Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li Y, Fine EJ, Wu X, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827-832. https://doi.org/10.1038/nbt.2647
-
(2013)
Nat Biotechnol
, vol.31
, pp. 827-832
-
-
Hsu, P.D.1
Scott, D.A.2
Weinstein, J.A.3
Ran, F.A.4
Konermann, S.5
Agarwala, V.6
Li, Y.7
Fine, E.J.8
Wu, X.9
Shalem, O.10
Cradick, T.J.11
Marraffini, L.A.12
Bao, G.13
Zhang, F.14
-
48
-
-
0021339967
-
Location of peptidases outside and inside the membrane of Streptococcus cremoris
-
Exterkate FA. 1984. Location of peptidases outside and inside the membrane of Streptococcus cremoris. Appl Environ Microbiol 47:177-183
-
(1984)
Appl Environ Microbiol
, vol.47
, pp. 177-183
-
-
Exterkate, F.A.1
-
49
-
-
0020600404
-
Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing
-
Gasson MJ. 1983. Plasmid complements of Streptococcus lactis NCDO 712 and other lactic streptococci after protoplast-induced curing. J Bacteriol 154:1-9
-
(1983)
J Bacteriol
, vol.154
, pp. 1-9
-
-
Gasson, M.J.1
-
50
-
-
77952072288
-
Complete genome sequence of Lactococcus lactis subsp lactis KF147, a plant-associated lactic acid bacterium
-
Siezen RJ, Bayjanov J, Renckens B, Wels M, van Hijum SA, Molenaar D, van Hylckama Vlieg JE. 2010. Complete genome sequence of Lactococcus lactis subsp. lactis KF147, a plant-associated lactic acid bacterium J Bacteriol 192:2649-2650
-
(2010)
J Bacteriol
, vol.192
, pp. 2649-2650
-
-
Siezen, R.J.1
Bayjanov, J.2
Renckens, B.3
Wels, M.4
van Hijum, S.A.5
Molenaar, D.6
van Hylckama Vlieg, J.E.7
-
51
-
-
0035021812
-
The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp
-
Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. 2001. The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403 Genome Res 11:731-753
-
(2001)
Lactis IL1403 Genome Res
, vol.11
, pp. 731-753
-
-
Bolotin, A.1
Wincker, P.2
Mauger, S.3
Jaillon, O.4
Malarme, K.5
Weissenbach, J.6
Ehrlich, S.D.7
Sorokin, A.8
|