메뉴 건너뛰기




Volumn 84, Issue 8, 2018, Pages

Assembly of synthetic functional cellulosomal structures onto the cell surface of Lactobacillus plantarum, a potent member of the gut microbiome

Author keywords

Cellulase; Cellulosomes; Enzymatic complex; Lactic acid bacteria; Selfassembly; Xylanase

Indexed keywords

BACILLI; CELL MEMBRANES; ENZYMES; LACTIC ACID; MACHINERY; SELF ASSEMBLY;

EID: 85044855675     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.00282-18     Document Type: Article
Times cited : (30)

References (61)
  • 1
    • 77955631607 scopus 로고    scopus 로고
    • Plant cell walls: the skeleton of the plant world
    • Doblin MS, Pettolino F, Bacic A. 2010. Plant cell walls: the skeleton of the plant world. Funct Plant Biol 37:357-381. https://doi.org/10.1071/ FP09279
    • (2010) Funct Plant Biol , vol.37 , pp. 357-381
    • Doblin, M.S.1    Pettolino, F.2    Bacic, A.3
  • 2
    • 85004148129 scopus 로고    scopus 로고
    • Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides
    • 12 December
    • Artzi L, Bayer EA, Moraïs S. 12 December 2016. Cellulosomes: bacterial nanomachines for dismantling plant polysaccharides. Nat Rev Microbiol https://doi.org/10.1038/nrmicro.2016.164
    • (2016) Nat Rev Microbiol
    • Artzi, L.1    Bayer, E.A.2    Moraïs, S.3
  • 3
    • 0021016163 scopus 로고
    • Characterization of a cellulosebinding, cellulase-containing complex in Clostridium thermocellum
    • Lamed R, Setter E, Bayer EA. 1983. Characterization of a cellulosebinding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 156:828-836
    • (1983) J Bacteriol , vol.156 , pp. 828-836
    • Lamed, R.1    Setter, E.2    Bayer, E.A.3
  • 4
    • 0033167973 scopus 로고    scopus 로고
    • The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides
    • Shoham Y, Lamed R, Bayer EA. 1999. The cellulosome concept as an efficient microbial strategy for the degradation of insoluble polysaccharides. Trends Microbiol 7:275-281. https://doi.org/10.1016/S0966-842X (99)01533-4
    • (1999) Trends Microbiol , vol.7 , pp. 275-281
    • Shoham, Y.1    Lamed, R.2    Bayer, E.A.3
  • 5
    • 4143139469 scopus 로고    scopus 로고
    • The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides
    • Bayer EA, Belaich J-P, Shoham Y, Lamed R. 2004. The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 58:521-554. https://doi.org/10.1146/annurev.micro.57.030502.091022
    • (2004) Annu Rev Microbiol , vol.58 , pp. 521-554
    • Bayer, E.A.1    Belaich, J.-P.2    Shoham, Y.3    Lamed, R.4
  • 6
    • 31044452624 scopus 로고    scopus 로고
    • Mechanism of bacterial cellsurface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex
    • Adams JJ, Pal G, Jia Z, Smith SP. 2006. Mechanism of bacterial cellsurface attachment revealed by the structure of cellulosomal type II cohesin-dockerin complex. Proc Natl Acad Sci U S A 103:305-310. https://doi.org/10.1073/pnas.0507109103
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 305-310
    • Adams, J.J.1    Pal, G.2    Jia, Z.3    Smith, S.P.4
  • 7
    • 0021855251 scopus 로고
    • Organization and distribution of the cellulosome in Clostridium thermocellum
    • Bayer EA, Setter E, Lamed R. 1985. Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 163:552-559
    • (1985) J Bacteriol , vol.163 , pp. 552-559
    • Bayer, E.A.1    Setter, E.2    Lamed, R.3
  • 8
    • 70349436024 scopus 로고    scopus 로고
    • Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production
    • Tsai S-L, Oh J, Singh S, Chen R, Chen W. 2009. Functional assembly of minicellulosomes on the Saccharomyces cerevisiae cell surface for cellulose hydrolysis and ethanol production. Appl Environ Microbiol 75: 6087-6093. https://doi.org/10.1128/AEM.01538-09
    • (2009) Appl Environ Microbiol , vol.75 , pp. 6087-6093
    • Tsai, S.-L.1    Oh, J.2    Singh, S.3    Chen, R.4    Chen, W.5
  • 9
    • 78649713858 scopus 로고    scopus 로고
    • Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production
    • Tsai S-L, Goyal G, Chen W. 2010. Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol 76:7514-7520. https://doi.org/10.1128/AEM.01777-10
    • (2010) Appl Environ Microbiol , vol.76 , pp. 7514-7520
    • Tsai, S.-L.1    Goyal, G.2    Chen, W.3
  • 10
    • 76649105430 scopus 로고    scopus 로고
    • Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol
    • Wen F, Sun J, Zhao H. 2010. Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 76:1251-1260. https://doi.org/ 10.1128/AEM.01687-09
    • (2010) Appl Environ Microbiol , vol.76 , pp. 1251-1260
    • Wen, F.1    Sun, J.2    Zhao, H.3
  • 11
    • 70350553584 scopus 로고    scopus 로고
    • Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae
    • Lilly M, Fierobe H-P, van Zyl WH, Volschenk H. 2009. Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res 9:1236-1249. https://doi.org/10.1111/j.1567-1364.2009.00564.x
    • (2009) FEMS Yeast Res , vol.9 , pp. 1236-1249
    • Lilly, M.1    Fierobe, H.-P.2    van Zyl, W.H.3    Volschenk, H.4
  • 12
    • 84863115935 scopus 로고    scopus 로고
    • Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex
    • You C, Zhang X-Z, Sathitsuksanoh N, Lynd LR, Zhang Y-HP. 2012. Enhanced microbial utilization of recalcitrant cellulose by an ex vivo cellulosome-microbe complex. Appl Environ Microbiol 78:1437-1444. https://doi.org/10.1128/AEM.07138-11
    • (2012) Appl Environ Microbiol , vol.78 , pp. 1437-1444
    • You, C.1    Zhang, X.-Z.2    Sathitsuksanoh, N.3    Lynd, L.R.4    Zhang, Y.-H.P.5
  • 14
    • 84969785089 scopus 로고    scopus 로고
    • Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824
    • Willson BJ, Kovács K, Wilding-Steele T, Markus R, Winzer K, Minton NP. 2016. Production of a functional cell wall-anchored minicellulosome by recombinant Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 9:109. https://doi.org/10.1186/s13068-016-0526-x
    • (2016) Biotechnol Biofuels , vol.9 , pp. 109
    • Willson, B.J.1    Kovács, K.2    Wilding-Steele, T.3    Markus, R.4    Winzer, K.5    Minton, N.P.6
  • 15
    • 77956480351 scopus 로고    scopus 로고
    • Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis
    • Wieczorek AS, Martin VJJ. 2010. Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb Cell Fact 9:69. https://doi.org/10.1186/1475-2859-9-69
    • (2010) Microb Cell Fact , vol.9 , pp. 69
    • Wieczorek, A.S.1    Martin, V.J.J.2
  • 16
    • 0027984011 scopus 로고
    • The cellulosome-a treasure-trove for biotechnology
    • Bayer EA, Morag E, Lamed R. 1994. The cellulosome-a treasure-trove for biotechnology. Trends Biotechnol 12:379-386. https://doi.org/10.1016/0167-7799(94)90039-6
    • (1994) Trends Biotechnol , vol.12 , pp. 379-386
    • Bayer, E.A.1    Morag, E.2    Lamed, R.3
  • 19
    • 79952167181 scopus 로고    scopus 로고
    • Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate
    • Moraïs S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA. 2010. Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. mBio 1:e00285-10. https://doi.org/10.1128/mBio.00285-10
    • (2010) MBio , vol.1
    • Moraïs, S.1    Barak, Y.2    Caspi, J.3    Hadar, Y.4    Lamed, R.5    Shoham, Y.6    Wilson, D.B.7    Bayer, E.A.8
  • 20
    • 84924617159 scopus 로고    scopus 로고
    • Engineering microbial surfaces to degrade lignocellulosic biomass
    • 18 December
    • Huang GL, Anderson TD, Clubb RT. 18 December 2013. Engineering microbial surfaces to degrade lignocellulosic biomass. Bioengineered https://doi.org/10.4161/bioe.27461
    • (2013) Bioengineered
    • Huang, G.L.1    Anderson, T.D.2    Clubb, R.T.3
  • 22
    • 84904527345 scopus 로고    scopus 로고
    • A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells
    • Moraïs S, Shterzer N, Lamed R, Bayer EA, Mizrahi I. 2014. A combined cell-consortium approach for lignocellulose degradation by specialized Lactobacillus plantarum cells. Biotechnol Biofuels 7:112. https://doi.org/ 10.1186/1754-6834-7-112
    • (2014) Biotechnol Biofuels , vol.7 , pp. 112
    • Moraïs, S.1    Shterzer, N.2    Lamed, R.3    Bayer, E.A.4    Mizrahi, I.5
  • 23
    • 84922013414 scopus 로고    scopus 로고
    • Towards lactic acid bacteria-based biorefineries
    • Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. 2014. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 32:1216-1236. https:// doi.org/10.1016/j.biotechadv.2014.07.005
    • (2014) Biotechnol Adv , vol.32 , pp. 1216-1236
    • Mazzoli, R.1    Bosco, F.2    Mizrahi, I.3    Bayer, E.A.4    Pessione, E.5
  • 24
    • 0346492811 scopus 로고    scopus 로고
    • High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol
    • G-Alegría E, López I, Ruiz JI, Sáenz J, Fernández E, Zarazaga M, Dizy M, Torres C, Ruiz-Larrea F. 2004. High tolerance of wild Lactobacillus plantarum and Oenococcus oeni strains to lyophilisation and stress environmental conditions of acid pH and ethanol. FEMS Microbiol Lett 230: 53-61. https://doi.org/10.1016/S0378-1097(03)00854-1
    • (2004) FEMS Microbiol Lett , vol.230 , pp. 53-61
    • G-Alegría, E.1    López, I.2    Ruiz, J.I.3    Sáenz, J.4    Fernández, E.5    Zarazaga, M.6    Dizy, M.7    Torres, C.8    Ruiz-Larrea, F.9
  • 26
    • 50049098340 scopus 로고    scopus 로고
    • Ecological role of Lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research
    • Walter J. 2008. Ecological role of Lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985-4996. https://doi.org/10.1128/AEM.00753-08
    • (2008) Appl Environ Microbiol , vol.74 , pp. 4985-4996
    • Walter, J.1
  • 27
    • 84982980716 scopus 로고    scopus 로고
    • Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats
    • Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, Gillet B, Kleerebezem M, Lyon CB. 2016. Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 18:4974-4989. https://doi.org/10.1111/1462-2920.13455
    • (2016) Environ Microbiol , vol.18 , pp. 4974-4989
    • Martino, M.E.1    Bayjanov, J.R.2    Caffrey, B.E.3    Wels, M.4    Joncour, P.5    Hughes, S.6    Gillet, B.7    Kleerebezem, M.8    Lyon, C.B.9
  • 28
    • 80052774197 scopus 로고    scopus 로고
    • Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing
    • Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F. 2011. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14:403-414. https://doi.org/10.1016/j.cmet.2011.07.012
    • (2011) Cell Metab , vol.14 , pp. 403-414
    • Storelli, G.1    Defaye, A.2    Erkosar, B.3    Hols, P.4    Royet, J.5    Leulier, F.6
  • 31
    • 70349728622 scopus 로고    scopus 로고
    • Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1
    • Mathiesen G, Sveen A, Brurberg MB, Fredriksen L, Axelsson L, Eijsink VG. 2009. Genome-wide analysis of signal peptide functionality in Lactobacillus plantarum WCFS1. BMC Genomics 10:425. https://doi.org/10.1186/ 1471-2164-10-425
    • (2009) BMC Genomics , vol.10 , pp. 425
    • Mathiesen, G.1    Sveen, A.2    Brurberg, M.B.3    Fredriksen, L.4    Axelsson, L.5    Eijsink, V.G.6
  • 32
    • 0038443570 scopus 로고    scopus 로고
    • The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein
    • Xu Q, Gao W, Ding S, Kenig R, Shoham Y, Bayer EA, Lamed R. 2003. The cellulosome system of Acetivibrio cellulolyticus includes a novel type of adaptor protein and a cell surface anchoring protein. J Bacteriol 185: 4548-4557. https://doi.org/10.1128/JB.185.15.4548-4557.2003
    • (2003) J Bacteriol , vol.185 , pp. 4548-4557
    • Xu, Q.1    Gao, W.2    Ding, S.3    Kenig, R.4    Shoham, Y.5    Bayer, E.A.6    Lamed, R.7
  • 34
    • 84999036898 scopus 로고    scopus 로고
    • Draft genome sequence of the cellulolytic bacterium Clostridium papyrosolvens C7 (ATCC 700395)
    • 12 September
    • Zepeda V, Dassa B, Borovok I, Lamed R, Bayer EA, Cate JHD. 12 September 2013. Draft genome sequence of the cellulolytic bacterium Clostridium papyrosolvens C7 (ATCC 700395). Genome Announc https://doi.org/ 10.1128/genomeA.00698-13
    • (2013) Genome Announc
    • Zepeda, V.1    Dassa, B.2    Borovok, I.3    Lamed, R.4    Bayer, E.A.5    Cate, J.H.D.6
  • 35
    • 34250878420 scopus 로고    scopus 로고
    • Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes
    • Mingardon F, Chantal A, López-Contreras AM, Dray C, Bayer EA, Fierobe H-P. 2007. Incorporation of fungal cellulases in bacterial minicellulosomes yields viable, synergistically acting cellulolytic complexes. Appl Environ Microbiol 73:3822-3832. https://doi.org/10.1128/AEM.00398-07
    • (2007) Appl Environ Microbiol , vol.73 , pp. 3822-3832
    • Mingardon, F.1    Chantal, A.2    López-Contreras, A.M.3    Dray, C.4    Bayer, E.A.5    Fierobe, H.-P.6
  • 36
    • 84865156886 scopus 로고    scopus 로고
    • Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production
    • Fan L-H, Zhang Z-J, Yu X-Y, Xue Y-X, Tan T-W. 2012. Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci U S A 109:13260-13265. https://doi.org/10.1073/pnas.1209856109
    • (2012) Proc Natl Acad Sci U S A , vol.109 , pp. 13260-13265
    • Fan, L.-H.1    Zhang, Z.-J.2    Yu, X.-Y.3    Xue, Y.-X.4    Tan, T.-W.5
  • 37
    • 33947152858 scopus 로고    scopus 로고
    • Enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum explored by two-dimensional analysis: Identification of seven genes encoding new dockerin-containing proteins
    • Blouzard JC, Bourgeois C, De Philip P, Valette O, Bélaïch A, Tardif C, Bélaïch JP, Pagès S. 2007. Enzyme diversity of the cellulolytic system produced by Clostridium cellulolyticum explored by two-dimensional analysis: Identification of seven genes encoding new dockerin-containing proteins. J Bacteriol 189:2300-2309. https://doi.org/10.1128/JB.00917-06
    • (2007) J Bacteriol , vol.189 , pp. 2300-2309
    • Blouzard, J.C.1    Bourgeois, C.2    De Philip, P.3    Valette, O.4    Bélaïch, A.5    Tardif, C.6    Bélaïch, J.P.7    Pagès, S.8
  • 38
    • 0033056902 scopus 로고    scopus 로고
    • The extracellular xylan degradative system in Clostridium cellulolyticum cultivated on xylan: evidence for cell-free cellulosome production
    • Mohand-Oussaid O, Payot S, Guedon E, Gelhaye E, Youyou A, Petitdemange H. 1999. The extracellular xylan degradative system in Clostridium cellulolyticum cultivated on xylan: evidence for cell-free cellulosome production. J Bacteriol 181:4035-4040
    • (1999) J Bacteriol , vol.181 , pp. 4035-4040
    • Mohand-Oussaid, O.1    Payot, S.2    Guedon, E.3    Gelhaye, E.4    Youyou, A.5    Petitdemange, H.6
  • 39
    • 41149118473 scopus 로고    scopus 로고
    • Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules
    • Haimovitz R, Barak Y, Morag E, Voronov-Goldman M, Lamed R, Bayer EA. 2008. Cohesin-dockerin microarray: diverse specificities between two complementary families of interacting protein modules. Proteomics 8:968-979. https://doi.org/10.1002/pmic.200700486
    • (2008) Proteomics , vol.8 , pp. 968-979
    • Haimovitz, R.1    Barak, Y.2    Morag, E.3    Voronov-Goldman, M.4    Lamed, R.5    Bayer, E.A.6
  • 40
    • 0343229549 scopus 로고    scopus 로고
    • Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain
    • Pagès S, Belaich A, Belaich J-P, Morag E, Lamed R, Shoham Y, Bayer EA. 1997. Species-specificity of the cohesin-dockerin interaction between Clostridium thermocellum and Clostridium cellulolyticum: prediction of specificity determinants of the dockerin domain. Proteins 29:517-527. https://doi.org/10.1002/(SICI)1097-0134(199712)29:4<517::AID-PROT11>3.0.CO;2-P
    • (1997) Proteins , vol.29 , pp. 517-527
    • Pagès, S.1    Belaich, A.2    Belaich, J.-P.3    Morag, E.4    Lamed, R.5    Shoham, Y.6    Bayer, E.A.7
  • 41
    • 84875580562 scopus 로고    scopus 로고
    • Functional display of complex cellulosomes on the yeast surface via adaptive assembly
    • Tsai SL, DaSilva NA, Chen W. 2013. Functional display of complex cellulosomes on the yeast surface via adaptive assembly. ACS Synth Biol 2:14-21. https://doi.org/10.1021/sb300047u
    • (2013) ACS Synth Biol , vol.2 , pp. 14-21
    • Tsai, S.L.1    DaSilva, N.A.2    Chen, W.3
  • 42
    • 84965031018 scopus 로고    scopus 로고
    • Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature
    • Stern J, Moraïs S, Lamed R, Bayer EA. 2016. Adaptor scaffoldins: an original strategy for extended designer cellulosomes, inspired from nature. mBio 7:e00083-16. https://doi.org/10.1128/mBio.00083-16
    • (2016) MBio , vol.7
    • Stern, J.1    Moraïs, S.2    Lamed, R.3    Bayer, E.A.4
  • 43
    • 84873053043 scopus 로고    scopus 로고
    • Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation
    • Remus DM, Bongers RS, Meijerink M, Fusetti F, Poolman B, de Vos P, Wells JM, Kleerebezem M, Bron PA. 2013. Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J Bacteriol 195:502-509. https://doi.org/10.1128/JB.01321-12
    • (2013) J Bacteriol , vol.195 , pp. 502-509
    • Remus, D.M.1    Bongers, R.S.2    Meijerink, M.3    Fusetti, F.4    Poolman, B.5    de Vos, P.6    Wells, J.M.7    Kleerebezem, M.8    Bron, P.A.9
  • 44
    • 34249949390 scopus 로고    scopus 로고
    • The potential of cellulases and cellulosomes for cellulosic waste management
    • Bayer EA, Lamed R, Himmel ME. 2007. The potential of cellulases and cellulosomes for cellulosic waste management. Curr Opin Biotechnol 18:237-245. https://doi.org/10.1016/j.copbio.2007.04.004
    • (2007) Curr Opin Biotechnol , vol.18 , pp. 237-245
    • Bayer, E.A.1    Lamed, R.2    Himmel, M.E.3
  • 45
    • 85017537569 scopus 로고    scopus 로고
    • Lactobacilli and Pediococci as versatile cell factories-evaluation of strain properties and genetic tools
    • Bosma EF, Forster J, Nielsen AT. 2017. Lactobacilli and Pediococci as versatile cell factories-evaluation of strain properties and genetic tools. Biotechnol Adv 35:419-442. https://doi.org/10.1016/j.biotechadv.2017.04.002
    • (2017) Biotechnol Adv , vol.35 , pp. 419-442
    • Bosma, E.F.1    Forster, J.2    Nielsen, A.T.3
  • 46
    • 25844505728 scopus 로고    scopus 로고
    • Consolidated bioprocessing of cellulosic biomass: an update
    • Lynd L, Zyl W, McBride J, Laser M. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577-583. https:// doi.org/10.1016/j.copbio.2005.08.009
    • (2005) Curr Opin Biotechnol , vol.16 , pp. 577-583
    • Lynd, L.1    Zyl, W.2    McBride, J.3    Laser, M.4
  • 47
    • 84861443800 scopus 로고    scopus 로고
    • Natural strategies for the spatial optimization of metabolism in synthetic biology
    • Agapakis CM, Boyle PM, Silver PA. 2012. Natural strategies for the spatial optimization of metabolism in synthetic biology. Nat Chem Biol 8:527-535. https://doi.org/10.1038/nchembio.975
    • (2012) Nat Chem Biol , vol.8 , pp. 527-535
    • Agapakis, C.M.1    Boyle, P.M.2    Silver, P.A.3
  • 48
    • 84864089016 scopus 로고    scopus 로고
    • In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose
    • Krauss J, Zverlov VV, Schwarz WH. 2012. In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Appl Environ Microbiol 78:4301-4307. https:// doi.org/10.1128/AEM.07959-11
    • (2012) Appl Environ Microbiol , vol.78 , pp. 4301-4307
    • Krauss, J.1    Zverlov, V.V.2    Schwarz, W.H.3
  • 49
    • 77956176226 scopus 로고    scopus 로고
    • Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol
    • Xu C, Qin Y, Li Y, Ji Y, Huang J, Song H, Xu J. 2010. Factors influencing cellulosome activity in consolidated bioprocessing of cellulosic ethanol. Bioresour Technol 101:9560-9569. https://doi.org/10.1016/j.biortech.2010.07.065
    • (2010) Bioresour Technol , vol.101 , pp. 9560-9569
    • Xu, C.1    Qin, Y.2    Li, Y.3    Ji, Y.4    Huang, J.5    Song, H.6    Xu, J.7
  • 51
    • 84960461912 scopus 로고    scopus 로고
    • Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum
    • Heiss S, Hörmann A, Tauer C, Sonnleitner M, Egger E, Grabherr R, Heinl S. 2016. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum. Microb Cell Fact 15:50. https://doi.org/10.1186/s12934-016-0448-0
    • (2016) Microb Cell Fact , vol.15 , pp. 50
    • Heiss, S.1    Hörmann, A.2    Tauer, C.3    Sonnleitner, M.4    Egger, E.5    Grabherr, R.6    Heinl, S.7
  • 52
    • 73249151841 scopus 로고    scopus 로고
    • Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum
    • Okano K, Yoshida S, Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A. 2009. Improved production of homo-D-lactic acid via xylose fermentation by introduction of xylose assimilation genes and redirection of the phosphoketolase pathway to the pentose phosphate pathway in L-lactate dehydrogenase gene-deficient Lactobacillus plantarum. Appl Environ Microbiol 75:7858-7861. https://doi.org/10.1128/AEM.01692-09
    • (2009) Appl Environ Microbiol , vol.75 , pp. 7858-7861
    • Okano, K.1    Yoshida, S.2    Yamada, R.3    Tanaka, T.4    Ogino, C.5    Fukuda, H.6    Kondo, A.7
  • 53
    • 84864406375 scopus 로고    scopus 로고
    • Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases
    • Zhang J, Tang M, Viikari L. 2012. Xylans inhibit enzymatic hydrolysis of lignocellulosic materials by cellulases. Bioresour Technol 121:8-12. https:// doi.org/10.1016/j.biortech.2012.07.010
    • (2012) Bioresour Technol , vol.121 , pp. 8-12
    • Zhang, J.1    Tang, M.2    Viikari, L.3
  • 55
    • 84903367725 scopus 로고    scopus 로고
    • DNA cloning and assembly methods
    • Valla S, Lale R (ed). Springer Science+ Business Media, New York, NY
    • Peleg Y, Unger T. 2014. DNA cloning and assembly methods, p 73-87. In Valla S, Lale R (ed), Methods in molecular biology. Springer Science+ Business Media, New York, NY
    • (2014) Methods in molecular biology , pp. 73-87
    • Peleg, Y.1    Unger, T.2
  • 56
    • 78149418217 scopus 로고    scopus 로고
    • Cell wall anchoring of the 37-kilodalton oncofetal antigen by Lactobacillus plantarum for mucosal cancer vaccine delivery
    • Fredriksen L, Mathiesen G, Sioud M, Eijsink VGH. 2010. Cell wall anchoring of the 37-kilodalton oncofetal antigen by Lactobacillus plantarum for mucosal cancer vaccine delivery. Appl Environ Microbiol 76:7359-7362. https://doi.org/10.1128/AEM.01031-10
    • (2010) Appl Environ Microbiol , vol.76 , pp. 7359-7362
    • Fredriksen, L.1    Mathiesen, G.2    Sioud, M.3    Eijsink, V.G.H.4
  • 57
    • 27744458385 scopus 로고    scopus 로고
    • Matching fusion-protein systems for affinity analysis of two interacting families of proteins: The cohesin-dockerin interaction
    • Barak Y, Handelsman T, Nakar D, Mechaly A, Lamed R, Shoham Y, Bayer EA. 2005. Matching fusion-protein systems for affinity analysis of two interacting families of proteins: The cohesin-dockerin interaction. J Mol Recognit 18:491-501. https://doi.org/10.1002/jmr.749
    • (2005) J Mol Recognit , vol.18 , pp. 491-501
    • Barak, Y.1    Handelsman, T.2    Nakar, D.3    Mechaly, A.4    Lamed, R.5    Shoham, Y.6    Bayer, E.A.7
  • 58
    • 0030588632 scopus 로고    scopus 로고
    • Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6
    • Lapidot A, Mechaly A, Shoham Y. 1996. Overexpression and single-step purification of a thermostable xylanase from Bacillus stearothermophilus T-6. J Biotechnol 51:259-264. https://doi.org/10.1016/S0168-1656(96) 01604-5
    • (1996) J Biotechnol , vol.51 , pp. 259-264
    • Lapidot, A.1    Mechaly, A.2    Shoham, Y.3
  • 59
    • 0029040820 scopus 로고
    • Expression, purification, and characterization of the cellulosebinding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum
    • Morag E, Lapidot A, Govorko D, Lamed R, Wilchek M, Bayer EA, Shoham Y. 1995. Expression, purification, and characterization of the cellulosebinding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl Environ Microbiol 61:1980-1986
    • (1995) Appl Environ Microbiol , vol.61 , pp. 1980-1986
    • Morag, E.1    Lapidot, A.2    Govorko, D.3    Lamed, R.4    Wilchek, M.5    Bayer, E.A.6    Shoham, Y.7
  • 60
    • 33747333106 scopus 로고
    • Use of dinitrosalicylic acid reagent for determination of reducing sugar
    • Miller GL. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 31:426-428
    • (1959) Anal Biochem , vol.31 , pp. 426-428
    • Miller, G.L.1
  • 61
    • 72149110077 scopus 로고    scopus 로고
    • Development of a minimal growth medium for Lactobacillus plantarum
    • Wegkamp A, Teusink B, de Vos WM, Smid EJ. 2010. Development of a minimal growth medium for Lactobacillus plantarum. Lett Appl Microbiol 50:57-64. https://doi.org/10.1111/j.1472-765X.2009.02752.x
    • (2010) Lett Appl Microbiol , vol.50 , pp. 57-64
    • Wegkamp, A.1    Teusink, B.2    de Vos, W.M.3    Smid, E.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.