메뉴 건너뛰기




Volumn 96, Issue 5, 2018, Pages 463-476

Homeostatic control of dendritic cell numbers and differentiation

Author keywords

DC1; DC2; dendritic cell; development; differentiation; ontogeny; pDC; plasmacytoid DC; steady state; subset; transcriptional control

Indexed keywords

ADAPTIVE IMMUNITY; AUTOIMMUNE DISEASE; CELL COUNT; CELL DIFFERENTIATION; CELL FUNCTION; CELL PROLIFERATION; DENDRITIC CELL; HOMEOSTASIS; HUMAN; NONHUMAN; ONTOGENY; PLASMACYTOID DENDRITIC CELL; REVIEW; TISSUE INJURY; TRANSCRIPTION REGULATION; ANIMAL; CELL LINEAGE; IMMUNOLOGY; INFLAMMATION; LYMPHOCYTE ACTIVATION; T LYMPHOCYTE;

EID: 85044295805     PISSN: 08189641     EISSN: 14401711     Source Type: Journal    
DOI: 10.1111/imcb.12028     Document Type: Review
Times cited : (33)

References (69)
  • 1
    • 84875528275 scopus 로고    scopus 로고
    • The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting
    • Merad M, Sathe P, Helft J, et al. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 2013; 31: 563–604.
    • (2013) Annu Rev Immunol , vol.31 , pp. 563-604
    • Merad, M.1    Sathe, P.2    Helft, J.3
  • 2
    • 48749085127 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases
    • Gilliet M, Cao W, Liu YJ. Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008; 8: 594–606.
    • (2008) Nat Rev Immunol , vol.8 , pp. 594-606
    • Gilliet, M.1    Cao, W.2    Liu, Y.J.3
  • 3
    • 56749152272 scopus 로고    scopus 로고
    • Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells
    • Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of Langerhans cells and other langerin-expressing dendritic cells. Nat Rev Immunol 2008; 8: 935–947.
    • (2008) Nat Rev Immunol , vol.8 , pp. 935-947
    • Merad, M.1    Ginhoux, F.2    Collin, M.3
  • 4
    • 84864298329 scopus 로고    scopus 로고
    • Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages
    • Hoeffel G, Wang Y, Greter M, et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J Exp Med 2012; 209: 1167–1181.
    • (2012) J Exp Med , vol.209 , pp. 1167-1181
    • Hoeffel, G.1    Wang, Y.2    Greter, M.3
  • 5
    • 33645953640 scopus 로고    scopus 로고
    • Langerhans cells arise from monocytes in vivo
    • Ginhoux F, Tacke F, Angeli V, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol 2006; 7: 265–273.
    • (2006) Nat Immunol , vol.7 , pp. 265-273
    • Ginhoux, F.1    Tacke, F.2    Angeli, V.3
  • 6
    • 84905107360 scopus 로고    scopus 로고
    • Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny
    • Guilliams M, Ginhoux F, Jakubzick C, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol 2014; 14: 571–578.
    • (2014) Nat Rev Immunol , vol.14 , pp. 571-578
    • Guilliams, M.1    Ginhoux, F.2    Jakubzick, C.3
  • 7
    • 84990961171 scopus 로고    scopus 로고
    • Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species
    • Guilliams M, Dutertre CA, Scott CL, et al. Unsupervised high-dimensional analysis aligns dendritic cells across tissues and species. Immunity 2016; 45: 669–684.
    • (2016) Immunity , vol.45 , pp. 669-684
    • Guilliams, M.1    Dutertre, C.A.2    Scott, C.L.3
  • 8
    • 84931561466 scopus 로고    scopus 로고
    • Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems
    • Schlitzer A, McGovern N, Ginhoux F. Dendritic cells and monocyte-derived cells: two complementary and integrated functional systems. Semin Cell Dev Biol 2015; 41: 9–22.
    • (2015) Semin Cell Dev Biol , vol.41 , pp. 9-22
    • Schlitzer, A.1    McGovern, N.2    Ginhoux, F.3
  • 9
    • 85053787162 scopus 로고    scopus 로고
    • Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment
    • Heidkamp GF, Sander J, Lehmann CHK, et al. Human lymphoid organ dendritic cell identity is predominantly dictated by ontogeny, not tissue microenvironment. Sci Immunol 2016; 1: eaai7677.
    • (2016) Sci Immunol , vol.1
    • Heidkamp, G.F.1    Sander, J.2    Lehmann, C.H.K.3
  • 10
    • 84969785370 scopus 로고    scopus 로고
    • Transcriptional control of dendritic cell development
    • Murphy TL, Grajales-Reyes GE, Wu X, et al. Transcriptional control of dendritic cell development. Annu Rev Immunol 2016; 34: 93–119.
    • (2016) Annu Rev Immunol , vol.34 , pp. 93-119
    • Murphy, T.L.1    Grajales-Reyes, G.E.2    Wu, X.3
  • 11
    • 73949101833 scopus 로고    scopus 로고
    • The origin and development of nonlymphoid tissue CD103+ DCs
    • Ginhoux F, Liu K, Helft J, et al. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 2009; 206: 3115–3130.
    • (2009) J Exp Med , vol.206 , pp. 3115-3130
    • Ginhoux, F.1    Liu, K.2    Helft, J.3
  • 12
    • 84898470940 scopus 로고    scopus 로고
    • A population of Langerin-positive dendritic cells in murine Peyer's patches involved in sampling beta-glucan microparticles
    • De Jesus M, Ostroff GR, Levitz SM, et al. A population of Langerin-positive dendritic cells in murine Peyer's patches involved in sampling beta-glucan microparticles. PLoS ONE 2014; 9: e91002.
    • (2014) PLoS ONE , vol.9
    • De Jesus, M.1    Ostroff, G.R.2    Levitz, S.M.3
  • 13
    • 0034624828 scopus 로고    scopus 로고
    • A clonogenic common myeloid progenitor that gives rise to all myeloid lineages
    • Akashi K, Traver D, Miyamoto T, et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000; 404: 193–197.
    • (2000) Nature , vol.404 , pp. 193-197
    • Akashi, K.1    Traver, D.2    Miyamoto, T.3
  • 14
    • 46949109891 scopus 로고    scopus 로고
    • Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells
    • GeurtsvanKessel CH, Willart MA, van Rijt LS, et al. Clearance of influenza virus from the lung depends on migratory langerin+CD11b- but not plasmacytoid dendritic cells. J Exp Med 2008; 205: 1621–1634.
    • (2008) J Exp Med , vol.205 , pp. 1621-1634
    • GeurtsvanKessel, C.H.1    Willart, M.A.2    van Rijt, L.S.3
  • 15
    • 84890987173 scopus 로고    scopus 로고
    • Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice
    • Watchmaker PB, Lahl K, Lee M, et al. Comparative transcriptional and functional profiling defines conserved programs of intestinal DC differentiation in humans and mice. Nat Immunol 2014; 15: 98–108.
    • (2014) Nat Immunol , vol.15 , pp. 98-108
    • Watchmaker, P.B.1    Lahl, K.2    Lee, M.3
  • 16
    • 84929661740 scopus 로고    scopus 로고
    • Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses
    • Tussiwand R, Everts B, Grajales-Reyes GE, et al. Klf4 expression in conventional dendritic cells is required for T helper 2 cell responses. Immunity 2015; 42: 916–928.
    • (2015) Immunity , vol.42 , pp. 916-928
    • Tussiwand, R.1    Everts, B.2    Grajales-Reyes, G.E.3
  • 17
    • 84878191150 scopus 로고    scopus 로고
    • IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses
    • Schlitzer A, McGovern N, Teo P, et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 2013; 38: 970–983.
    • (2013) Immunity , vol.38 , pp. 970-983
    • Schlitzer, A.1    McGovern, N.2    Teo, P.3
  • 18
    • 84857858368 scopus 로고    scopus 로고
    • Dendritic cell-associated lectin 2 (DCAL2) defines a distinct CD8alpha- dendritic cell subset
    • Kasahara S, Clark EA. Dendritic cell-associated lectin 2 (DCAL2) defines a distinct CD8alpha- dendritic cell subset. J Leuk Biol 2012; 91: 437–448.
    • (2012) J Leuk Biol , vol.91 , pp. 437-448
    • Kasahara, S.1    Clark, E.A.2
  • 19
    • 81955164775 scopus 로고    scopus 로고
    • Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine
    • Lewis KL, Caton ML, Bogunovic M, et al. Notch2 receptor signaling controls functional differentiation of dendritic cells in the spleen and intestine. Immunity 2011; 35: 780–791.
    • (2011) Immunity , vol.35 , pp. 780-791
    • Lewis, K.L.1    Caton, M.L.2    Bogunovic, M.3
  • 20
    • 85018582872 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
    • Villani AC, Satija R, Reynolds G, et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 2017; 356: eaah4573.
    • (2017) Science , vol.356
    • Villani, A.C.1    Satija, R.2    Reynolds, G.3
  • 21
    • 84937967684 scopus 로고    scopus 로고
    • The multifaceted biology of plasmacytoid dendritic cells
    • Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 2015; 15: 471–485.
    • (2015) Nat Rev Immunol , vol.15 , pp. 471-485
    • Swiecki, M.1    Colonna, M.2
  • 22
    • 35549000134 scopus 로고    scopus 로고
    • Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo
    • Naik SH, Sathe P, Park HY, et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat Immunol 2007; 8: 1217–1226.
    • (2007) Nat Immunol , vol.8 , pp. 1217-1226
    • Naik, S.H.1    Sathe, P.2    Park, H.Y.3
  • 23
    • 67449128181 scopus 로고    scopus 로고
    • CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions
    • Matsui T, Connolly JE, Michnevitz M, et al. CD2 distinguishes two subsets of human plasmacytoid dendritic cells with distinct phenotype and functions. J Immunol 2009; 182: 6815–6823.
    • (2009) J Immunol , vol.182 , pp. 6815-6823
    • Matsui, T.1    Connolly, J.E.2    Michnevitz, M.3
  • 24
    • 84958824501 scopus 로고    scopus 로고
    • A CD2 high-expressing stress-resistant human plasmacytoid dendritic-cell subset
    • Bryant C, Fromm PD, Kupresanin F, et al. A CD2 high-expressing stress-resistant human plasmacytoid dendritic-cell subset. Immunol Cell Biol 2016; 94: 447–457.
    • (2016) Immunol Cell Biol , vol.94 , pp. 447-457
    • Bryant, C.1    Fromm, P.D.2    Kupresanin, F.3
  • 25
    • 84872222127 scopus 로고    scopus 로고
    • Neonatal plasmacytoid dendritic cells (pDCs) display subset variation but can elicit potent anti-viral innate responses
    • Zhang X, Lepelley A, Azria E, et al. Neonatal plasmacytoid dendritic cells (pDCs) display subset variation but can elicit potent anti-viral innate responses. PLoS ONE 2013; 8: e52003.
    • (2013) PLoS ONE , vol.8
    • Zhang, X.1    Lepelley, A.2    Azria, E.3
  • 26
    • 85013293350 scopus 로고    scopus 로고
    • A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes
    • Zhang H, Gregorio JD, Iwahori T, et al. A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes. PNAS 2017; 114: 1988–1993.
    • (2017) PNAS , vol.114 , pp. 1988-1993
    • Zhang, H.1    Gregorio, J.D.2    Iwahori, T.3
  • 27
    • 85027934223 scopus 로고    scopus 로고
    • Mapping the human DC lineage through the integration of high-dimensional techniques
    • See P, Dutertre CA, Chen J, et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 2017; 356: p.eaag3009.
    • (2017) Science , vol.356 , pp. 3009
    • See, P.1    Dutertre, C.A.2    Chen, J.3
  • 28
    • 84900461408 scopus 로고    scopus 로고
    • Development and function of dendritic cell subsets
    • Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity 2014; 40: 642–656.
    • (2014) Immunity , vol.40 , pp. 642-656
    • Mildner, A.1    Jung, S.2
  • 29
    • 84994802422 scopus 로고    scopus 로고
    • Functions of murine dendritic cells
    • Durai V, Murphy KM. Functions of murine dendritic cells. Immunity 2016; 45: 719–736.
    • (2016) Immunity , vol.45 , pp. 719-736
    • Durai, V.1    Murphy, K.M.2
  • 30
    • 85019842726 scopus 로고    scopus 로고
    • Intestinal Batf3-dependent dendritic cells are required for optimal antiviral T-cell responses in adult and neonatal mice
    • Sun T, Rojas OL, Li C, et al. Intestinal Batf3-dependent dendritic cells are required for optimal antiviral T-cell responses in adult and neonatal mice. Muc Immunol 2017; 10: 775–788.
    • (2017) Muc Immunol , vol.10 , pp. 775-788
    • Sun, T.1    Rojas, O.L.2    Li, C.3
  • 31
    • 84942828666 scopus 로고    scopus 로고
    • CD103(+) dendritic cells control Th17 cell function in the lung
    • Zelante T, Wong AY, Ping TJ, et al. CD103(+) dendritic cells control Th17 cell function in the lung. Cell Rep 2015; 12: 1789–1801.
    • (2015) Cell Rep , vol.12 , pp. 1789-1801
    • Zelante, T.1    Wong, A.Y.2    Ping, T.J.3
  • 32
    • 85035354382 scopus 로고    scopus 로고
    • Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production
    • Conejero L, Khouili SC, Martinez-Cano S, et al. Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production. JCI Insight 2017; 2: e90420.
    • (2017) JCI Insight , vol.2
    • Conejero, L.1    Khouili, S.C.2    Martinez-Cano, S.3
  • 33
    • 84904258454 scopus 로고    scopus 로고
    • GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis
    • Zhou Q, Ho AW, Schlitzer A, et al. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis. J Immunol 2014; 193: 496–509.
    • (2014) J Immunol , vol.193 , pp. 496-509
    • Zhou, Q.1    Ho, A.W.2    Schlitzer, A.3
  • 34
    • 51349099789 scopus 로고    scopus 로고
    • Antigen-presentation properties of plasmacytoid dendritic cells
    • Villadangos JA, Young L. Antigen-presentation properties of plasmacytoid dendritic cells. Immunity 2008; 29: 352–361.
    • (2008) Immunity , vol.29 , pp. 352-361
    • Villadangos, J.A.1    Young, L.2
  • 35
    • 84858786391 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance
    • Hadeiba H, Lahl K, Edalati A, et al. Plasmacytoid dendritic cells transport peripheral antigens to the thymus to promote central tolerance. Immunity 2012; 36: 438–450.
    • (2012) Immunity , vol.36 , pp. 438-450
    • Hadeiba, H.1    Lahl, K.2    Edalati, A.3
  • 36
    • 84975134151 scopus 로고    scopus 로고
    • Cutting edge: IFN-beta expression in the spleen is restricted to a subpopulation of plasmacytoid dendritic cells exhibiting a specific immune modulatory transcriptome signature
    • Bauer J, Dress RJ, Schulze A, et al. Cutting edge: IFN-beta expression in the spleen is restricted to a subpopulation of plasmacytoid dendritic cells exhibiting a specific immune modulatory transcriptome signature. J Immunol 2016; 196: 4447–4451.
    • (2016) J Immunol , vol.196 , pp. 4447-4451
    • Bauer, J.1    Dress, R.J.2    Schulze, A.3
  • 37
    • 85012916152 scopus 로고    scopus 로고
    • CD8(+) T cells orchestrate pDC-XCR1(+) dendritic cell spatial and functional cooperativity to optimize priming
    • Brewitz A, Eickhoff S, Dahling S, et al. CD8(+) T cells orchestrate pDC-XCR1(+) dendritic cell spatial and functional cooperativity to optimize priming. Immunity 2017; 46: 205–219.
    • (2017) Immunity , vol.46 , pp. 205-219
    • Brewitz, A.1    Eickhoff, S.2    Dahling, S.3
  • 38
    • 84862908654 scopus 로고    scopus 로고
    • Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo
    • Swiecki M, Wang Y, Vermi W, et al. Type I interferon negatively controls plasmacytoid dendritic cell numbers in vivo. J Exp Med 2011; 208: 2367–2374.
    • (2011) J Exp Med , vol.208 , pp. 2367-2374
    • Swiecki, M.1    Wang, Y.2    Vermi, W.3
  • 39
    • 84946564588 scopus 로고    scopus 로고
    • Ontogeny of tissue-resident macrophages
    • Hoeffel G, Ginhoux F. Ontogeny of tissue-resident macrophages. Front Immunol 2015; 6: 486.
    • (2015) Front Immunol , vol.6 , pp. 486
    • Hoeffel, G.1    Ginhoux, F.2
  • 40
    • 35548970740 scopus 로고    scopus 로고
    • Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow
    • Onai N, Obata-Onai A, Schmid MA, et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat Immunol 2007; 8: 1207–1216.
    • (2007) Nat Immunol , vol.8 , pp. 1207-1216
    • Onai, N.1    Obata-Onai, A.2    Schmid, M.A.3
  • 41
    • 33845898737 scopus 로고    scopus 로고
    • Steady-state and inflammatory dendritic-cell development
    • Shortman K, Naik SH. Steady-state and inflammatory dendritic-cell development. Nat Rev Immunol 2007; 7: 19–30.
    • (2007) Nat Rev Immunol , vol.7 , pp. 19-30
    • Shortman, K.1    Naik, S.H.2
  • 42
    • 65249089638 scopus 로고    scopus 로고
    • In vivo analysis of dendritic cell development and homeostasis
    • Liu K, Victora GD, Schwickert TA, et al. In vivo analysis of dendritic cell development and homeostasis. Science 2009; 324: 392–397.
    • (2009) Science , vol.324 , pp. 392-397
    • Liu, K.1    Victora, G.D.2    Schwickert, T.A.3
  • 43
    • 84931394611 scopus 로고    scopus 로고
    • Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow
    • Schlitzer A, Sivakamasundari V, Chen J, et al. Identification of cDC1- and cDC2-committed DC progenitors reveals early lineage priming at the common DC progenitor stage in the bone marrow. Nat Immunol 2015; 16: 718–728.
    • (2015) Nat Immunol , vol.16 , pp. 718-728
    • Schlitzer, A.1    Sivakamasundari, V.2    Chen, J.3
  • 44
    • 84876297531 scopus 로고    scopus 로고
    • Diverse and heritable lineage imprinting of early haematopoietic progenitors
    • Naik SH, Perie L, Swart E, et al. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 2013; 496: 229–232.
    • (2013) Nature , vol.496 , pp. 229-232
    • Naik, S.H.1    Perie, L.2    Swart, E.3
  • 45
    • 84950290139 scopus 로고    scopus 로고
    • Transcriptional heterogeneity and lineage commitment in myeloid progenitors
    • Paul F, Arkin Y, Giladi A, et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 2015; 163: 1663–1677.
    • (2015) Cell , vol.163 , pp. 1663-1677
    • Paul, F.1    Arkin, Y.2    Giladi, A.3
  • 46
    • 84904394558 scopus 로고    scopus 로고
    • Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor
    • Sathe P, Metcalf D, Vremec D, et al. Lymphoid tissue and plasmacytoid dendritic cells and macrophages do not share a common macrophage-dendritic cell-restricted progenitor. Immunity 2014; 41: 104–115.
    • (2014) Immunity , vol.41 , pp. 104-115
    • Sathe, P.1    Metcalf, D.2    Vremec, D.3
  • 47
    • 84878177936 scopus 로고    scopus 로고
    • A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential
    • Onai N, Kurabayashi K, Hosoi-Amaike M, et al. A clonogenic progenitor with prominent plasmacytoid dendritic cell developmental potential. Immunity 2013; 38: 943–957.
    • (2013) Immunity , vol.38 , pp. 943-957
    • Onai, N.1    Kurabayashi, K.2    Hosoi-Amaike, M.3
  • 48
    • 0034672034 scopus 로고    scopus 로고
    • The development, maturation, and turnover rate of mouse spleen dendritic cell populations
    • Kamath AT, Pooley J, O'Keeffe MA, et al. The development, maturation, and turnover rate of mouse spleen dendritic cell populations. J Immunol 2000; 165: 6762–6770.
    • (2000) J Immunol , vol.165 , pp. 6762-6770
    • Kamath, A.T.1    Pooley, J.2    O'Keeffe, M.A.3
  • 49
    • 84881236410 scopus 로고    scopus 로고
    • Positive feedback between PU.1 and the cell cycle controls myeloid differentiation
    • Kueh HY, Champhekar A, Nutt SL, et al. Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 2013; 341: 670–673.
    • (2013) Science , vol.341 , pp. 670-673
    • Kueh, H.Y.1    Champhekar, A.2    Nutt, S.L.3
  • 50
    • 77953282048 scopus 로고    scopus 로고
    • The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner
    • Carotta S, Dakic A, D'Amico A, et al. The transcription factor PU.1 controls dendritic cell development and Flt3 cytokine receptor expression in a dose-dependent manner. Immunity 2010; 32: 628–641.
    • (2010) Immunity , vol.32 , pp. 628-641
    • Carotta, S.1    Dakic, A.2    D'Amico, A.3
  • 51
    • 84878578156 scopus 로고    scopus 로고
    • Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo
    • Wu X, Satpathy AT, Kc W, et al. Bcl11a controls Flt3 expression in early hematopoietic progenitors and is required for pDC development in vivo. PLoS ONE 2013; 8: e64800.
    • (2013) PLoS ONE , vol.8
    • Wu, X.1    Satpathy, A.T.2    Kc, W.3
  • 52
    • 84905093427 scopus 로고    scopus 로고
    • ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2
    • Ghosh HS, Ceribelli M, Matos I, et al. ETO family protein Mtg16 regulates the balance of dendritic cell subsets by repressing Id2. J Exp Med 2014; 211: 1623–1635.
    • (2014) J Exp Med , vol.211 , pp. 1623-1635
    • Ghosh, H.S.1    Ceribelli, M.2    Matos, I.3
  • 53
    • 84971567648 scopus 로고    scopus 로고
    • The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2
    • Scott CL, Soen B, Martens L, et al. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med 2016; 213: 897–911.
    • (2016) J Exp Med , vol.213 , pp. 897-911
    • Scott, C.L.1    Soen, B.2    Martens, L.3
  • 54
    • 84878605147 scopus 로고    scopus 로고
    • PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment
    • Schonheit J, Kuhl C, Gebhardt ML, et al. PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment. Cell Rep 2013; 3: 1617–1628.
    • (2013) Cell Rep , vol.3 , pp. 1617-1628
    • Schonheit, J.1    Kuhl, C.2    Gebhardt, M.L.3
  • 55
    • 85035018283 scopus 로고    scopus 로고
    • Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms
    • Briseno CG, Gargaro M, Durai V, et al. Deficiency of transcription factor RelB perturbs myeloid and DC development by hematopoietic-extrinsic mechanisms. PNAS 2017; 114: 3957–3962.
    • (2017) PNAS , vol.114 , pp. 3957-3962
    • Briseno, C.G.1    Gargaro, M.2    Durai, V.3
  • 56
    • 44049097818 scopus 로고    scopus 로고
    • The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues
    • Waskow C, Liu K, Darrasse-Jeze G, et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat Immunol 2008; 9: 676–683.
    • (2008) Nat Immunol , vol.9 , pp. 676-683
    • Waskow, C.1    Liu, K.2    Darrasse-Jeze, G.3
  • 57
    • 84875505809 scopus 로고    scopus 로고
    • The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells
    • Wan CK, Oh J, Li P, et al. The cytokines IL-21 and GM-CSF have opposing regulatory roles in the apoptosis of conventional dendritic cells. Immunity 2013; 38: 514–527.
    • (2013) Immunity , vol.38 , pp. 514-527
    • Wan, C.K.1    Oh, J.2    Li, P.3
  • 58
    • 77952310536 scopus 로고    scopus 로고
    • GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization
    • King IL, Kroenke MA, Segal BM. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J Exp Med 2010; 207: 953–961.
    • (2010) J Exp Med , vol.207 , pp. 953-961
    • King, I.L.1    Kroenke, M.A.2    Segal, B.M.3
  • 59
    • 80054754519 scopus 로고    scopus 로고
    • Batf3-dependent CD11b(low/-) peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization
    • Edelson BT, Bradstreet TR, Kc W, et al. Batf3-dependent CD11b(low/-) peripheral dendritic cells are GM-CSF-independent and are not required for Th cell priming after subcutaneous immunization. PLoS ONE 2011; 6: e25660.
    • (2011) PLoS ONE , vol.6
    • Edelson, B.T.1    Bradstreet, T.R.2    Kc, W.3
  • 60
    • 84863008117 scopus 로고    scopus 로고
    • GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells
    • Greter M, Helft J, Chow A, et al. GM-CSF controls nonlymphoid tissue dendritic cell homeostasis but is dispensable for the differentiation of inflammatory dendritic cells. Immunity 2012; 36: 1031–1046.
    • (2012) Immunity , vol.36 , pp. 1031-1046
    • Greter, M.1    Helft, J.2    Chow, A.3
  • 61
    • 84964583073 scopus 로고    scopus 로고
    • Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan
    • Zhan Y, Chow KV, Soo P, et al. Plasmacytoid dendritic cells are short-lived: reappraising the influence of migration, genetic factors and activation on estimation of lifespan. Sci Rep 2016; 6: 25060.
    • (2016) Sci Rep , vol.6 , pp. 25060
    • Zhan, Y.1    Chow, K.V.2    Soo, P.3
  • 62
    • 0036195160 scopus 로고    scopus 로고
    • A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure
    • Julia V, Hessel EM, Malherbe L, et al. A restricted subset of dendritic cells captures airborne antigens and remains able to activate specific T cells long after antigen exposure. Immunity 2002; 16: 271–283.
    • (2002) Immunity , vol.16 , pp. 271-283
    • Julia, V.1    Hessel, E.M.2    Malherbe, L.3
  • 63
    • 84961291216 scopus 로고    scopus 로고
    • Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells
    • Carrington EM, Zhang JG, Sutherland RM, et al. Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells. PNAS 2015; 112: 4044–4049.
    • (2015) PNAS , vol.112 , pp. 4044-4049
    • Carrington, E.M.1    Zhang, J.G.2    Sutherland, R.M.3
  • 64
    • 84864805602 scopus 로고    scopus 로고
    • An active mitochondrial biogenesis occurs during dendritic cell differentiation
    • Zaccagnino P, Saltarella M, Maiorano S, et al. An active mitochondrial biogenesis occurs during dendritic cell differentiation. In J Biochem Cell Biol 2012; 44: 1962–1969.
    • (2012) In J Biochem Cell Biol , vol.44 , pp. 1962-1969
    • Zaccagnino, P.1    Saltarella, M.2    Maiorano, S.3
  • 65
    • 40949102749 scopus 로고    scopus 로고
    • Role of mitochondria and reactive oxygen species in dendritic cell differentiation and functions
    • Del Prete A, Zaccagnino P, Di Paola M, et al. Role of mitochondria and reactive oxygen species in dendritic cell differentiation and functions. Free Radic Biol Med 2008; 44: 1443–1451.
    • (2008) Free Radic Biol Med , vol.44 , pp. 1443-1451
    • Del Prete, A.1    Zaccagnino, P.2    Di Paola, M.3
  • 66
    • 84255199079 scopus 로고    scopus 로고
    • The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation
    • Wang R, Dillon CP, Shi LZ, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 2011; 35: 871–882.
    • (2011) Immunity , vol.35 , pp. 871-882
    • Wang, R.1    Dillon, C.P.2    Shi, L.Z.3
  • 67
    • 84896314455 scopus 로고    scopus 로고
    • L-Myc expression by dendritic cells is required for optimal T-cell priming
    • Kc W, Satpathy AT, Rapaport AS, et al. L-Myc expression by dendritic cells is required for optimal T-cell priming. Nature 2014; 507: 243–247.
    • (2014) Nature , vol.507 , pp. 243-247
    • Kc, W.1    Satpathy, A.T.2    Rapaport, A.S.3
  • 68
    • 34249085336 scopus 로고    scopus 로고
    • Origin of dendritic cells in peripheral lymphoid organs of mice
    • Liu K, Waskow C, Liu X, et al. Origin of dendritic cells in peripheral lymphoid organs of mice. Nat Immunol 2007; 8: 578–583.
    • (2007) Nat Immunol , vol.8 , pp. 578-583
    • Liu, K.1    Waskow, C.2    Liu, X.3
  • 69


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.