메뉴 건너뛰기




Volumn 92, Issue 7, 2018, Pages

Dengue virus selectively annexes endoplasmic reticulum-associated translation machinery as a strategy for co-opting host cell protein synthesis

Author keywords

Flavivirus; Organelle protein import; RNA virus; Translational control

Indexed keywords

MESSENGER RNA; TRANSCRIPTOME; INTERFERON; VIRUS RNA;

EID: 85043766441     PISSN: 0022538X     EISSN: 10985514     Source Type: Journal    
DOI: 10.1128/JVI.01766-17     Document Type: Article
Times cited : (56)

References (86)
  • 1
    • 0029890687 scopus 로고    scopus 로고
    • Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus
    • Gingras AC, Svitkin Y, Belsham GJ, Pause A, Sonenberg N. 1996. Activation of the translational suppressor 4E-BP1 following infection with encephalomyocarditis virus and poliovirus. Proc Natl Acad Sci U S A 93:5578-5583. https://doi.org/10.1073/pnas.93.11.5578
    • (1996) Proc Natl Acad Sci U S A , vol.93 , pp. 5578-5583
    • Gingras, A.C.1    Svitkin, Y.2    Belsham, G.J.3    Pause, A.4    Sonenberg, N.5
  • 2
    • 0034876991 scopus 로고    scopus 로고
    • Detailed analysis of the requirements of hepatitis A virus internal ribosome entry segment for the eukaryotic initiation factor complex eIF4F
    • Borman AM, Michel YM, Kean KM. 2001. Detailed analysis of the requirements of hepatitis A virus internal ribosome entry segment for the eukaryotic initiation factor complex eIF4F. J Virol 75:7864-7871. https:// doi.org/10.1128/JVI.75.17.7864-7871.2001
    • (2001) J Virol , vol.75 , pp. 7864-7871
    • Borman, A.M.1    Michel, Y.M.2    Kean, K.M.3
  • 3
    • 3242702220 scopus 로고    scopus 로고
    • Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein
    • Kuyumcu-Martinez M, Belliot G, Sosnovtsev SV, Chang KO, Green KY, Lloyd RE. 2004. Calicivirus 3C-like proteinase inhibits cellular translation by cleavage of poly(A)-binding protein. J Virol 78:8172-8182. https://doi.org/10.1128/JVI.78.15.8172-8182.2004
    • (2004) J Virol , vol.78 , pp. 8172-8182
    • Kuyumcu-Martinez, M.1    Belliot, G.2    Sosnovtsev, S.V.3    Chang, K.O.4    Green, K.Y.5    Lloyd, R.E.6
  • 5
    • 0031017382 scopus 로고    scopus 로고
    • The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase
    • He B, Gross M, Roizman B. 1997. The gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci U S A 94:843-848. https://doi.org/10.1073/pnas.94.3.843
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 843-848
    • He, B.1    Gross, M.2    Roizman, B.3
  • 6
    • 77249151465 scopus 로고    scopus 로고
    • Human cytomegalovirus UL69 protein facilitates translation by associating with the mRNA cap-binding complex and excluding 4EBP1
    • Aoyagi M, Gaspar M, Shenk TE. 2010. Human cytomegalovirus UL69 protein facilitates translation by associating with the mRNA cap-binding complex and excluding 4EBP1. Proc Natl Acad Sci U S A 107:2640-2645. https://doi.org/10.1073/pnas.0914856107
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 2640-2645
    • Aoyagi, M.1    Gaspar, M.2    Shenk, T.E.3
  • 7
    • 84959370204 scopus 로고    scopus 로고
    • Viral nucleases induce an mRNA degradation-transcription feedback loop in mammalian cells
    • Abernathy E, Gilbertson S, Alla R, Glaunsinger B. 2015. Viral nucleases induce an mRNA degradation-transcription feedback loop in mammalian cells. Cell Host Microbe 18:243-253. https://doi.org/10.1016/j.chom.2015.06.019
    • (2015) Cell Host Microbe , vol.18 , pp. 243-253
    • Abernathy, E.1    Gilbertson, S.2    Alla, R.3    Glaunsinger, B.4
  • 8
    • 84870757284 scopus 로고    scopus 로고
    • Tinkering with translation: protein synthesis in virus-infected cells
    • Walsh D, Mathews MB, Mohr I. 2013. Tinkering with translation: protein synthesis in virus-infected cells. Cold Spring Harbor Perspectives Biol 5:a012351. https://doi.org/10.1101/cshperspect.a012351
    • (2013) Cold Spring Harbor Perspectives Biol , vol.5
    • Walsh, D.1    Mathews, M.B.2    Mohr, I.3
  • 9
    • 0025177302 scopus 로고
    • High-level transcription from the adenovirus major late promoter requires downstream binding sites for latephase-specific factors
    • Leong K, Lee W, Berk AJ. 1990. High-level transcription from the adenovirus major late promoter requires downstream binding sites for latephase-specific factors. J Virol 64:51-60
    • (1990) J Virol , vol.64 , pp. 51-60
    • Leong, K.1    Lee, W.2    Berk, A.J.3
  • 10
    • 0022505711 scopus 로고
    • Interspersed homologous DNA of Autographa californica nuclear polyhedrosis virus enhances delayedearly gene expression
    • Guarino LA, Summers MD. 1986. Interspersed homologous DNA of Autographa californica nuclear polyhedrosis virus enhances delayedearly gene expression. J Virol 60:215-223
    • (1986) J Virol , vol.60 , pp. 215-223
    • Guarino, L.A.1    Summers, M.D.2
  • 11
    • 81255160914 scopus 로고    scopus 로고
    • Viral subversion of the host protein synthesis machinery
    • Walsh D, Mohr I. 2011. Viral subversion of the host protein synthesis machinery. Nat Rev Microbiol 9:860-875. https://doi.org/10.1038/nrmicro2655
    • (2011) Nat Rev Microbiol , vol.9 , pp. 860-875
    • Walsh, D.1    Mohr, I.2
  • 12
    • 74049150019 scopus 로고    scopus 로고
    • Control of dengue virus translation and replication
    • Paranjape SM, Harris E. 2010. Control of dengue virus translation and replication. Curr Top Microbiol Immunol 338:15-34
    • (2010) Curr Top Microbiol Immunol , vol.338 , pp. 15-34
    • Paranjape, S.M.1    Harris, E.2
  • 13
    • 84948706705 scopus 로고    scopus 로고
    • New insights into the immunopathology and control of dengue virus infection
    • Screaton G, Mongkolsapaya J, Yacoub S, Roberts C. 2015. New insights into the immunopathology and control of dengue virus infection. Nat Rev Immunol 15:745-759. https://doi.org/10.1038/nri3916
    • (2015) Nat Rev Immunol , vol.15 , pp. 745-759
    • Screaton, G.1    Mongkolsapaya, J.2    Yacoub, S.3    Roberts, C.4
  • 14
    • 84938390836 scopus 로고    scopus 로고
    • Molecular insight into dengue virus pathogenesis and its implications for disease control
    • Diamond MS, Pierson TC. 2015. Molecular insight into dengue virus pathogenesis and its implications for disease control. Cell 162:488-492. https://doi.org/10.1016/j.cell.2015.07.005
    • (2015) Cell , vol.162 , pp. 488-492
    • Diamond, M.S.1    Pierson, T.C.2
  • 15
    • 33644778763 scopus 로고    scopus 로고
    • Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited
    • Edgil D, Polacek C, Harris E. 2006. Dengue virus utilizes a novel strategy for translation initiation when cap-dependent translation is inhibited. J Virol 80:2976-2986. https://doi.org/10.1128/JVI.80.6.2976-2986.2006
    • (2006) J Virol , vol.80 , pp. 2976-2986
    • Edgil, D.1    Polacek, C.2    Harris, E.3
  • 16
    • 79954601093 scopus 로고    scopus 로고
    • Dengue virus modulates the unfolded protein response in a time-dependent manner
    • Pena J, Harris E. 2011. Dengue virus modulates the unfolded protein response in a time-dependent manner. J Biol Chem 286:14226-14236. https://doi.org/10.1074/jbc.M111.222703
    • (2011) J Biol Chem , vol.286 , pp. 14226-14236
    • Pena, J.1    Harris, E.2
  • 18
    • 11144348130 scopus 로고    scopus 로고
    • A structural perspective of the flavivirus life cycle
    • Mukhopadhyay S, Kuhn RJ, Rossmann MG. 2005. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol 3:13-22. https://doi.org/10.1038/nrmicro1067
    • (2005) Nat Rev Microbiol , vol.3 , pp. 13-22
    • Mukhopadhyay, S.1    Kuhn, R.J.2    Rossmann, M.G.3
  • 19
    • 0037378525 scopus 로고    scopus 로고
    • American genotype structures decrease dengue virus output from human monocytes and dendritic cells
    • Cologna R, Rico-Hesse R. 2003. American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol 77:3929-3938. https://doi.org/10.1128/JVI.77.7.3929-3938.2003
    • (2003) J Virol , vol.77 , pp. 3929-3938
    • Cologna, R.1    Rico-Hesse, R.2
  • 20
    • 84941094331 scopus 로고    scopus 로고
    • Flaviviral replication complex: coordination between RNA synthesis and 51-RNA capping
    • Klema VJ, Padmanabhan R, Choi KH. 2015. Flaviviral replication complex: coordination between RNA synthesis and 51-RNA capping. Viruses 7:4640-4656. https://doi.org/10.3390/v7082837
    • (2015) Viruses , vol.7 , pp. 4640-4656
    • Klema, V.J.1    Padmanabhan, R.2    Choi, K.H.3
  • 21
    • 0032146721 scopus 로고    scopus 로고
    • Switch from translation to RNA replication in a positive-stranded RNA virus
    • Gamarnik AV, Andino R. 1998. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293-2304. https://doi.org/10.1101/gad.12.15.2293
    • (1998) Genes Dev , vol.12 , pp. 2293-2304
    • Gamarnik, A.V.1    Andino, R.2
  • 23
    • 78649681550 scopus 로고    scopus 로고
    • A balance between circular and linear forms of the dengue virus genome is crucial for viral replication
    • Villordo SM, Alvarez DE, Gamarnik AV. 2010. A balance between circular and linear forms of the dengue virus genome is crucial for viral replication. RNA 16:2325-2335. https://doi.org/10.1261/rna.2120410
    • (2010) RNA , vol.16 , pp. 2325-2335
    • Villordo, S.M.1    Alvarez, D.E.2    Gamarnik, A.V.3
  • 24
  • 25
    • 33646851580 scopus 로고    scopus 로고
    • Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B
    • Miller S, Sparacio S, Bartenschlager R. 2006. Subcellular localization and membrane topology of the dengue virus type 2 non-structural protein 4B. J Biol Chem 281:8854-8863. https://doi.org/10.1074/jbc.M512697200
    • (2006) J Biol Chem , vol.281 , pp. 8854-8863
    • Miller, S.1    Sparacio, S.2    Bartenschlager, R.3
  • 30
    • 84924091932 scopus 로고    scopus 로고
    • Diversity and selectivity in mRNA translation on the endoplasmic reticulum
    • Reid DW, Nicchitta CV. 2015. Diversity and selectivity in mRNA translation on the endoplasmic reticulum. Nat Rev Mol Cell Biol 16:221-231. https://doi.org/10.1038/nrm3958
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 221-231
    • Reid, D.W.1    Nicchitta, C.V.2
  • 31
    • 84857253794 scopus 로고    scopus 로고
    • Primary role for endoplasmic reticulumbound ribosomes in cellular translation identified by ribosome profiling
    • Reid DW, Nicchitta CV. 2012. Primary role for endoplasmic reticulumbound ribosomes in cellular translation identified by ribosome profiling. J Biol Chem 287:5518-5527
    • (2012) J Biol Chem , vol.287 , pp. 5518-5527
    • Reid, D.W.1    Nicchitta, C.V.2
  • 32
    • 39449120506 scopus 로고    scopus 로고
    • Divergent regulation of protein synthesis in the cytosol and endoplasmic reticulum compartments of mammalian cells
    • Stephens SB, Nicchitta CV. 2008. Divergent regulation of protein synthesis in the cytosol and endoplasmic reticulum compartments of mammalian cells. Mol Biol Cell 19:623-632. https://doi.org/10.1091/mbc.E07-07-0677
    • (2008) Mol Biol Cell , vol.19 , pp. 623-632
    • Stephens, S.B.1    Nicchitta, C.V.2
  • 33
    • 0034020622 scopus 로고    scopus 로고
    • Large-scale identification of secreted and membrane-associated gene products using DNA microarrays
    • Diehn M, Eisen MB, Botstein D, Brown PO. 2000. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet 25:58-62. https://doi.org/10.1038/75603
    • (2000) Nat Genet , vol.25 , pp. 58-62
    • Diehn, M.1    Eisen, M.B.2    Botstein, D.3    Brown, P.O.4
  • 34
    • 84894318608 scopus 로고    scopus 로고
    • Ribosome profiling: new views of translation, from single codons to genome scale
    • Ingolia NT. 2014. Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205-213. https://doi.org/10.1038/nrg3645
    • (2014) Nat Rev Genet , vol.15 , pp. 205-213
    • Ingolia, N.T.1
  • 35
    • 62549134121 scopus 로고    scopus 로고
    • Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling
    • Ingolia NT, Ghaemmaghami S, Newman JR, Weissman JS. 2009. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218-223. https://doi.org/ 10.1126/science.1168978
    • (2009) Science , vol.324 , pp. 218-223
    • Ingolia, N.T.1    Ghaemmaghami, S.2    Newman, J.R.3    Weissman, J.S.4
  • 36
    • 79959698933 scopus 로고    scopus 로고
    • Analyzing mRNA localization to the endoplasmic reticulum via cell fractionation
    • Jagannathan S, Nwosu C, Nicchitta CV. 2011. Analyzing mRNA localization to the endoplasmic reticulum via cell fractionation. Methods Mol Biol 714:301-321. https://doi.org/10.1007/978-1-61779-005-8_19
    • (2011) Methods Mol Biol , vol.714 , pp. 301-321
    • Jagannathan, S.1    Nwosu, C.2    Nicchitta, C.V.3
  • 37
    • 84872020422 scopus 로고    scopus 로고
    • How viruses use the endoplasmic reticulum for entry, replication, and assembly
    • Inoue T, Tsai B. 2013. How viruses use the endoplasmic reticulum for entry, replication, and assembly. Cold Spring Harb Perspect Biol 5:a013250. https://doi.org/10.1101/cshperspect.a013250
    • (2013) Cold Spring Harb Perspect Biol , vol.5
    • Inoue, T.1    Tsai, B.2
  • 39
    • 0041832111 scopus 로고    scopus 로고
    • Partitioning and translation of mRNAs encoding soluble proteins on membrane-bound ribosomes
    • Lerner RS, Seiser RM, Zheng T, Lager PJ, Reedy MC, Keene JD, Nicchitta CV. 2003. Partitioning and translation of mRNAs encoding soluble proteins on membrane-bound ribosomes. RNA 9:1123-1137. https://doi.org/10.1261/rna.5610403
    • (2003) RNA , vol.9 , pp. 1123-1137
    • Lerner, R.S.1    Seiser, R.M.2    Zheng, T.3    Lager, P.J.4    Reedy, M.C.5    Keene, J.D.6    Nicchitta, C.V.7
  • 40
    • 84907185317 scopus 로고    scopus 로고
    • Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum
    • Jagannathan S, Hsu JC, Reid DW, Chen Q, Thompson WJ, Moseley AM, Nicchitta CV. 2014. Multifunctional roles for the protein translocation machinery in RNA anchoring to the endoplasmic reticulum. J Biol Chem 289:25907-25924. https://doi.org/10.1074/jbc.M114.580688
    • (2014) J Biol Chem , vol.289 , pp. 25907-25924
    • Jagannathan, S.1    Hsu, J.C.2    Reid, D.W.3    Chen, Q.4    Thompson, W.J.5    Moseley, A.M.6    Nicchitta, C.V.7
  • 41
    • 84908078105 scopus 로고    scopus 로고
    • The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum
    • Reid DW, Chen Q, Tay AS, Shenolikar S, Nicchitta CV. 2014. The unfolded protein response triggers selective mRNA release from the endoplasmic reticulum. Cell 158:1362-1374. https://doi.org/10.1016/j.cell.2014.08.012
    • (2014) Cell , vol.158 , pp. 1362-1374
    • Reid, D.W.1    Chen, Q.2    Tay, A.S.3    Shenolikar, S.4    Nicchitta, C.V.5
  • 42
    • 28644450485 scopus 로고    scopus 로고
    • Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation
    • Stephens SB, Dodd RD, Brewer JW, Lager PJ, Keene JD, Nicchitta CV. 2005. Stable ribosome binding to the endoplasmic reticulum enables compartment-specific regulation of mRNA translation. Mol Biol Cell 16:5819-5831. https://doi.org/10.1091/mbc.E05-07-0685
    • (2005) Mol Biol Cell , vol.16 , pp. 5819-5831
    • Stephens, S.B.1    Dodd, R.D.2    Brewer, J.W.3    Lager, P.J.4    Keene, J.D.5    Nicchitta, C.V.6
  • 43
    • 42949117285 scopus 로고    scopus 로고
    • Analysis of mRNA partitioning between the cytosol and endoplasmic reticulum compartments of mammalian cells
    • Stephens SB, Dodd RD, Lerner RS, Pyhtila BM, Nicchitta CV. 2008. Analysis of mRNA partitioning between the cytosol and endoplasmic reticulum compartments of mammalian cells. Methods Mol Biol 419: 197-214. https://doi.org/10.1007/978-1-59745-033-1_14
    • (2008) Methods Mol Biol , vol.419 , pp. 197-214
    • Stephens, S.B.1    Dodd, R.D.2    Lerner, R.S.3    Pyhtila, B.M.4    Nicchitta, C.V.5
  • 45
    • 84995476671 scopus 로고    scopus 로고
    • Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization
    • Liu ZY, Li XF, Jiang T, Deng YQ, Ye Q, Zhao H, Yu JY, Qin CF. 2016. Viral RNA switch mediates the dynamic control of flavivirus replicase recruitment by genome cyclization. Elife 5:e17636. https://doi.org/10.7554/ eLife.17636
    • (2016) Elife , vol.5
    • Liu, Z.Y.1    Li, X.F.2    Jiang, T.3    Deng, Y.Q.4    Ye, Q.5    Zhao, H.6    Yu, J.Y.7    Qin, C.F.8
  • 47
    • 80053317134 scopus 로고    scopus 로고
    • Functional RNA elements in the dengue virus genome
    • Gebhard LG, Filomatori CV, Gamarnik AV. 2011. Functional RNA elements in the dengue virus genome. Viruses 3:1739-1756. https://doi.org/10.3390/v3091739
    • (2011) Viruses , vol.3 , pp. 1739-1756
    • Gebhard, L.G.1    Filomatori, C.V.2    Gamarnik, A.V.3
  • 48
    • 79954474930 scopus 로고    scopus 로고
    • Dynamic RNA structures in the dengue virus genome
    • Iglesias NG, Gamarnik AV. 2011. Dynamic RNA structures in the dengue virus genome. RNA Biol 8:249-257. https://doi.org/10.4161/rna.8.2.14992
    • (2011) RNA Biol , vol.8 , pp. 249-257
    • Iglesias, N.G.1    Gamarnik, A.V.2
  • 49
    • 84959516658 scopus 로고    scopus 로고
    • High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling
    • Irigoyen N, Firth AE, Jones JD, Chung BY, Siddell SG, Brierley I. 2016. High-resolution analysis of coronavirus gene expression by RNA sequencing and ribosome profiling. PLoS Pathog 12:e1005473. https://doi.org/10.1371/journal.ppat.1005473
    • (2016) PLoS Pathog , vol.12
    • Irigoyen, N.1    Firth, A.E.2    Jones, J.D.3    Chung, B.Y.4    Siddell, S.G.5    Brierley, I.6
  • 50
    • 77049090444 scopus 로고    scopus 로고
    • Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses
    • Firth AE, Blitvich BJ, Wills NM, Miller CL, Atkins JF. 2010. Evidence for ribosomal frameshifting and a novel overlapping gene in the genomes of insect-specific flaviviruses. Virology 399:153-166. https://doi.org/10.1016/j.virol.2009.12.033
    • (2010) Virology , vol.399 , pp. 153-166
    • Firth, A.E.1    Blitvich, B.J.2    Wills, N.M.3    Miller, C.L.4    Atkins, J.F.5
  • 51
    • 84862642115 scopus 로고    scopus 로고
    • Non-canonical translation in RNA viruses
    • Firth AE, Brierley I. 2012. Non-canonical translation in RNA viruses. J Gen Virol 93:1385-1409. https://doi.org/10.1099/vir.0.042499-0
    • (2012) J Gen Virol , vol.93 , pp. 1385-1409
    • Firth, A.E.1    Brierley, I.2
  • 52
    • 0024340607 scopus 로고
    • In vitro processing of dengue virus structural proteins: cleavage of the pre-membrane protein
    • Markoff L. 1989. In vitro processing of dengue virus structural proteins: cleavage of the pre-membrane protein. J Virol 63:3345-3352
    • (1989) J Virol , vol.63 , pp. 3345-3352
    • Markoff, L.1
  • 53
    • 0030667792 scopus 로고    scopus 로고
    • Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3(Pro) of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B
    • Clum S, Ebner KE, Padmanabhan R. 1997. Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3(Pro) of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B. J Biol Chem 272: 30715-30723. https://doi.org/10.1074/jbc.272.49.30715
    • (1997) J Biol Chem , vol.272 , pp. 30715-30723
    • Clum, S.1    Ebner, K.E.2    Padmanabhan, R.3
  • 56
    • 40449115740 scopus 로고    scopus 로고
    • Signal sequence-and translation-independent mRNA localization to the endoplasmic reticulum
    • Pyhtila B, Zheng T, Lager PJ, Keene JD, Reedy MC, Nicchitta CV. 2008. Signal sequence-and translation-independent mRNA localization to the endoplasmic reticulum. RNA 14:445-453. https://doi.org/10.1261/rna.721108
    • (2008) RNA , vol.14 , pp. 445-453
    • Pyhtila, B.1    Zheng, T.2    Lager, P.J.3    Keene, J.D.4    Reedy, M.C.5    Nicchitta, C.V.6
  • 57
    • 33645788870 scopus 로고    scopus 로고
    • Genome-scale identification of membrane-associated human mRNAs
    • Diehn M, Bhattacharya R, Botstein D, Brown PO. 2006. Genome-scale identification of membrane-associated human mRNAs. PLoS Genet 2:e11. https://doi.org/10.1371/journal.pgen.0020011
    • (2006) PLoS Genet , vol.2
    • Diehn, M.1    Bhattacharya, R.2    Botstein, D.3    Brown, P.O.4
  • 58
    • 17844395239 scopus 로고    scopus 로고
    • Dissecting eukaryotic translation and its control by ribosome density mapping
    • Arava Y, Boas FE, Brown PO, Herschlag D. 2005. Dissecting eukaryotic translation and its control by ribosome density mapping. Nucleic Acids Res 33:2421-2432. https://doi.org/10.1093/nar/gki331
    • (2005) Nucleic Acids Res , vol.33 , pp. 2421-2432
    • Arava, Y.1    Boas, F.E.2    Brown, P.O.3    Herschlag, D.4
  • 59
    • 85021697763 scopus 로고    scopus 로고
    • Ribosome reinitiation can explain length-dependent translation of messenger RNA
    • Rogers DW, Bottcher MA, Traulsen A, Greig D. 2017. Ribosome reinitiation can explain length-dependent translation of messenger RNA. PLoS Comput Biol 13:e1005592. https://doi.org/10.1371/journal.pcbi.1005592
    • (2017) PLoS Comput Biol , vol.13
    • Rogers, D.W.1    Bottcher, M.A.2    Traulsen, A.3    Greig, D.4
  • 61
    • 46049116259 scopus 로고    scopus 로고
    • Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome
    • Menetret JF, Hegde RS, Aguiar M, Gygi SP, Park E, Rapoport TA, Akey CW. 2008. Single copies of Sec61 and TRAP associate with a nontranslating mammalian ribosome. Structure 16:1126-1137. https://doi.org/10.1016/ j.str.2008.05.003
    • (2008) Structure , vol.16 , pp. 1126-1137
    • Menetret, J.F.1    Hegde, R.S.2    Aguiar, M.3    Gygi, S.P.4    Park, E.5    Rapoport, T.A.6    Akey, C.W.7
  • 62
    • 84903310310 scopus 로고    scopus 로고
    • Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution
    • Voorhees RM, Fernandez IS, Scheres SH, Hegde RS. 2014. Structure of the mammalian ribosome-Sec61 complex to 3.4 A resolution. Cell 157: 1632-1643. https://doi.org/10.1016/j.cell.2014.05.024
    • (2014) Cell , vol.157 , pp. 1632-1643
    • Voorhees, R.M.1    Fernandez, I.S.2    Scheres, S.H.3    Hegde, R.S.4
  • 63
    • 84872749486 scopus 로고    scopus 로고
    • Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway
    • Pena J, Harris E. 2012. Early dengue virus protein synthesis induces extensive rearrangement of the endoplasmic reticulum independent of the UPR and SREBP-2 pathway. PLoS One 7:e38202. https://doi.org/10.1371/journal.pone.0038202
    • (2012) PLoS One , vol.7
    • Pena, J.1    Harris, E.2
  • 64
    • 48749123790 scopus 로고    scopus 로고
    • Structural proteomics of dengue virus
    • Perera R, Kuhn RJ. 2008. Structural proteomics of dengue virus. Curr Opin Microbiol 11:369-377. https://doi.org/10.1016/j.mib.2008.06.004
    • (2008) Curr Opin Microbiol , vol.11 , pp. 369-377
    • Perera, R.1    Kuhn, R.J.2
  • 65
    • 37349023165 scopus 로고    scopus 로고
    • Crystal structure of the NS3 protease-helicase from dengue virus
    • Luo D, Xu T, Hunke C, Gruber G, Vasudevan SG, Lescar J. 2008. Crystal structure of the NS3 protease-helicase from dengue virus. J Virol 82: 173-183. https://doi.org/10.1128/JVI.01788-07
    • (2008) J Virol , vol.82 , pp. 173-183
    • Luo, D.1    Xu, T.2    Hunke, C.3    Gruber, G.4    Vasudevan, S.G.5    Lescar, J.6
  • 66
    • 0027486484 scopus 로고
    • Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication
    • Chambers TJ, Nestorowicz A, Amberg SM, Rice CM. 1993. Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B-NS3 complex formation, and viral replication. J Virol 67:6797-6807
    • (1993) J Virol , vol.67 , pp. 6797-6807
    • Chambers, T.J.1    Nestorowicz, A.2    Amberg, S.M.3    Rice, C.M.4
  • 67
    • 0025864149 scopus 로고
    • Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins
    • Falgout B, Pethel M, Zhang YM, Lai CJ. 1991. Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65:2467-2475
    • (1991) J Virol , vol.65 , pp. 2467-2475
    • Falgout, B.1    Pethel, M.2    Zhang, Y.M.3    Lai, C.J.4
  • 68
    • 35748966391 scopus 로고    scopus 로고
    • Dengue virus serotype infection specifies the activation of the unfolded protein response
    • Umareddy I, Pluquet O, Wang QY, Vasudevan SG, Chevet E, Gu F. 2007. Dengue virus serotype infection specifies the activation of the unfolded protein response. Virol J 4:91. https://doi.org/10.1186/1743-422X-4-91
    • (2007) Virol J , vol.4 , pp. 91
    • Umareddy, I.1    Pluquet, O.2    Wang, Q.Y.3    Vasudevan, S.G.4    Chevet, E.5    Gu, F.6
  • 69
    • 82255173966 scopus 로고    scopus 로고
    • The unfolded protein response: from stress pathway to homeostatic regulation
    • Walter P, Ron D. 2011. The unfolded protein response: from stress pathway to homeostatic regulation. Science 334:1081-1086. https://doi.org/10.1126/science.1209038
    • (2011) Science , vol.334 , pp. 1081-1086
    • Walter, P.1    Ron, D.2
  • 70
    • 0037385313 scopus 로고    scopus 로고
    • Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1
    • Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. 2003. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol 4:321-329. https://doi.org/10.1038/ni907
    • (2003) Nat Immunol , vol.4 , pp. 321-329
    • Iwakoshi, N.N.1    Lee, A.H.2    Vallabhajosyula, P.3    Otipoby, K.L.4    Rajewsky, K.5    Glimcher, L.H.6
  • 71
    • 85028774067 scopus 로고    scopus 로고
    • Physiological/pathological ramifications of transcription factors in the unfolded protein response
    • Han J, Kaufman RJ. 2017. Physiological/pathological ramifications of transcription factors in the unfolded protein response. Genes Dev 31: 1417-1438. https://doi.org/10.1101/gad.297374.117
    • (2017) Genes Dev , vol.31 , pp. 1417-1438
    • Han, J.1    Kaufman, R.J.2
  • 72
    • 34250899722 scopus 로고    scopus 로고
    • Signal integration in the endoplasmic reticulum unfolded protein response
    • Ron D, Walter P. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519-529. https://doi.org/10.1038/nrm2199
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 519-529
    • Ron, D.1    Walter, P.2
  • 73
    • 22244446505 scopus 로고    scopus 로고
    • The mammalian unfolded protein response
    • Schroder M, Kaufman RJ. 2005. The mammalian unfolded protein response. Annu Rev Biochem 74:739-789. https://doi.org/10.1146/ annurev.biochem.73.011303.074134
    • (2005) Annu Rev Biochem , vol.74 , pp. 739-789
    • Schroder, M.1    Kaufman, R.J.2
  • 74
    • 84905902848 scopus 로고    scopus 로고
    • Flaviviral RNAs: weapons and targets in the war between virus and host
    • Bidet K, Garcia-Blanco MA. 2014. Flaviviral RNAs: weapons and targets in the war between virus and host. Biochem J 462:215-230. https://doi.org/ 10.1042/BJ20140456
    • (2014) Biochem J , vol.462 , pp. 215-230
    • Bidet, K.1    Garcia-Blanco, M.A.2
  • 75
    • 79960316086 scopus 로고    scopus 로고
    • Hierarchical regulation of mRNA partitioning between the cytoplasm and the endoplasmic reticulum of mammalian cells
    • Chen Q, Jagannathan S, Reid DW, Zheng T, Nicchitta CV. 2011. Hierarchical regulation of mRNA partitioning between the cytoplasm and the endoplasmic reticulum of mammalian cells. Mol Biol Cell 22:2646-2658. https://doi.org/10.1091/mbc.E11-03-0239
    • (2011) Mol Biol Cell , vol.22 , pp. 2646-2658
    • Chen, Q.1    Jagannathan, S.2    Reid, D.W.3    Zheng, T.4    Nicchitta, C.V.5
  • 76
    • 84902474372 scopus 로고    scopus 로고
    • Localization of mRNAs to the endoplasmic reticulum
    • Cui XA, Palazzo AF. 2014. Localization of mRNAs to the endoplasmic reticulum. Wiley Interdiscip Rev RNA 5:481-492. https://doi.org/10.1002/ wrna.1225
    • (2014) Wiley Interdiscip Rev RNA , vol.5 , pp. 481-492
    • Cui, X.A.1    Palazzo, A.F.2
  • 77
    • 33646168487 scopus 로고    scopus 로고
    • mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of capdependent translation
    • Lerner RS, Nicchitta CV. 2006. mRNA translation is compartmentalized to the endoplasmic reticulum following physiological inhibition of capdependent translation. RNA 12:775-789. https://doi.org/10.1261/rna.2318906
    • (2006) RNA , vol.12 , pp. 775-789
    • Lerner, R.S.1    Nicchitta, C.V.2
  • 81
    • 38449098012 scopus 로고    scopus 로고
    • In vitro and tissue culture methods for analysis of translation initiation on the endoplasmic reticulum
    • Stephens SB, Nicchitta CV. 2007. In vitro and tissue culture methods for analysis of translation initiation on the endoplasmic reticulum. Methods Enzymol 431:47-60. https://doi.org/10.1016/S0076-6879(07)31004-5
    • (2007) Methods Enzymol , vol.431 , pp. 47-60
    • Stephens, S.B.1    Nicchitta, C.V.2
  • 82
    • 84936803451 scopus 로고    scopus 로고
    • Simple and inexpensive ribosome profiling analysis of mRNA translation
    • Reid DW, Shenolikar S, Nicchitta CV. 2015. Simple and inexpensive ribosome profiling analysis of mRNA translation. Methods 91:69-74. https://doi.org/10.1016/j.ymeth.2015.07.003
    • (2015) Methods , vol.91 , pp. 69-74
    • Reid, D.W.1    Shenolikar, S.2    Nicchitta, C.V.3
  • 83
    • 80255127234 scopus 로고    scopus 로고
    • Cutadapt removes adapter sequences from highthroughput sequencing reads
    • Martin M. 2011. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet J 17:10-12. https://doi.org/10.14806/ej.17.1.200
    • (2011) EMBnet J , vol.17 , pp. 10-12
    • Martin, M.1
  • 84
    • 84886382161 scopus 로고    scopus 로고
    • Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures
    • Pollier J, Rombauts S, Goossens A. 2013. Analysis of RNA-Seq data with TopHat and Cufflinks for genome-wide expression analysis of jasmonate-treated plants and plant cultures. Methods Mol Biol 1011: 305-315. https://doi.org/10.1007/978-1-62703-414-2_24
    • (2013) Methods Mol Biol , vol.1011 , pp. 305-315
    • Pollier, J.1    Rombauts, S.2    Goossens, A.3
  • 85
    • 62349130698 scopus 로고    scopus 로고
    • Ultrafast and memory-efficient alignment of short DNA sequences to the human genome
    • Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. https://doi.org/10.1186/gb-2009-10-3-r25
    • (2009) Genome Biol , vol.10 , pp. R25
    • Langmead, B.1    Trapnell, C.2    Pop, M.3    Salzberg, S.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.