-
1
-
-
84974731299
-
Herpes simplex viruses, p 1823–1897
-
Knipe DM, Howley PM, 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA
-
Roizman B, Knipe DM, Whitley RJ. 2013. Herpes simplex viruses, p 1823–1897. In Knipe DM, Howley PM (ed), Fields virology, 6th ed. Lippincott Williams & Wilkins, Philadelphia, PA.
-
(2013)
Fields Virology
-
-
Roizman, B.1
Knipe, D.M.2
Whitley, R.J.3
-
2
-
-
39149132854
-
Chromatin control of herpes simplex virus lytic and latent infection
-
Knipe DM, Cliffe A. 2008. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Microbiol 6:211–221. https://doi.org/10.1038/nrmicro1794.
-
(2008)
Nat Rev Microbiol
, vol.6
, pp. 211-221
-
-
Knipe, D.M.1
Cliffe, A.2
-
3
-
-
84870662113
-
Snapshots: Chromatin control of viral infection
-
Knipe DM, Lieberman PM, Jung JU, McBride AA, Morris KV, Ott M, Margolis D, Nieto A, Nevels M, Parks RJ, Kristie TM. 2013. Snapshots: chromatin control of viral infection. Virology 435:141–156. https://doi.org/10.1016/j.virol.2012.09.023.
-
(2013)
Virology
, vol.435
, pp. 141-156
-
-
Knipe, D.M.1
Lieberman, P.M.2
Jung, J.U.3
McBride, A.A.4
Morris, K.V.5
Ott, M.6
Margolis, D.7
Nieto, A.8
Nevels, M.9
Parks, R.J.10
Kristie, T.M.11
-
4
-
-
0023140228
-
RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons
-
Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT. 1987. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059. https://doi.org/10.1126/science.2434993.
-
(1987)
Science
, vol.235
, pp. 1056-1059
-
-
Stevens, J.G.1
Wagner, E.K.2
Devi-Rao, G.B.3
Cook, M.L.4
Feldman, L.T.5
-
5
-
-
0028833335
-
Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus
-
Kramer MF, Coen DM. 1995. Quantification of transcripts from the ICP4 and thymidine kinase genes in mouse ganglia latently infected with herpes simplex virus. J Virol 69:1389–1399.
-
(1995)
J Virol
, vol.69
, pp. 1389-1399
-
-
Kramer, M.F.1
Coen, D.M.2
-
6
-
-
49649119633
-
MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs
-
Umbach JL, Kramer MF, Jurak I, Karnowski HW, Coen DM, Cullen BR. 2008. MicroRNAs expressed by herpes simplex virus 1 during latent infection regulate viral mRNAs. Nature 454:780–783. https://doi.org/10.1038/nature07103.
-
(2008)
Nature
, vol.454
, pp. 780-783
-
-
Umbach, J.L.1
Kramer, M.F.2
Jurak, I.3
Karnowski, H.W.4
Coen, D.M.5
Cullen, B.R.6
-
7
-
-
70349754489
-
Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia
-
Umbach JL, Nagel MA, Cohrs RJ, Gilden DH, Cullen BR. 2009. Analysis of human alphaherpesvirus microRNA expression in latently infected human trigeminal ganglia. J Virol 83:10677–10683. https://doi.org/10.1128/JVI.01185-09.
-
(2009)
J Virol
, vol.83
, pp. 10677-10683
-
-
Umbach, J.L.1
Nagel, M.A.2
Cohrs, R.J.3
Gilden, D.H.4
Cullen, B.R.5
-
8
-
-
77950788867
-
Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2
-
Jurak I, Kramer MF, Mellor JC, van Lint AL, Roth FP, Knipe DM, Coen DM. 2010. Numerous conserved and divergent microRNAs expressed by herpes simplex viruses 1 and 2. J Virol 84:4659– 4672. https://doi.org/10.1128/JVI.02725-09.
-
(2010)
J Virol
, vol.84
, pp. 4659-4672
-
-
Jurak, I.1
Kramer, M.F.2
Mellor, J.C.3
van Lint, A.L.4
Roth, F.P.5
Knipe, D.M.6
Coen, D.M.7
-
9
-
-
0024555760
-
During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure
-
Deshmane SL, Fraser NW. 1989. During latency, herpes simplex virus type 1 DNA is associated with nucleosomes in a chromatin structure. J Virol 63:943–947.
-
(1989)
J Virol
, vol.63
, pp. 943-947
-
-
Deshmane, S.L.1
Fraser, N.W.2
-
10
-
-
0030848169
-
A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1
-
Garber DA, Schaffer PA, Knipe DM. 1997. A LAT-associated function reduces productive-cycle gene expression during acute infection of murine sensory neurons with herpes simplex virus type 1. J Virol 71: 5885–5893.
-
(1997)
J Virol
, vol.71
, pp. 5885-5893
-
-
Garber, D.A.1
Schaffer, P.A.2
Knipe, D.M.3
-
11
-
-
0030744358
-
A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus
-
Chen SH, Kramer MF, Schaffer PA, Coen DM. 1997. A viral function represses accumulation of transcripts from productive-cycle genes in mouse ganglia latently infected with herpes simplex virus. J Virol 71: 5878–5884.
-
(1997)
J Virol
, vol.71
, pp. 5878-5884
-
-
Chen, S.H.1
Kramer, M.F.2
Schaffer, P.A.3
Coen, D.M.4
-
12
-
-
0024312746
-
A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency
-
Leib DA, Bogard CL, Kosz-Vnenchak M, Hicks KA, Coen DM, Knipe DM, Schaffer PA. 1989. A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. J Virol 63:2893–2900.
-
(1989)
J Virol
, vol.63
, pp. 2893-2900
-
-
Leib, D.A.1
Bogard, C.L.2
Kosz-Vnenchak, M.3
Hicks, K.A.4
Coen, D.M.5
Knipe, D.M.6
Schaffer, P.A.7
-
13
-
-
0024077236
-
A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state
-
Javier RT, Stevens JG, Dissette VB, Wagner EK. 1988. A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166:254–257. https://doi.org/10.1016/0042-6822(88)90169-9.
-
(1988)
Virology
, vol.166
, pp. 254-257
-
-
Javier, R.T.1
Stevens, J.G.2
Dissette, V.B.3
Wagner, E.K.4
-
14
-
-
0024394162
-
Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection
-
Steiner I, Spivack JG, Lirette RP, Brown SM, MacLean AR, Subak-Sharpe JH, Fraser NW. 1989. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J 8:505–511.
-
(1989)
EMBO J
, vol.8
, pp. 505-511
-
-
Steiner, I.1
Spivack, J.G.2
Lirette, R.P.3
Brown, S.M.4
Maclean, A.R.5
Subak-Sharpe, J.H.6
Fraser, N.W.7
-
15
-
-
84964806802
-
The HSV-1 latency-associated transcript functions to repress latent phase lytic gene expression and suppress virus reactivation from latently infected neurons
-
Nicoll MP, Hann W, Shivkumar M, Harman LE, Connor V, Coleman HM, Proença JT, Efstathiou S. 2016. The HSV-1 latency-associated transcript functions to repress latent phase lytic gene expression and suppress virus reactivation from latently infected neurons. PLoS Pathog 12:e1005539. https://doi.org/10.1371/journal.ppat.1005539.
-
(2016)
Plos Pathog
, vol.12
-
-
Nicoll, M.P.1
Hann, W.2
Shivkumar, M.3
Harman, L.E.4
Connor, V.5
Coleman, H.M.6
Proença, J.T.7
Efstathiou, S.8
-
16
-
-
0032030438
-
The region of the herpes simplex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein
-
Drolet BS, Perng GC, Cohen J, Slanina SM, Yukht A, Nesburn AB, Wechsler SL. 1998. The region of the herpes simplex virus type 1 LAT gene involved in spontaneous reactivation does not encode a functional protein. Virology 242:221–232. https://doi.org/10.1006/viro.1997.9020.
-
(1998)
Virology
, vol.242
, pp. 221-232
-
-
Drolet, B.S.1
Perng, G.C.2
Cohen, J.3
Slanina, S.M.4
Yukht, A.5
Nesburn, A.B.6
Wechsler, S.L.7
-
17
-
-
49449099065
-
An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor
-
Tang S, Bertke AS, Patel A, Wang K, Cohen JI, Krause PR. 2008. An acutely and latently expressed herpes simplex virus 2 viral microRNA inhibits expression of ICP34.5, a viral neurovirulence factor. Proc Natl Acad Sci U S A 105:10931–10936. https://doi.org/10.1073/pnas.0801845105.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 10931-10936
-
-
Tang, S.1
Bertke, A.S.2
Patel, A.3
Wang, K.4
Cohen, J.I.5
Krause, P.R.6
-
18
-
-
84878537894
-
Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture
-
Flores O, Nakayama S, Whisnant AW, Javanbakht H, Cullen BR, Bloom DC. 2013. Mutational inactivation of herpes simplex virus 1 microRNAs identifies viral mRNA targets and reveals phenotypic effects in culture. J Virol 87:6589– 6603. https://doi.org/10.1128/JVI.00504-13.
-
(2013)
J Virol
, vol.87
, pp. 6589-6603
-
-
Flores, O.1
Nakayama, S.2
Whisnant, A.W.3
Javanbakht, H.4
Cullen, B.R.5
Bloom, D.C.6
-
19
-
-
79551719108
-
The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing
-
Jiang X, Chentoufi AA, Hsiang C, Carpenter D, Osorio N, BenMohamed L, Fraser NW, Jones C, Wechsler SL. 2011. The herpes simplex virus type 1 latency-associated transcript can protect neuron-derived C1300 and Neuro2A cells from granzyme B-induced apoptosis and CD8 T-cell killing. J Virol 85:2325–2332. https://doi.org/10.1128/JVI.01791-10.
-
(2011)
J Virol
, vol.85
, pp. 2325-2332
-
-
Jiang, X.1
Chentoufi, A.A.2
Hsiang, C.3
Carpenter, D.4
Osorio, N.5
Benmohamed, L.6
Fraser, N.W.7
Jones, C.8
Wechsler, S.L.9
-
20
-
-
84874617418
-
Kinetics of facultative heterochromatin and Polycomb group protein association with the herpes simplex viral genome during establishment of latent infection
-
Cliffe AR, Coen DM, Knipe DM. 2013. Kinetics of facultative heterochromatin and Polycomb group protein association with the herpes simplex viral genome during establishment of latent infection. mBio 4:e00590 -12. https://doi.org/10.1128/mBio.00590-12.
-
(2013)
Mbio
, vol.4
-
-
Cliffe, A.R.1
Coen, D.M.2
Knipe, D.M.3
-
21
-
-
27644466623
-
Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection
-
Wang QY, Zhou C, Johnson KE, Colgrove RC, Coen DM, Knipe DM. 2005. Herpesviral latency-associated transcript gene promotes assembly of heterochromatin on viral lytic-gene promoters in latent infection. Proc Natl Acad Sci U S A 102:16055–16059. https://doi.org/10.1073/pnas.0505850102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 16055-16059
-
-
Wang, Q.Y.1
Zhou, C.2
Johnson, K.E.3
Colgrove, R.C.4
Coen, D.M.5
Knipe, D.M.6
-
22
-
-
67749137595
-
The Polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency
-
Kwiatkowski DL, Thompson HW, Bloom DC. 2009. The Polycomb group protein Bmi1 binds to the herpes simplex virus 1 latent genome and maintains repressive histone marks during latency. J Virol 83:8173– 8181. https://doi.org/10.1128/JVI.00686-09.
-
(2009)
J Virol
, vol.83
, pp. 8173-8181
-
-
Kwiatkowski, D.L.1
Thompson, H.W.2
Bloom, D.C.3
-
23
-
-
67749108444
-
Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters
-
Cliffe AR, Garber DA, Knipe DM. 2009. Transcription of the herpes simplex virus latency-associated transcript promotes the formation of facultative heterochromatin on lytic promoters. J Virol 83:8182– 8190. https://doi.org/10.1128/JVI.00712-09.
-
(2009)
J Virol
, vol.83
, pp. 8182-8190
-
-
Cliffe, A.R.1
Garber, D.A.2
Knipe, D.M.3
-
24
-
-
0024311526
-
Identification of the latency-associated transcript promotor by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus
-
Dobson AT, Sederati F, Devi-Rao G, Flanagan J, Farrell MJ, Stevens JG, Wagner EK, Feldman LT. 1989. Identification of the latency-associated transcript promotor by expression of rabbit beta-globin mRNA in mouse sensory nerve ganglia latently infected with a recombinant herpes simplex virus. J Virol 65:3844–3851.
-
(1989)
J Virol
, vol.65
, pp. 3844-3851
-
-
Dobson, A.T.1
Sederati, F.2
Devi-Rao, G.3
Flanagan, J.4
Farrell, M.J.5
Stevens, J.G.6
Wagner, E.K.7
Feldman, L.T.8
-
25
-
-
0028032995
-
Long-term promoter activity during herpes simplex virus latency
-
Lokensgard JR, Bloom DC, Dobson AT, Feldman LT. 1994. Long-term promoter activity during herpes simplex virus latency. J Virol 68: 7148–7158.
-
(1994)
J Virol
, vol.68
, pp. 7148-7158
-
-
Lokensgard, J.R.1
Bloom, D.C.2
Dobson, A.T.3
Feldman, L.T.4
-
26
-
-
0030860992
-
The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the transcription start site for long-term expression during latency
-
Lokensgard JR, Berthomme H, Feldman LT. 1997. The latency-associated promoter of herpes simplex virus type 1 requires a region downstream of the transcription start site for long-term expression during latency. J Virol 71:6714– 6719.
-
(1997)
J Virol
, vol.71
, pp. 6714-6719
-
-
Lokensgard, J.R.1
Berthomme, H.2
Feldman, L.T.3
-
27
-
-
0025336767
-
Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1
-
Batchelor AH, O’Hare P. 1990. Regulation and cell-type-specific activity of a promoter located upstream of the latency-associated transcript of herpes simplex virus type 1. J Virol 64:3269–3279.
-
(1990)
J Virol
, vol.64
, pp. 3269-3279
-
-
Batchelor, A.H.1
O’Hare, P.2
-
28
-
-
0025048749
-
Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: Evidence for neuron specificity and for a large LAT transcript
-
Zwaagstra JC, Ghiasi H, Slanina SM, Nesburn AB, Wheatley SC, Lillycrop K, Wood J, Latchman DS, Patel K, Wechsler SL. 1990. Activity of herpes simplex virus type 1 latency-associated transcript (LAT) promoter in neuron-derived cells: evidence for neuron specificity and for a large LAT transcript. J Virol 64:5019–5028.
-
(1990)
J Virol
, vol.64
, pp. 5019-5028
-
-
Zwaagstra, J.C.1
Ghiasi, H.2
Slanina, S.M.3
Nesburn, A.B.4
Wheatley, S.C.5
Lillycrop, K.6
Wood, J.7
Latchman, D.S.8
Patel, K.9
Wechsler, S.L.10
-
29
-
-
0023875743
-
Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection
-
Spivack JG, Fraser NW. 1988. Expression of herpes simplex virus type 1 latency-associated transcripts in the trigeminal ganglia of mice during acute infection and reactivation of latent infection. J Virol 62:1479–1485.
-
(1988)
J Virol
, vol.62
, pp. 1479-1485
-
-
Spivack, J.G.1
Fraser, N.W.2
-
30
-
-
32444451768
-
Deacety-lation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant
-
Amelio AL, Giordani NV, Kubat NJ, O’Neil JE, Bloom DC. 2006. Deacety-lation of the herpes simplex virus type 1 latency-associated transcript (LAT) enhancer and a decrease in LAT abundance precede an increase in ICP0 transcriptional permissiveness at early times postexplant. J Virol 80:2063–2068. https://doi.org/10.1128/JVI.80.4.2063-2068.2006.
-
(2006)
J Virol
, vol.80
, pp. 2063-2068
-
-
Amelio, A.L.1
Giordani, N.V.2
Kubat, N.J.3
O’Neil, J.E.4
Bloom, D.C.5
-
31
-
-
0027184328
-
Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons
-
Kosz-Vnenchak M, Jacobson J, Coen DM, Knipe DM. 1993. Evidence for a novel regulatory pathway for herpes simplex virus gene expression in trigeminal ganglion neurons. J Virol 67:5383–5393.
-
(1993)
J Virol
, vol.67
, pp. 5383-5393
-
-
Kosz-Vnenchak, M.1
Jacobson, J.2
Coen, D.M.3
Knipe, D.M.4
-
32
-
-
0028144679
-
Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia
-
Devi-Rao GB, Bloom DC, Stevens JG, Wagner EK. 1994. Herpes simplex virus type 1 DNA replication and gene expression during explant-induced reactivation of latently infected murine sensory ganglia. J Virol 68:1271–1282.
-
(1994)
J Virol
, vol.68
, pp. 1271-1282
-
-
Devi-Rao, G.B.1
Bloom, D.C.2
Stevens, J.G.3
Wagner, E.K.4
-
33
-
-
0026528539
-
Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression
-
Chen J, Silverstein S. 1992. Herpes simplex viruses with mutations in the gene encoding ICP0 are defective in gene expression. J Virol 66:2916–2927.
-
(1992)
J Virol
, vol.66
, pp. 2916-2927
-
-
Chen, J.1
Silverstein, S.2
-
34
-
-
0026533363
-
Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells
-
Cai W, Schaffer PA. 1992. Herpes simplex virus type 1 ICP0 regulates expression of immediate-early, early, and late genes in productively infected cells. J Virol 66:2904–2915.
-
(1992)
J Virol
, vol.66
, pp. 2904-2915
-
-
Cai, W.1
Schaffer, P.A.2
-
35
-
-
84868095535
-
Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein
-
Orzalli MH, DeLuca NA, Knipe DM. 2012. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci U S A 109:E3008–E3017. https://doi.org/10.1073/pnas.1211302109.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, pp. E3008-E3017
-
-
Orzalli, M.H.1
Deluca, N.A.2
Knipe, D.M.3
-
36
-
-
84888122810
-
Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA
-
Orzalli MH, Conwell SE, Berrios C, Decaprio JA, Knipe DM. 2013. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. Proc Natl Acad Sci U S A 110:E4492–E4501. https://doi.org/10.1073/pnas.1316194110.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. E4492-E4501
-
-
Orzalli, M.H.1
Conwell, S.E.2
Berrios, C.3
Decaprio, J.A.4
Knipe, D.M.5
-
37
-
-
0033611590
-
Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins
-
Chelbi-Alix MK, de Thé H. 1999. Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 18:935–941. https://doi.org/10.1038/sj.onc.1202366.
-
(1999)
Oncogene
, vol.18
, pp. 935-941
-
-
Chelbi-Alix, M.K.1
de Thé, H.2
-
38
-
-
16244422998
-
ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection
-
Everett RD, Murray J. 2005. ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79:5078–5089. https://doi.org/10.1128/JVI.79.8.5078-5089.2005.
-
(2005)
J Virol
, vol.79
, pp. 5078-5089
-
-
Everett, R.D.1
Murray, J.2
-
39
-
-
84866177156
-
Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity
-
Jurak I, Silverstein LB, Sharma M, Coen DM. 2012. Herpes simplex virus is equipped with RNA- and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J Virol 86: 10093–10102. https://doi.org/10.1128/JVI.00930-12.
-
(2012)
J Virol
, vol.86
, pp. 10093-10102
-
-
Jurak, I.1
Silverstein, L.B.2
Sharma, M.3
Coen, D.M.4
-
40
-
-
33746827706
-
PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0
-
Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A. 2006. PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80:7995– 8005. https://doi.org/10.1128/JVI.00734-06.
-
(2006)
J Virol
, vol.80
, pp. 7995-8005
-
-
Everett, R.D.1
Rechter, S.2
Papior, P.3
Tavalai, N.4
Stamminger, T.5
Orr, A.6
-
41
-
-
19644384912
-
Components of the REST/ CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells
-
Gu H, Liang Y, Mandel G, Roizman B. 2005. Components of the REST/ CoREST/histone deacetylase repressor complex are disrupted, modified, and translocated in HSV-1-infected cells. Proc Natl Acad Sci U S A 102:7571–7576. https://doi.org/10.1073/pnas.0502658102.
-
(2005)
Proc Natl Acad Sci U S A
, vol.102
, pp. 7571-7576
-
-
Gu, H.1
Liang, Y.2
Mandel, G.3
Roizman, B.4
-
42
-
-
36749032258
-
Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex
-
Gu H, Roizman B. 2007. Herpes simplex virus-infected cell protein 0 blocks the silencing of viral DNA by dissociating histone deacetylases from the CoREST-REST complex. Proc Natl Acad Sci U S A 104:17134–17139. https://doi.org/10.1073/pnas.0707266104.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 17134-17139
-
-
Gu, H.1
Roizman, B.2
-
43
-
-
58149376706
-
A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones
-
Proença JT, Coleman HM, Connor V, Winton DJ, Efstathiou S. 2008. A historical analysis of herpes simplex virus promoter activation in vivo reveals distinct populations of latently infected neurones. J Gen Virol 89:2965–2974. https://doi.org/10.1099/vir.0.2008/005066-0.
-
(2008)
J Gen Virol
, vol.89
, pp. 2965-2974
-
-
Proença, J.T.1
Coleman, H.M.2
Connor, V.3
Winton, D.J.4
Efstathiou, S.5
-
44
-
-
84979019803
-
A herpesviral lytic protein regulates the structure of latent viral chromatin
-
Raja P, Lee JS, Pan D, Pesola JM, Coen DM, Knipe DM. 2016. A herpesviral lytic protein regulates the structure of latent viral chromatin. mBio 7:e00633-16. https://doi.org/10.1128/mBio.00633-16.
-
(2016)
Mbio
, vol.7
-
-
Raja, P.1
Lee, J.S.2
Pan, D.3
Pesola, J.M.4
Coen, D.M.5
Knipe, D.M.6
-
45
-
-
0025675441
-
A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene
-
Lobanenkov VV, Nicolas RH, Adler VV, Paterson H, Klenova EM, Po-lotskaja AV, Goodwin GH. 1990. A novel sequence-specific DNA binding protein which interacts with three regularly spaced direct repeats of the CCCTC-motif in the 5′-flanking sequence of the chicken c-myc gene. Oncogene 5:1743–1753.
-
(1990)
Oncogene
, vol.5
, pp. 1743-1753
-
-
Lobanenkov, V.V.1
Nicolas, R.H.2
Adler, V.V.3
Paterson, H.4
Klenova, E.M.5
Po-Lotskaja, A.V.6
Goodwin, G.H.7
-
46
-
-
0025336820
-
Modular structure of a chicken lysozyme silencer: Involvement of an unusual thyroid hormone receptor binding site
-
Baniahmad A, Steiner C, Köhne AC, Renkawitz R. 1990. Modular structure of a chicken lysozyme silencer: involvement of an unusual thyroid hormone receptor binding site. Cell 61:505–514. https://doi.org/10.1016/0092-8674(90)90532-J.
-
(1990)
Cell
, vol.61
, pp. 505-514
-
-
Baniahmad, A.1
Steiner, C.2
Köhne, A.C.3
Renkawitz, R.4
-
47
-
-
0024779033
-
CCCTC-binding protein: A new nuclear protein factor which interaction with 5′-flanking sequence of chicken c-myc oncogene correlates with repression of the gene
-
Lobanenkov VV, Gudvin GG. 1989. CCCTC-binding protein: a new nuclear protein factor which interaction with 5′-flanking sequence of chicken c-myc oncogene correlates with repression of the gene. Dokl Akad Nauk SSSR 309:741–745.
-
(1989)
Dokl Akad Nauk SSSR
, vol.309
, pp. 741-745
-
-
Lobanenkov, V.V.1
Gudvin, G.G.2
-
48
-
-
0027337533
-
NeP1. A ubiquitous transcription factor synergizes with v-ERBA in transcriptional silencing
-
Köhne AC, Baniahmad A, Renkawitz R. 1993. NeP1. A ubiquitous transcription factor synergizes with v-ERBA in transcriptional silencing. J Mol Biol 232:747–755. https://doi.org/10.1006/jmbi.1993.1428.
-
(1993)
J Mol Biol
, vol.232
, pp. 747-755
-
-
Köhne, A.C.1
Baniahmad, A.2
Renkawitz, R.3
-
49
-
-
0027362621
-
CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms
-
Klenova EM, Nicolas RH, Paterson HF, Carne AF, Heath CM, Goodwin GH, Neiman PE, Lobanenkov VV. 1993. CTCF, a conserved nuclear factor required for optimal transcriptional activity of the chicken c-myc gene, is an 11-Zn-finger protein differentially expressed in multiple forms. Mol Cell Biol 13:7612–7624. https://doi.org/10.1128/MCB.13.12.7612.
-
(1993)
Mol Cell Biol
, vol.13
, pp. 7612-7624
-
-
Klenova, E.M.1
Nicolas, R.H.2
Paterson, H.F.3
Carne, A.F.4
Heath, C.M.5
Goodwin, G.H.6
Neiman, P.E.7
Lobanenkov, V.V.8
-
50
-
-
0029929793
-
An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes
-
Filippova GN, Fagerlie S, Klenova EM, Myers C, Dehner Y, Goodwin G, Neiman PE, Collins SJ, Lobanenkov VV. 1996. An exceptionally conserved transcriptional repressor, CTCF, employs different combinations of zinc fingers to bind diverged promoter sequences of avian and mammalian c-myc oncogenes. Mol Cell Biol 16:2802–2813. https://doi.org/10.1128/MCB.16.6.2802.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 2802-2813
-
-
Filippova, G.N.1
Fagerlie, S.2
Klenova, E.M.3
Myers, C.4
Dehner, Y.5
Goodwin, G.6
Neiman, P.E.7
Collins, S.J.8
Lobanenkov, V.V.9
-
51
-
-
0033529654
-
The protein CTCF is required for the enhancer blocking activity of vertebrate insulators
-
Bell AC, West AG, Felsenfeld G. 1999. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98:387–396. https://doi.org/10.1016/S0092-8674(00)81967-4.
-
(1999)
Cell
, vol.98
, pp. 387-396
-
-
Bell, A.C.1
West, A.G.2
Felsenfeld, G.3
-
52
-
-
48249153426
-
The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome
-
Fu Y, Sinha M, Peterson CL, Weng Z. 2008. The insulator binding protein CTCF positions 20 nucleosomes around its binding sites across the human genome. PLoS Genet 4:e1000138. https://doi.org/10.1371/journal.pgen.1000138.
-
(2008)
Plos Genet
, vol.4
-
-
Fu, Y.1
Sinha, M.2
Peterson, C.L.3
Weng, Z.4
-
53
-
-
80455176999
-
CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing
-
Shukla S, Kavak E, Gregory M, Imashimizu M, Shutinoski B, Kashlev M, Oberdoerffer P, Sandberg R, Oberdoerffer S. 2011. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing. Nature 479: 74–79. https://doi.org/10.1038/nature10442.
-
(2011)
Nature
, vol.479
, pp. 74-79
-
-
Shukla, S.1
Kavak, E.2
Gregory, M.3
Imashimizu, M.4
Shutinoski, B.5
Kashlev, M.6
Oberdoerffer, P.7
Sandberg, R.8
Oberdoerffer, S.9
-
54
-
-
33748259774
-
CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus
-
Splinter E, Heath H, Kooren J, Palstra RJ, Klous P, Grosveld F, Galjart N, de Laat W. 2006. CTCF mediates long-range chromatin looping and local histone modification in the beta-globin locus. Genes Dev 20:2349–2354. https://doi.org/10.1101/gad.399506.
-
(2006)
Genes Dev
, vol.20
, pp. 2349-2354
-
-
Splinter, E.1
Heath, H.2
Kooren, J.3
Palstra, R.J.4
Klous, P.5
Grosveld, F.6
Galjart, N.7
de Laat, W.8
-
55
-
-
79959699992
-
CTCF-mediated functional chromatin interactome in pluripotent cells
-
Handoko L, Xu H, Li G, Ngan CY, Chew E, Schnapp M, Lee CW, Ye C, Ping JL, Mulawadi F, Wong E, Sheng J, Zhang Y, Poh T, Chan CS, Kunarso G, Shahab A, Bourque G, Cacheux-Rataboul V, Sung WK, Ruan Y, Wei CL. 2011. CTCF-mediated functional chromatin interactome in pluripotent cells. Nat Genet 43:630– 638. https://doi.org/10.1038/ng.857.
-
(2011)
Nat Genet
, vol.43
, pp. 630-638
-
-
Handoko, L.1
Xu, H.2
Li, G.3
Ngan, C.Y.4
Chew, E.5
Schnapp, M.6
Lee, C.W.7
Ye, C.8
Ping, J.L.9
Mulawadi, F.10
Wong, E.11
Sheng, J.12
Zhang, Y.13
Poh, T.14
Chan, C.S.15
Kunarso, G.16
Shahab, A.17
Bourque, G.18
Cacheux-Rataboul, V.19
Sung, W.K.20
Ruan, Y.21
Wei, C.L.22
more..
-
56
-
-
84899415536
-
CTCF: An architectural protein bridging genome topology and function
-
Ong CT, Corces VG. 2014. CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15:234–246. https://doi.org/10.1038/nrg3663.
-
(2014)
Nat Rev Genet
, vol.15
, pp. 234-246
-
-
Ong, C.T.1
Corces, V.G.2
-
57
-
-
0034713275
-
CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/ Igf2 locus
-
Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. 2000. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/ Igf2 locus. Nature 405:486–489. https://doi.org/10.1038/35013106.
-
(2000)
Nature
, vol.405
, pp. 486-489
-
-
Hark, A.T.1
Schoenherr, C.J.2
Katz, D.J.3
Ingram, R.S.4
Levorse, J.M.5
Tilghman, S.M.6
-
58
-
-
33947201809
-
Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome
-
Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B. 2007. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128: 1231–1245. https://doi.org/10.1016/j.cell.2006.12.048.
-
(2007)
Cell
, vol.128
, pp. 1231-1245
-
-
Kim, T.H.1
Abdullaev, Z.K.2
Smith, A.D.3
Ching, K.A.4
Loukinov, D.I.5
Green, R.D.6
Zhang, M.Q.7
Lobanenkov, V.V.8
Ren, B.9
-
59
-
-
0027254748
-
A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila
-
Chung JH, Whiteley M, Felsenfeld G. 1993. A 5′ element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74:505–514. https://doi.org/10.1016/0092-8674(93)80052-G.
-
(1993)
Cell
, vol.74
, pp. 505-514
-
-
Chung, J.H.1
Whiteley, M.2
Felsenfeld, G.3
-
60
-
-
77958134523
-
CTCF prevents the epigenetic drift of EBV latency promoter Qp
-
Tempera I, Wiedmer A, Dheekollu J, Lieberman PM. 2010. CTCF prevents the epigenetic drift of EBV latency promoter Qp. PLoS Pathog 6:e1001048. https://doi.org/10.1371/journal.ppat.1001048.
-
(2010)
Plos Pathog
, vol.6
-
-
Tempera, I.1
Wiedmer, A.2
Dheekollu, J.3
Lieberman, P.M.4
-
61
-
-
39449111307
-
Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators
-
Stedman W, Kang H, Lin S, Kissil JL, Bartolomei MS, Lieberman PM. 2008. Cohesins localize with CTCF at the KSHV latency control region and at cellular c-myc and H19/Igf2 insulators. EMBO J 27:654– 666. https://doi.org/10.1038/emboj.2008.1.
-
(2008)
EMBO J
, vol.27
, pp. 654-666
-
-
Stedman, W.1
Kang, H.2
Lin, S.3
Kissil, J.L.4
Bartolomei, M.S.5
Lieberman, P.M.6
-
62
-
-
80052336129
-
Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation
-
Kang H, Wiedmer A, Yuan Y, Robertson E, Lieberman PM. 2011. Coordination of KSHV latent and lytic gene control by CTCF-cohesin mediated chromosome conformation. PLoS Pathog 7:e1002140. https://doi.org/10.1371/journal.ppat.1002140.
-
(2011)
Plos Pathog
, vol.7
-
-
Kang, H.1
Wiedmer, A.2
Yuan, Y.3
Robertson, E.4
Lieberman, P.M.5
-
63
-
-
84901981495
-
CTCF binding to the first intron of the major immediate early (MIE) gene of human cytomegalo-virus (HCMV) negatively regulates MIE gene expression and HCMV replication
-
Martínez FP, Cruz R, Lu F, Plasschaert R, Deng Z, Rivera-Molina YA, Bartolomei MS, Lieberman PM, Tang Q. 2014. CTCF binding to the first intron of the major immediate early (MIE) gene of human cytomegalo-virus (HCMV) negatively regulates MIE gene expression and HCMV replication. J Virol 88:7389–7401. https://doi.org/10.1128/JVI.00845-14.
-
(2014)
J Virol
, vol.88
, pp. 7389-7401
-
-
Martínez, F.P.1
Cruz, R.2
Lu, F.3
Plasschaert, R.4
Deng, Z.5
Rivera-Molina, Y.A.6
Bartolomei, M.S.7
Lieberman, P.M.8
Tang, Q.9
-
64
-
-
33144473613
-
A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities
-
Amelio AL, McAnany PK, Bloom DC. 2006. A chromatin insulator-like element in the herpes simplex virus type 1 latency-associated transcript region binds CCCTC-binding factor and displays enhancer-blocking and silencing activities. J Virol 80:2358–2368. https://doi.org/10.1128/JVI.80.5.2358-2368.2006.
-
(2006)
J Virol
, vol.80
, pp. 2358-2368
-
-
Amelio, A.L.1
McAnany, P.K.2
Bloom, D.C.3
-
65
-
-
34248347841
-
CTCF-dependent chromatin boundary element between the latency-associated transcript and ICP0 promoters in the herpes simplex virus type 1 genome
-
Chen Q, Lin L, Smith S, Huang J, Berger SL, Zhou J. 2007. CTCF-dependent chromatin boundary element between the latency-associated transcript and ICP0 promoters in the herpes simplex virus type 1 genome. J Virol 81:5192–5201. https://doi.org/10.1128/JVI.02447-06.
-
(2007)
J Virol
, vol.81
, pp. 5192-5201
-
-
Chen, Q.1
Lin, L.2
Smith, S.3
Huang, J.4
Berger, S.L.5
Zhou, J.6
-
66
-
-
84869219613
-
CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreacti-vation in a transcription-dependent manner
-
Ertel MK, Cammarata AL, Hron RJ, Neumann DM. 2012. CTCF occupation of the herpes simplex virus 1 genome is disrupted at early times postreacti-vation in a transcription-dependent manner. J Virol 86:12741–12759. https://doi.org/10.1128/JVI.01655-12.
-
(2012)
J Virol
, vol.86
, pp. 12741-12759
-
-
Ertel, M.K.1
Cammarata, A.L.2
Hron, R.J.3
Neumann, D.M.4
-
67
-
-
84901309807
-
Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells
-
Harkness JM, Kader M, DeLuca NA. 2014. Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells. J Virol 88:6847– 6861. https://doi.org/10.1128/JVI.00516-14.
-
(2014)
J Virol
, vol.88
, pp. 6847-6861
-
-
Harkness, J.M.1
Kader, M.2
Deluca, N.A.3
-
68
-
-
85007610427
-
CTCF interacts with the lytic HSV-1 genome to promote viral transcription
-
Lang F, Li X, Vladimirova O, Hu B, Chen G, Xiao Y, Singh V, Lu D, Li L, Han H, Wickramasinghe JM, Smith ST, Zheng C, Li Q, Lieberman PM, Fraser NW, Zhou J. 2017. CTCF interacts with the lytic HSV-1 genome to promote viral transcription. Sci Rep 7:39861. https://doi.org/10.1038/srep39861.
-
(2017)
Sci Rep
, vol.7
-
-
Lang, F.1
Li, X.2
Vladimirova, O.3
Hu, B.4
Chen, G.5
Xiao, Y.6
Singh, V.7
Lu, D.8
Li, L.9
Han, H.10
Wickramasinghe, J.M.11
Smith, S.T.12
Zheng, C.13
Li, Q.14
Lieberman, P.M.15
Fraser, N.W.16
Zhou, J.17
-
69
-
-
80052035740
-
Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia
-
Kramer MF, Jurak I, Pesola JM, Boissel S, Knipe DM, Coen DM. 2011. Herpes simplex virus 1 microRNAs expressed abundantly during latent infection are not essential for latency in mouse trigeminal ganglia. Virology 417:239–247. https://doi.org/10.1016/j.virol.2011.06.027.
-
(2011)
Virology
, vol.417
, pp. 239-247
-
-
Kramer, M.F.1
Jurak, I.2
Pesola, J.M.3
Boissel, S.4
Knipe, D.M.5
Coen, D.M.6
-
70
-
-
7644226143
-
The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyper-acetylated during latency independently of LAT transcription
-
Kubat NJ, Amelio AL, Giordani NV, Bloom DC. 2004. The herpes simplex virus type 1 latency-associated transcript (LAT) enhancer/rcr is hyper-acetylated during latency independently of LAT transcription. J Virol 78:12508–12518. https://doi.org/10.1128/JVI.78.22.12508-12518.2004.
-
(2004)
J Virol
, vol.78
, pp. 12508-12518
-
-
Kubat, N.J.1
Amelio, A.L.2
Giordani, N.V.3
Bloom, D.C.4
-
71
-
-
0347634430
-
Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression
-
Kubat NJ, Tran RK, McAnany P, Bloom DC. 2004. Specific histone tail modification and not DNA methylation is a determinant of herpes simplex virus type 1 latent gene expression. J Virol 78:1139–1149. https://doi.org/10.1128/JVI.78.3.1139-1149.2004.
-
(2004)
J Virol
, vol.78
, pp. 1139-1149
-
-
Kubat, N.J.1
Tran, R.K.2
McAnany, P.3
Bloom, D.C.4
-
72
-
-
23044457109
-
Chromatin boundaries and chromatin domains
-
Felsenfeld G, Burgess-Beusse B, Farrell C, Gaszner M, Ghirlando R, Huang S, Jin C, Litt M, Magdinier F, Mutskov V, Nakatani Y, Tagami H, West A, Yusufzai T. 2004. Chromatin boundaries and chromatin domains. Cold Spring Harb Symp Quant Biol 69:245–250. https://doi.org/10.1101/sqb.2004.69.245.
-
(2004)
Cold Spring Harb Symp Quant Biol
, vol.69
, pp. 245-250
-
-
Felsenfeld, G.1
Burgess-Beusse, B.2
Farrell, C.3
Gaszner, M.4
Ghirlando, R.5
Huang, S.6
Jin, C.7
Litt, M.8
Magdinier, F.9
Mutskov, V.10
Nakatani, Y.11
Tagami, H.12
West, A.13
Yusufzai, T.14
-
73
-
-
77956645612
-
CTCF controls expression and chromatin architecture of the human major histocompatibility complex class II locus
-
Majumder P, Boss JM. 2010. CTCF controls expression and chromatin architecture of the human major histocompatibility complex class II locus. Mol Cell Biol 30:4211–4223. https://doi.org/10.1128/MCB.00327-10.
-
(2010)
Mol Cell Biol
, vol.30
, pp. 4211-4223
-
-
Majumder, P.1
Boss, J.M.2
-
74
-
-
67549119096
-
CTCF: Master weaver of the genome
-
Phillips JE, Corces VG. 2009. CTCF: master weaver of the genome. Cell 137:1194–1211. https://doi.org/10.1016/j.cell.2009.06.001.
-
(2009)
Cell
, vol.137
, pp. 1194-1211
-
-
Phillips, J.E.1
Corces, V.G.2
-
75
-
-
0035451090
-
CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease
-
Ohlsson R, Renkawitz R, Lobanenkov V. 2001. CTCF is a uniquely versatile transcription regulator linked to epigenetics and disease. Trends Genet 17:520–527. https://doi.org/10.1016/S0168-9525(01)02366-6.
-
(2001)
Trends Genet
, vol.17
, pp. 520-527
-
-
Ohlsson, R.1
Renkawitz, R.2
Lobanenkov, V.3
-
76
-
-
84892474330
-
Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site
-
Chen HS, Martin KA, Lu F, Lupey LN, Mueller JM, Lieberman PM, Tempera I. 2014. Epigenetic deregulation of the LMP1/LMP2 locus of Epstein-Barr virus by mutation of a single CTCF-cohesin binding site. J Virol 88: 1703–1713. https://doi.org/10.1128/JVI.02209-13.
-
(2014)
J Virol
, vol.88
, pp. 1703-1713
-
-
Chen, H.S.1
Martin, K.A.2
Lu, F.3
Lupey, L.N.4
Mueller, J.M.5
Lieberman, P.M.6
Tempera, I.7
-
77
-
-
33646070846
-
A bivalent chromatin structure marks key developmental genes in embryonic stem cells
-
Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326. https://doi.org/10.1016/j.cell.2006.02.041.
-
(2006)
Cell
, vol.125
, pp. 315-326
-
-
Bernstein, B.E.1
Mikkelsen, T.S.2
Xie, X.3
Kamal, M.4
Huebert, D.J.5
Cuff, J.6
Fry, B.7
Meissner, A.8
Wernig, M.9
Plath, K.10
Jaenisch, R.11
Wagschal, A.12
Feil, R.13
Schreiber, S.L.14
Lander, E.S.15
-
78
-
-
84908102194
-
Poised chromatin in the mammalian germ line
-
Lesch BJ, Page DC. 2014. Poised chromatin in the mammalian germ line. Development 141:3619–3626. https://doi.org/10.1242/dev.113027.
-
(2014)
Development
, vol.141
, pp. 3619-3626
-
-
Lesch, B.J.1
Page, D.C.2
-
79
-
-
84951047880
-
Neuronal stress pathway mediating a histone methyl/phospho switch is required for herpes simplex virus reactivation
-
Cliffe AR, Arbuckle JH, Vogel JL, Geden MJ, Rothbart SB, Cusack CL, Strahl BD, Kristie TM, Deshmukh M. 2015. Neuronal stress pathway mediating a histone methyl/phospho switch is required for herpes simplex virus reactivation. Cell Host Microbe 18:649– 658. https://doi.org/10.1016/j.chom.2015.11.007.
-
(2015)
Cell Host Microbe
, vol.18
, pp. 649-658
-
-
Cliffe, A.R.1
Arbuckle, J.H.2
Vogel, J.L.3
Geden, M.J.4
Rothbart, S.B.5
Cusack, C.L.6
Strahl, B.D.7
Kristie, T.M.8
Deshmukh, M.9
-
80
-
-
84989881459
-
De novo herpes simplex virus VP16 Expression gates a dynamic programmatic transition and sets the latent/ lytic balance during acute infection in trigeminal ganglia
-
Sawtell NM, Thompson RL. 2016. De novo herpes simplex virus VP16 Expression gates a dynamic programmatic transition and sets the latent/ lytic balance during acute infection in trigeminal ganglia. PLoS Pathog 12:e1005877. https://doi.org/10.1371/journal.ppat.1005877.
-
(2016)
Plos Pathog
, vol.12
-
-
Sawtell, N.M.1
Thompson, R.L.2
-
81
-
-
85007578386
-
CTCF-mediated chromatin loops enclose inducible gene regulatory domains
-
Oti M, Falck J, Huynen MA, Zhou H. 2016. CTCF-mediated chromatin loops enclose inducible gene regulatory domains. BMC Genomics 17: 252. https://doi.org/10.1186/s12864-016-2516-6.
-
(2016)
BMC Genomics
, vol.17
, Issue.252
-
-
Oti, M.1
Falck, J.2
Huynen, M.A.3
Zhou, H.4
-
82
-
-
0024537137
-
Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency
-
Leib DA, Coen DM, Bogard CL, Hicks KA, Yager DR, Knipe DM, Tyler KL, Schaffer PA. 1989. Immediate-early regulatory gene mutants define different stages in the establishment and reactivation of herpes simplex virus latency. J Virol 63:759–768.
-
(1989)
J Virol
, vol.63
, pp. 759-768
-
-
Leib, D.A.1
Coen, D.M.2
Bogard, C.L.3
Hicks, K.A.4
Yager, D.R.5
Knipe, D.M.6
Tyler, K.L.7
Schaffer, P.A.8
-
83
-
-
0034044062
-
Optimized viral dose and transient im-munosuppression enable herpes simplex virus ICP0-null mutants to establish wild-type levels of latency in vivo
-
Halford WP, Schaffer PA. 2000. Optimized viral dose and transient im-munosuppression enable herpes simplex virus ICP0-null mutants to establish wild-type levels of latency in vivo. J Virol 74:5957–5967. https://doi.org/10.1128/JVI.74.13.5957-5967.2000.
-
(2000)
J Virol
, vol.74
, pp. 5957-5967
-
-
Halford, W.P.1
Schaffer, P.A.2
-
84
-
-
85017480054
-
Viral gene products actively promote latent infection by epigenetic silencing mechanisms
-
Knipe DM, Raja P, Lee J. 2017. Viral gene products actively promote latent infection by epigenetic silencing mechanisms. Curr Opin Virol 23:68–74. https://doi.org/10.1016/j.coviro.2017.03.010.
-
(2017)
Curr Opin Virol
, vol.23
, pp. 68-74
-
-
Knipe, D.M.1
Raja, P.2
Lee, J.3
-
85
-
-
84946426536
-
History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains
-
Colgrove RC, Liu X, Griffiths A, Raja P, Deluca NA, Newman RM, Coen DM, Knipe DM. 2016. History and genomic sequence analysis of the herpes simplex virus 1 KOS and KOS1.1 sub-strains. Virology 487:215–221. https://doi.org/10.1016/j.virol.2015.09.026.
-
(2016)
Virology
, vol.487
, pp. 215-221
-
-
Colgrove, R.C.1
Liu, X.2
Griffiths, A.3
Raja, P.4
Deluca, N.A.5
Newman, R.M.6
Coen, D.M.7
Knipe, D.M.8
-
86
-
-
0018622716
-
Herpes simplex virus thymidine kinase expression in infection of the trigeminal ganglion
-
Tenser RB, Dunstan ME. 1979. Herpes simplex virus thymidine kinase expression in infection of the trigeminal ganglion. Virology 99:417– 422. https://doi.org/10.1016/0042-6822(79)90021-7.
-
(1979)
Virology
, vol.99
, pp. 417-422
-
-
Tenser, R.B.1
Dunstan, M.E.2
-
87
-
-
0024603574
-
Low levels of herpes simplex virus thymidine-thymidylate kinase are not limiting for sensitivity to certain antiviral drugs or for latency in a mouse model
-
Coen DM, Irmiere AF, Jacobson JG, Kerns KM. 1989. Low levels of herpes simplex virus thymidine-thymidylate kinase are not limiting for sensitivity to certain antiviral drugs or for latency in a mouse model. Virology 168:221–231. https://doi.org/10.1016/0042-6822(89)90261-4.
-
(1989)
Virology
, vol.168
, pp. 221-231
-
-
Coen, D.M.1
Irmiere, A.F.2
Jacobson, J.G.3
Kerns, K.M.4
-
88
-
-
84898664858
-
A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency
-
Pan D, Flores O, Umbach JL, Pesola JM, Bentley P, Rosato PC, Leib DA, Cullen BR, Coen DM. 2014. A neuron-specific host microRNA targets herpes simplex virus-1 ICP0 expression and promotes latency. Cell Host Microbe 15:446– 456. https://doi.org/10.1016/j.chom.2014.03.004.
-
(2014)
Cell Host Microbe
, vol.15
, pp. 446-456
-
-
Pan, D.1
Flores, O.2
Umbach, J.L.3
Pesola, J.M.4
Bentley, P.5
Rosato, P.C.6
Leib, D.A.7
Cullen, B.R.8
Coen, D.M.9
|