메뉴 건너뛰기




Volumn 25, Issue 1, 2018, Pages 53-60

Structural basis of TRPV5 channel inhibition by econazole revealed by cryo-EM

Author keywords

[No Author keywords available]

Indexed keywords

ECONAZOLE; PHOSPHATIDYLINOSITIDE; VANILLOID RECEPTOR; VANILLOID RECEPTOR 1; VANILLOID RECEPTOR 5;

EID: 85042762807     PISSN: 15459993     EISSN: 15459985     Source Type: Journal    
DOI: 10.1038/s41594-017-0009-1     Document Type: Article
Times cited : (103)

References (57)
  • 1
    • 84861581397 scopus 로고    scopus 로고
    • Prevalence of kidney stones in the United States
    • Scales, C. D., Smith, A. C., Hanley, J. M., Saigal, C. S. & Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur. Urol. 62, 160-165 (2012).
    • (2012) Eur. Urol. , vol.62 , pp. 160-165
    • Scales, C.D.1    Smith, A.C.2    Hanley, J.M.3    Saigal, C.S.4
  • 2
    • 85006017015 scopus 로고    scopus 로고
    • Mucin-1 increases renal TRPV5 activity in vitro, and urinary level associates with calcium nephrolithiasis in patients
    • Nie, M. et al. Mucin-1 increases renal TRPV5 activity in vitro, and urinary level associates with calcium nephrolithiasis in patients. J. Am. Soc. Nephrol. 27, 3447-3458 (2016).
    • (2016) J. Am. Soc. Nephrol. , vol.27 , pp. 3447-3458
    • Nie, M.1
  • 3
    • 84904891940 scopus 로고    scopus 로고
    • TRPV5: A Ca(2+ ) channel for the fine-tuning of Ca(2+ ) reabsorption
    • Na, T. & Peng, J. B. TRPV5: a Ca(2+ ) channel for the fine-tuning of Ca(2+ ) reabsorption. Handb. Exp. Pharmacol. 222, 321-357 (2014).
    • (2014) Handb. Exp. Pharmacol. , vol.222 , pp. 321-357
    • Na, T.1    Peng, J.B.2
  • 4
    • 32544451623 scopus 로고    scopus 로고
    • Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice
    • Renkema, K. Y. et al. Hypervitaminosis D mediates compensatory Ca2+ hyperabsorption in TRPV5 knockout mice. J. Am. Soc. Nephrol. 16, 3188-3195 (2005).
    • (2005) J. Am. Soc. Nephrol. , vol.16 , pp. 3188-3195
    • Renkema, K.Y.1
  • 6
    • 0035893481 scopus 로고    scopus 로고
    • Function and expression of the epithelial Ca(2+ ) channel family: Comparison of mammalian ECaC1 and 2
    • Hoenderop, J. G. et al. Function and expression of the epithelial Ca(2+ ) channel family: comparison of mammalian ECaC1 and 2. J. Physiol. (Lond.) 537, 747-761 (2001).
    • (2001) J. Physiol. (Lond.) , vol.537 , pp. 747-761
    • Hoenderop, J.G.1
  • 7
    • 85017126703 scopus 로고    scopus 로고
    • A gate hinge controls the epithelial calcium channel TRPV5
    • van der Wijst, J. et al. A gate hinge controls the epithelial calcium channel TRPV5. Sci. Rep. 7, 45489 (2017).
    • (2017) Sci. Rep. , vol.7 , pp. 45489
    • Van Der Wijst, J.1
  • 8
    • 85007427843 scopus 로고    scopus 로고
    • TRP channels in calcium homeostasis: From hormonal control to structure-function relationship of TRPV5 and TRPV6
    • van Goor, M. K. C., Hoenderop, J. G. J. & van der Wijst, J. TRP channels in calcium homeostasis: from hormonal control to structure-function relationship of TRPV5 and TRPV6. Biochim. Biophys. Acta 1864, 883-893 (2017).
    • (2017) Biochim. Biophys. Acta , vol.1864 , pp. 883-893
    • Van Goor, M.K.C.1    Hoenderop, J.G.J.2    Van Der Wijst, J.3
  • 9
    • 0034769282 scopus 로고    scopus 로고
    • Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1
    • Nilius, B. et al. Pharmacological modulation of monovalent cation currents through the epithelial Ca2+ channel ECaC1. Br. J. Pharmacol. 134, 453-462 (2001).
    • (2001) Br. J. Pharmacol. , vol.134 , pp. 453-462
    • Nilius, B.1
  • 11
    • 84962635518 scopus 로고    scopus 로고
    • Structure of the full-length TRPV2 channel by cryo-EM
    • Huynh, K. W. et al. Structure of the full-length TRPV2 channel by cryo-EM. Nat. Commun. 7, 11130 (2016).
    • (2016) Nat. Commun. , vol.7 , pp. 11130
    • Huynh, K.W.1
  • 12
    • 84889607320 scopus 로고    scopus 로고
    • Structure of the TRPV1 ion channel determined by electron cryo-microscopy
    • Liao, M., Cao, E., Julius, D. & Cheng, Y. Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504, 107-112 (2013).
    • (2013) Nature , vol.504 , pp. 107-112
    • Liao, M.1    Cao, E.2    Julius, D.3    Cheng, Y.4
  • 13
    • 84956830463 scopus 로고    scopus 로고
    • Cryo-electron microscopy structure of the TRPV2 ion channel
    • Zubcevic, L. et al. Cryo-electron microscopy structure of the TRPV2 ion channel. Nat. Struct. Mol. Biol. 23, 180-186 (2016).
    • (2016) Nat. Struct. Mol. Biol. , vol.23 , pp. 180-186
    • Zubcevic, L.1
  • 14
    • 84928474213 scopus 로고    scopus 로고
    • Structure of the TRPA1 ion channel suggests regulatory mechanisms
    • Paulsen, C. E., Armache, J. P., Gao, Y., Cheng, Y. & Julius, D. Structure of the TRPA1 ion channel suggests regulatory mechanisms. Nature 520, 511-517 (2015).
    • (2015) Nature , vol.520 , pp. 511-517
    • Paulsen, C.E.1    Armache, J.P.2    Gao, Y.3    Cheng, Y.4    Julius, D.5
  • 15
    • 85006515501 scopus 로고    scopus 로고
    • Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2)
    • Grieben, M. et al. Structure of the polycystic kidney disease TRP channel Polycystin-2 (PC2). Nat. Struct. Mol. Biol. 24, 114-122 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 114-122
    • Grieben, M.1
  • 16
    • 85009831976 scopus 로고    scopus 로고
    • Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2
    • Wilkes, M. et al. Molecular insights into lipid-assisted Ca2+ regulation of the TRP channel Polycystin-2. Nat. Struct. Mol. Biol. 24, 123-130 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 123-130
    • Wilkes, M.1
  • 17
    • 84992597299 scopus 로고    scopus 로고
    • The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs
    • Shen, P. S. et al. The structure of the polycystic kidney disease channel PKD2 in lipid nanodiscs. Cell 167, 763-773 (2016). e11.
    • (2016) Cell , vol.167 , pp. 763-773
    • Shen, P.S.1
  • 18
    • 85010872102 scopus 로고    scopus 로고
    • Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel
    • Li, M. et al. Structural basis of dual Ca2+/pH regulation of the endolysosomal TRPML1 channel. Nat. Struct. Mol. Biol. 24, 205-213 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 205-213
    • Li, M.1
  • 19
    • 84975688014 scopus 로고    scopus 로고
    • Crystal structure of the epithelial calcium channel TRPV6
    • Saotome, K., Singh, A. K., Yelshanskaya, M. V. & Sobolevsky, A. I. Crystal structure of the epithelial calcium channel TRPV6. Nature 534, 506-511 (2016).
    • (2016) Nature , vol.534 , pp. 506-511
    • Saotome, K.1    Singh, A.K.2    Yelshanskaya, M.V.3    Sobolevsky, A.I.4
  • 20
    • 85028908980 scopus 로고    scopus 로고
    • Swapping of transmembrane domains in the epithelial calcium channel TRPV6
    • Singh, A. K., Saotome, K. & Sobolevsky, A. I. Swapping of transmembrane domains in the epithelial calcium channel TRPV6. Sci. Rep. 7, 10669 (2017).
    • (2017) Sci. Rep. , vol.7 , pp. 10669
    • Singh, A.K.1    Saotome, K.2    Sobolevsky, A.I.3
  • 21
    • 77956996917 scopus 로고    scopus 로고
    • Ion channel voltage sensors: Structure, function, and pathophysiology
    • Catterall, W. A. Ion channel voltage sensors: structure, function, and pathophysiology. Neuron 67, 915-928 (2010).
    • (2010) Neuron , vol.67 , pp. 915-928
    • Catterall, W.A.1
  • 22
    • 84893757446 scopus 로고    scopus 로고
    • Structural insight into the assembly of TRPV channels
    • Huynh, K. W. et al. Structural insight into the assembly of TRPV channels. Structure 22, 260-268 (2014).
    • (2014) Structure , vol.22 , pp. 260-268
    • Huynh, K.W.1
  • 23
    • 80055073153 scopus 로고    scopus 로고
    • Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy
    • Cvetkov, T. L., Huynh, K. W., Cohen, M. R. & Moiseenkova-Bell, V. Y. Molecular architecture and subunit organization of TRPA1 ion channel revealed by electron microscopy. J. Biol. Chem. 286, 38168-38176 (2011).
    • (2011) J. Biol. Chem. , vol.286 , pp. 38168-38176
    • Cvetkov, T.L.1    Huynh, K.W.2    Cohen, M.R.3    Moiseenkova-Bell, V.Y.4
  • 25
    • 84973518493 scopus 로고    scopus 로고
    • Processing of structurally heterogeneous cryo-EM data in RELION
    • Scheres, S. H. Processing of structurally heterogeneous cryo-EM data in RELION. Methods Enzymol. 579, 125-157 (2016).
    • (2016) Methods Enzymol. , vol.579 , pp. 125-157
    • Scheres, S.H.1
  • 26
    • 84868444740 scopus 로고    scopus 로고
    • RELION: Implementation of a Bayesian approach to cryo-EM structure determination
    • Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519-530 (2012).
    • (2012) J. Struct. Biol. , vol.180 , pp. 519-530
    • Scheres, S.H.W.1
  • 27
    • 84889594608 scopus 로고    scopus 로고
    • TRPV1 structures in distinct conformations reveal activation mechanisms
    • Cao, E., Liao, M., Cheng, Y. & Julius, D. TRPV1 structures in distinct conformations reveal activation mechanisms. Nature 504, 113-118 (2013).
    • (2013) Nature , vol.504 , pp. 113-118
    • Cao, E.1    Liao, M.2    Cheng, Y.3    Julius, D.4
  • 28
    • 84969627248 scopus 로고    scopus 로고
    • TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action
    • Gao, Y., Cao, E., Julius, D. & Cheng, Y. TRPV1 structures in nanodiscs reveal mechanisms of ligand and lipid action. Nature 534, 347-351 (2016).
    • (2016) Nature , vol.534 , pp. 347-351
    • Gao, Y.1    Cao, E.2    Julius, D.3    Cheng, Y.4
  • 29
    • 39749115631 scopus 로고    scopus 로고
    • Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels
    • Phelps, C. B., Huang, R. J., Lishko, P. V., Wang, R. R. & Gaudet, R. Structural analyses of the ankyrin repeat domain of TRPV6 and related TRPV ion channels. Biochemistry 47, 2476-2484 (2008).
    • (2008) Biochemistry , vol.47 , pp. 2476-2484
    • Phelps, C.B.1    Huang, R.J.2    Lishko, P.V.3    Wang, R.R.4    Gaudet, R.5
  • 30
    • 79952485156 scopus 로고    scopus 로고
    • Chemical inhibitors of the calcium entry channel TRPV6
    • Landowski, C. P., Bolanz, K. A., Suzuki, Y. & Hediger, M. A. Chemical inhibitors of the calcium entry channel TRPV6. Pharm. Res. 28, 322-330 (2011).
    • (2011) Pharm. Res. , vol.28 , pp. 322-330
    • Landowski, C.P.1    Bolanz, K.A.2    Suzuki, Y.3    Hediger, M.A.4
  • 31
    • 84976579815 scopus 로고    scopus 로고
    • Rational design and validation of a vanilloid-sensitive TRPV2 ion channel
    • Yang, F., Vu, S., Yarov-Yarovoy, V. & Zheng, J. Rational design and validation of a vanilloid-sensitive TRPV2 ion channel. Proc. Natl. Acad. Sci. USA 113, E3657-E3666 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. E3657-E3666
    • Yang, F.1    Vu, S.2    Yarov-Yarovoy, V.3    Zheng, J.4
  • 32
    • 84975215461 scopus 로고    scopus 로고
    • Engineering vanilloid-sensitivity into the rat TRPV2 channel
    • Zhang, F. et al. Engineering vanilloid-sensitivity into the rat TRPV2 channel. eLife 5, e16409 (2016).
    • (2016) ELife , vol.5 , pp. e16409
    • Zhang, F.1
  • 33
    • 84925456818 scopus 로고    scopus 로고
    • Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations
    • Feng, Z. et al. Structural insight into tetrameric hTRPV1 from homology modeling, molecular docking, molecular dynamics simulation, virtual screening, and bioassay validations. J. Chem. Inf. Model. 55, 572-588 (2015).
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 572-588
    • Feng, Z.1
  • 34
    • 84892370435 scopus 로고    scopus 로고
    • Structural basis for Ca2+ selectivity of a voltage-gated calcium channel
    • Tang, L. et al. Structural basis for Ca2+ selectivity of a voltage-gated calcium channel. Nature 505, 56-61 (2014).
    • (2014) Nature , vol.505 , pp. 56-61
    • Tang, L.1
  • 36
    • 84986575661 scopus 로고    scopus 로고
    • Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution
    • Wu, J. et al. Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 537, 191-196 (2016).
    • (2016) Nature , vol.537 , pp. 191-196
    • Wu, J.1
  • 37
    • 84974779212 scopus 로고    scopus 로고
    • A molecular determinant of phosphoinositide affinity in mammalian TRPV channels
    • Velisetty, P. et al. A molecular determinant of phosphoinositide affinity in mammalian TRPV channels. Sci. Rep. 6, 27652 (2016).
    • (2016) Sci. Rep. , vol.6 , pp. 27652
    • Velisetty, P.1
  • 38
    • 0033166275 scopus 로고    scopus 로고
    • Leginon: A system for fully automated acquisition of 1000 electron micrographs a day
    • Potter, C. S. et al. Leginon: a system for fully automated acquisition of 1000 electron micrographs a day. Ultramicroscopy 77, 153-161 (1999).
    • (1999) Ultramicroscopy , vol.77 , pp. 153-161
    • Potter, C.S.1
  • 39
    • 85014129582 scopus 로고    scopus 로고
    • MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy
    • Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331-332 (2017).
    • (2017) Nat. Methods , vol.14 , pp. 331-332
    • Zheng, S.Q.1
  • 40
    • 84955216953 scopus 로고    scopus 로고
    • Gctf: Real-time CTF determination and correction
    • Zhang, K. Gctf: Real-time CTF determination and correction. J. Struct. Biol. 193, 1-12 (2016).
    • (2016) J. Struct. Biol. , vol.193 , pp. 1-12
    • Zhang, K.1
  • 41
    • 84894623755 scopus 로고    scopus 로고
    • Quantifying the local resolution of cryo-EM density maps
    • Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution of cryo-EM density maps. Nat. Methods 11, 63-65 (2014).
    • (2014) Nat. Methods , vol.11 , pp. 63-65
    • Kucukelbir, A.1    Sigworth, F.J.2    Tagare, H.D.3
  • 42
    • 85023204467 scopus 로고    scopus 로고
    • I-TASSER-MR: Automated molecular replacement for distant-homology proteins using iterative fragment assembly and progressive sequence truncation
    • Wang, Y., Virtanen, J., Xue, Z. & Zhang, Y. I-TASSER-MR: automated molecular replacement for distant-homology proteins using iterative fragment assembly and progressive sequence truncation. Nucleic Acids Res. https://doi. org/10.1093/nar/gkx349 (2017).
    • (2017) Nucleic Acids Res
    • Wang, Y.1    Virtanen, J.2    Xue, Z.3    Zhang, Y.4
  • 44
    • 14244272868 scopus 로고    scopus 로고
    • PHENIX: Building new software for automated crystallographic structure determination
    • Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948-1954 (2002).
    • (2002) Acta Crystallogr. D Biol. Crystallogr. , vol.58 , pp. 1948-1954
    • Adams, P.D.1
  • 45
    • 48849113878 scopus 로고    scopus 로고
    • Comparative protein structure modeling using MODELLER
    • Eswar, N. et al. Comparative protein structure modeling using MODELLER. Curr. Protoc. Protein Sci. 50, 2.9.1-2.9.31 (2007).
    • (2007) Curr. Protoc. Protein Sci. , vol.50 , pp. 291-2931
    • Eswar, N.1
  • 46
    • 33749578940 scopus 로고    scopus 로고
    • Statistical potential for assessment and prediction of protein structures
    • Shen, M. Y. & Sali, A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 15, 2507-2524 (2006).
    • (2006) Protein Sci. , vol.15 , pp. 2507-2524
    • Shen, M.Y.1    Sali, A.2
  • 47
    • 47149096704 scopus 로고    scopus 로고
    • CHARMM-GUI: A web-based graphical user interface for CHARMM
    • Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859-1865 (2008).
    • (2008) J. Comput. Chem. , vol.29 , pp. 1859-1865
    • Jo, S.1    Kim, T.2    Iyer, V.G.3    Im, W.4
  • 48
    • 84955167919 scopus 로고    scopus 로고
    • CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
    • Lee, J. et al. CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field. J. Chem. Theory Comput. 12, 405-413 (2016).
    • (2016) J. Chem. Theory Comput. , vol.12 , pp. 405-413
    • Lee, J.1
  • 49
    • 27344454932 scopus 로고    scopus 로고
    • GROMACS: Fast, flexible, and free
    • Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701-1718 (2005).
    • (2005) J. Comput. Chem. , vol.26 , pp. 1701-1718
    • Van Der Spoel, D.1
  • 50
    • 0041784950 scopus 로고    scopus 로고
    • All-atom empirical potential for molecular modeling and dynamics studies of proteins
    • MacKerell, A. D. et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102, 3586-3616 (1998).
    • (1998) J. Phys. Chem. B , vol.102 , pp. 3586-3616
    • MacKerell, A.D.1
  • 51
    • 84865723813 scopus 로고    scopus 로고
    • Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles
    • Best, R. B. et al. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. J. Chem. Theory Comput. 8, 3257-3273 (2012).
    • (2012) J. Chem. Theory Comput. , vol.8 , pp. 3257-3273
    • Best, R.B.1
  • 52
    • 77953377650 scopus 로고    scopus 로고
    • Update of the CHARMM all-atom additive force field for lipids: Validation on six lipid types
    • Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830-7843 (2010).
    • (2010) J. Phys. Chem. B , vol.114 , pp. 7830-7843
    • Klauda, J.B.1
  • 53
    • 76249087938 scopus 로고    scopus 로고
    • CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields
    • Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671-690, https://doi.org/10.1002/jcc.21367 (2010).
    • (2010) J. Comput. Chem. , vol.31 , pp. 671-690
    • Vanommeslaeghe, K.1
  • 54
    • 33846086933 scopus 로고    scopus 로고
    • Canonical sampling through velocity rescaling
    • Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).
    • (2007) J. Chem. Phys. , vol.126 , pp. 014101
    • Bussi, G.1    Donadio, D.2    Parrinello, M.3
  • 55
    • 0001538909 scopus 로고
    • Canonical dynamics: Equilibrium phase-space distributions
    • Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A Gen. Phys. 31, 1695-1697 (1985).
    • (1985) Phys. Rev. A Gen. Phys. , vol.31 , pp. 1695-1697
    • Hoover, W.G.1
  • 57
    • 84946887423 scopus 로고    scopus 로고
    • PyEMMA 2: A software package for estimation, validation, and analysis of Markov models
    • rer, M. K. et al. PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J. Chem. Theory Comput. 11, 5525-5542 (2015).
    • (2015) J. Chem. Theory Comput. , vol.11 , pp. 5525-5542
    • Rer, M.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.