메뉴 건너뛰기




Volumn 115, Issue 9, 2018, Pages 2096-2101

Rewiring yarrowia lipolytica toward triacetic acid lactone for materials generation

Author keywords

Biorenewable chemicals; O functionalization; Polyketide synthase; Triacetic acid lactone; Yarrowia lipolytica

Indexed keywords

ACETYL COENZYME A; POLY(EPICHLOROHYDRIN); POLYKETIDE; POLYKETIDE SYNTHASE; PYRUVIC ACID; TRIACETIC ACID LACTONE; UNCLASSIFIED DRUG; PYRONE DERIVATIVE; PYRUVIC ACID DERIVATIVE;

EID: 85042693471     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1721203115     Document Type: Article
Times cited : (146)

References (35)
  • 1
    • 85025681765 scopus 로고    scopus 로고
    • Bioprivileged molecules: Creating value from biomass
    • Shanks BH, Keeling PL (2017) Bioprivileged molecules: Creating value from biomass. Green Chem 19:3177–3185.
    • (2017) Green Chem , vol.19 , pp. 3177-3185
    • Shanks, B.H.1    Keeling, P.L.2
  • 2
    • 84887624541 scopus 로고    scopus 로고
    • Frontiers of yeast metabolic engineering: Diversifying beyond ethanol and saccharomyces
    • Liu L, Redden H, Alper HS (2013) Frontiers of yeast metabolic engineering: Diversifying beyond ethanol and Saccharomyces. Curr Opin Biotechnol 24:1023–1030.
    • (2013) Curr Opin Biotechnol , vol.24 , pp. 1023-1030
    • Liu, L.1    Redden, H.2    Alper, H.S.3
  • 5
    • 0037319699 scopus 로고    scopus 로고
    • The chalcone synthase superfamily of type III polyketide synthases
    • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110.
    • (2003) Nat Prod Rep , vol.20 , pp. 79-110
    • Austin, M.B.1    Noel, J.P.2
  • 6
    • 0026433504 scopus 로고
    • Polyketide synthase complexes: Their structure and function in antibiotic biosynthesis
    • Robinson JA (1991) Polyketide synthase complexes: Their structure and function in antibiotic biosynthesis. Philos Trans R Soc Lond B Biol Sci 332:107–114.
    • (1991) Philos Trans R Soc Lond B Biol Sci , vol.332 , pp. 107-114
    • Robinson, J.A.1
  • 7
    • 84976385234 scopus 로고    scopus 로고
    • Exploiting the biosynthetic potential of type III polyketide synthases
    • Lim YP, Go MK, Yew WS (2016) Exploiting the biosynthetic potential of type III polyketide synthases. Molecules 21:1–37.
    • (2016) Molecules , vol.21 , pp. 1-37
    • Lim, Y.P.1    Go, M.K.2    Yew, W.S.3
  • 8
    • 0032569804 scopus 로고    scopus 로고
    • New pathway to polyketides in plants
    • Eckermann S, et al. (1998) New pathway to polyketides in plants. Nature 396:387–390.
    • (1998) Nature , vol.396 , pp. 387-390
    • Eckermann, S.1
  • 9
    • 0036856654 scopus 로고    scopus 로고
    • Application of centrifugal force to the extraction and separation of parasorboside and gerberin from gerbera hybrida
    • Yrjönen T, et al. (2002) Application of centrifugal force to the extraction and separation of parasorboside and gerberin from Gerbera hybrida. Phytochem Anal 13:349–353.
    • (2002) Phytochem Anal , vol.13 , pp. 349-353
    • Yrjönen, T.1
  • 10
    • 84879999713 scopus 로고    scopus 로고
    • Screening for enhanced triacetic acid lactone (TAL) production by recombinant Escherichia coli expressing a designed TAL reporter
    • Tang S-Y, et al. (2013) Screening for enhanced triacetic acid lactone (TAL) production by recombinant Escherichia coli expressing a designed TAL reporter. J Am Chem Soc 135:10099–10103.
    • (2013) J Am Chem Soc , vol.135 , pp. 10099-10103
    • Tang, S.-Y.1
  • 11
    • 84907332252 scopus 로고    scopus 로고
    • Metabolic engineering of saccharomyces cerevisiae for the production of triacetic acid lactone
    • Cardenas J, Da Silva NA (2014) Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone. Metab Eng 25:194–203.
    • (2014) Metab Eng , vol.25 , pp. 194-203
    • Cardenas, J.1    Da Silva, N.A.2
  • 13
    • 84961599119 scopus 로고    scopus 로고
    • Engineering cofactor and transport mechanisms in saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis
    • Cardenas J, Da Silva NA (2016) Engineering cofactor and transport mechanisms in Saccharomyces cerevisiae for enhanced acetyl-CoA and polyketide biosynthesis. Metab Eng 36:80–89.
    • (2016) Metab Eng , vol.36 , pp. 80-89
    • Cardenas, J.1    Da Silva, N.A.2
  • 14
    • 84957083965 scopus 로고    scopus 로고
    • Stereocontrol within polyketide assembly lines
    • Keatinge-Clay AT (2016) Stereocontrol within polyketide assembly lines. Nat Prod Rep 33:141–149.
    • (2016) Nat Prod Rep , vol.33 , pp. 141-149
    • Keatinge-Clay, A.T.1
  • 15
    • 85042696110 scopus 로고    scopus 로고
    • Accessed March 1, 2017
    • Sorbic International Plc (2011) Product FAQS, sorbic acid. Available at www.sorbicinternational.com/media/product-faqs.php. Accessed March 1, 2017.
    • (2011) Product FAQS, Sorbic Acid
  • 16
    • 84911415574 scopus 로고    scopus 로고
    • Engineering catalyst microenvironments for metal-catalyzed hydrogenation of biologically derived platform chemicals
    • Schwartz TJ, et al. (2014) Engineering catalyst microenvironments for metal-catalyzed hydrogenation of biologically derived platform chemicals. Angew Chem Int Ed Engl 53:12718–12722.
    • (2014) Angew Chem Int Ed Engl , vol.53 , pp. 12718-12722
    • Schwartz, T.J.1
  • 17
    • 84940006387 scopus 로고    scopus 로고
    • Selective pyrone functionalization: Reductive alkylation of triacetic acid lactone
    • Kraus GA, Basemann K, Guney T (2015) Selective pyrone functionalization: Reductive alkylation of triacetic acid lactone. Tetrahedron Lett 56:3494–3496.
    • (2015) Tetrahedron Lett , vol.56 , pp. 3494-3496
    • Kraus, G.A.1    Basemann, K.2    Guney, T.3
  • 18
    • 84959011026 scopus 로고    scopus 로고
    • Triacetic acid lactone as a common intermediate for the synthesis of 4-hydroxy-2-pyridones and 4-amino-2-pyrones
    • Kraus GA, Wanninayake UK, Bottoms J (2016) Triacetic acid lactone as a common intermediate for the synthesis of 4-hydroxy-2-pyridones and 4-amino-2-pyrones. Tetrahedron Lett 57:1293–1295.
    • (2016) Tetrahedron Lett , vol.57 , pp. 1293-1295
    • Kraus, G.A.1    Wanninayake, U.K.2    Bottoms, J.3
  • 19
    • 33644899405 scopus 로고    scopus 로고
    • Microbial synthesis of triacetic acid lactone
    • Xie D, et al. (2006) Microbial synthesis of triacetic acid lactone. Biotechnol Bioeng 93: 727–736.
    • (2006) Biotechnol Bioeng , vol.93 , pp. 727-736
    • Xie, D.1
  • 20
    • 84937759575 scopus 로고    scopus 로고
    • Yarrowia lipolytica: Recent achievements in heterologous protein expression and pathway engineering
    • Madzak C (2015) Yarrowia lipolytica: Recent achievements in heterologous protein expression and pathway engineering. Appl Microbiol Biotechnol 99:4559–4577.
    • (2015) Appl Microbiol Biotechnol , vol.99 , pp. 4559-4577
    • Madzak, C.1
  • 21
    • 0024109857 scopus 로고
    • Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids
    • Holdsworth JE, Veenhuis M, Ratledge C (1988) Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J Gen Microbiol 134: 2907–2915.
    • (1988) J Gen Microbiol , vol.134 , pp. 2907-2915
    • Holdsworth, J.E.1    Veenhuis, M.2    Ratledge, C.3
  • 22
    • 70350205608 scopus 로고    scopus 로고
    • Yarrowia lipolytica as a model for bio-oil production
    • Beopoulos A, et al. (2009) Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res 48:375–387.
    • (2009) Prog Lipid Res , vol.48 , pp. 375-387
    • Beopoulos, A.1
  • 23
    • 84867632249 scopus 로고    scopus 로고
    • Yarrowia lipolytica
    • Nicaud J-M (2012) Yarrowia lipolytica. Yeast 29:409–418.
    • (2012) Yeast , vol.29 , pp. 409-418
    • Nicaud, J.-M.1
  • 24
    • 84870674137 scopus 로고    scopus 로고
    • Engineering the push and pull of lipid biosynthesis in oleaginous yeast yarrowia lipolytica for biofuel production
    • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9.
    • (2013) Metab Eng , vol.15 , pp. 1-9
    • Tai, M.1    Stephanopoulos, G.2
  • 25
    • 85032884347 scopus 로고    scopus 로고
    • A metabolic engineering strategy for producing free fatty acids by the yarrowia lipolytica yeast based on impairment of glycerol metabolism
    • Yuzbasheva EY, et al. (2017) A metabolic engineering strategy for producing free fatty acids by the Yarrowia lipolytica yeast based on impairment of glycerol metabolism. Biotechnol Bioeng 115:433–443.
    • (2017) Biotechnol Bioeng , vol.115 , pp. 433-443
    • Yuzbasheva, E.Y.1
  • 26
    • 0342472225 scopus 로고    scopus 로고
    • Carbohydrate and energy-yielding metabolism in non-conventional yeasts
    • Flores CL, Rodríguez C, Petit T, Gancedo C (2000) Carbohydrate and energy-yielding metabolism in non-conventional yeasts. FEMS Microbiol Rev 24:507–529.
    • (2000) FEMS Microbiol Rev , vol.24 , pp. 507-529
    • Flores, C.L.1    Rodríguez, C.2    Petit, T.3    Gancedo, C.4
  • 27
    • 79952574205 scopus 로고    scopus 로고
    • Overexpression of alpha-ketoglutarate dehydrogenase in yarrowia lipolytica and its effect on production of organic acids
    • Holz M, et al. (2011) Overexpression of alpha-ketoglutarate dehydrogenase in Yarrowia lipolytica and its effect on production of organic acids. Appl Microbiol Biotechnol 89:1519–1526.
    • (2011) Appl Microbiol Biotechnol , vol.89 , pp. 1519-1526
    • Holz, M.1
  • 28
    • 0026534662 scopus 로고
    • Characterization of mutants of the yeast yarrowia lipolytica defective in acetyl-coenzyme a synthetase
    • Kujau M, Weber H, Barth G (1992) Characterization of mutants of the yeast Yarrowia lipolytica defective in acetyl-coenzyme A synthetase. Yeast 8:193–203.
    • (1992) Yeast , vol.8 , pp. 193-203
    • Kujau, M.1    Weber, H.2    Barth, G.3
  • 29
    • 84989918349 scopus 로고    scopus 로고
    • Engineering yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals
    • Xu P, Qiao K, Ahn WS, Stephanopoulos G (2016) Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc Natl Acad Sci USA 113:10848–10853.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. 10848-10853
    • Xu, P.1    Qiao, K.2    Ahn, W.S.3    Stephanopoulos, G.4
  • 30
    • 0347090332 scopus 로고    scopus 로고
    • Génolevures: Comparative genomics and molecular evolution of hemiascomycetous yeasts
    • Sherman D, Durrens P, Beyne E, Nikolski M, Souciet JL; Génolevures Consortium (2004) Génolevures: Comparative genomics and molecular evolution of hemiascomycetous yeasts. Nucleic Acids Res 32:D315–D318.
    • (2004) Nucleic Acids Res , vol.32 , pp. D315-D318
    • Sherman, D.1    Durrens, P.2    Beyne, E.3    Nikolski, M.4    Souciet, J.L.5
  • 31
    • 84994632223 scopus 로고    scopus 로고
    • Characterization of the far transcription factor family in aspergillus flavus
    • Luo X, Affeldt KJ, Keller NP (2016) Characterization of the far transcription factor family in Aspergillus flavus. G3 (Bethesda) 6:3269–3281.
    • (2016) G3 (Bethesda) , vol.6 , pp. 3269-3281
    • Luo, X.1    Affeldt, K.J.2    Keller, N.P.3
  • 32
    • 79955960768 scopus 로고    scopus 로고
    • Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes
    • Cai L, Sutter BM, Li B, Tu BP (2011) Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 42:426–437.
    • (2011) Mol Cell , vol.42 , pp. 426-437
    • Cai, L.1    Sutter, B.M.2    Li, B.3    Tu, B.P.4
  • 33
    • 84876891033 scopus 로고    scopus 로고
    • Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in saccharomyces cerevisiae
    • Shi L, Tu BP (2013) Acetyl-CoA induces transcription of the key G1 cyclin CLN3 to promote entry into the cell division cycle in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 110:7318–7323.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 7318-7323
    • Shi, L.1    Tu, B.P.2
  • 34
    • 84901316562 scopus 로고    scopus 로고
    • 4-hydroxy-6-alkyl-2-pyrones as nucleophilic coupling partners in mitsunobu reactions and oxa-michael additions
    • Burns MJ, Ronson TO, Taylor RJ, Fairlamb IJ (2014) 4-Hydroxy-6-alkyl-2-pyrones as nucleophilic coupling partners in Mitsunobu reactions and oxa-Michael additions. Beilstein J Org Chem 10:1159–1165.
    • (2014) Beilstein J Org Chem , vol.10 , pp. 1159-1165
    • Burns, M.J.1    Ronson, T.O.2    Taylor, R.J.3    Fairlamb, I.J.4
  • 35
    • 0037140747 scopus 로고    scopus 로고
    • Deoxygenation of polyhydroxybenzenes: An alternative strategy for the benzene-free synthesis of aromatic chemicals
    • Hansen CA, Frost JW (2002) Deoxygenation of polyhydroxybenzenes: An alternative strategy for the benzene-free synthesis of aromatic chemicals. J Am Chem Soc 124: 5926–5927.
    • (2002) J Am Chem Soc , vol.124 , pp. 5926-5927
    • Hansen, C.A.1    Frost, J.W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.