메뉴 건너뛰기




Volumn 25, Issue , 2014, Pages 194-203

Metabolic engineering of Saccharomyces cerevisiae for the production of triacetic acid lactone

Author keywords

2 pyrone synthase; Biorenewable chemicals; Central carbon metabolism; Metabolic engineering; Saccharomyces cerevisiae; Triacetic acid lactone

Indexed keywords

BIOCHEMISTRY; BIOSYNTHESIS; ESTERS; FOSSIL FUELS; METABOLISM; SORBIC ACID; YEAST;

EID: 84907332252     PISSN: 10967176     EISSN: 10967184     Source Type: Journal    
DOI: 10.1016/j.ymben.2014.07.008     Document Type: Article
Times cited : (81)

References (45)
  • 1
    • 0037243492 scopus 로고    scopus 로고
    • Mechanisms underlying the toxicity of lactone aroma compounds towards the producing yeast cells
    • Aguedo M., Beney L., Waché Y., Belin J.-M. Mechanisms underlying the toxicity of lactone aroma compounds towards the producing yeast cells. J. Appl. Microbiol. 2003, 94:258-265. 10.1046/j.1365-2672.2003.01828.x.
    • (2003) J. Appl. Microbiol. , vol.94 , pp. 258-265
    • Aguedo, M.1    Beney, L.2    Waché, Y.3    Belin, J.-M.4
  • 2
    • 0037319699 scopus 로고    scopus 로고
    • The chalcone synthase superfamily of type III polyketide synthases
    • Austin M.B., Noel J.P. The chalcone synthase superfamily of type III polyketide synthases. Nat. Prod. Rep. 2003, 20:79-110. 10.1039/B100917F.
    • (2003) Nat. Prod. Rep. , vol.20 , pp. 79-110
    • Austin, M.B.1    Noel, J.P.2
  • 3
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard A.P., Pharkya P., Maranas C.D. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 2003, 84:647-657. 10.1002/bit.10803.
    • (2003) Biotechnol. Bioeng. , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 4
    • 84864448777 scopus 로고    scopus 로고
    • Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae
    • Chen Y., Siewers V., Nielsen J. Profiling of cytosolic and peroxisomal acetyl-CoA metabolism in Saccharomyces cerevisiae. PLoS One 2012, 7:e42475. 10.1371/journal.pone.0042475.
    • (2012) PLoS One , vol.7
    • Chen, Y.1    Siewers, V.2    Nielsen, J.3
  • 5
    • 84862906325 scopus 로고    scopus 로고
    • Triacetic acid lactone as a potential biorenewable platform chemical
    • Chia M., Schwartz T.J., Shanks B.H., Dumesic J.A. Triacetic acid lactone as a potential biorenewable platform chemical. Green Chem. 2012, 14:1850-1853. 10.1039/C2GC35343A.
    • (2012) Green Chem. , vol.14 , pp. 1850-1853
    • Chia, M.1    Schwartz, T.J.2    Shanks, B.H.3    Dumesic, J.A.4
  • 6
    • 0020697117 scopus 로고
    • MRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source
    • Denis C.L., Ferguson J., Young E.T. mRNA levels for the fermentative alcohol dehydrogenase of Saccharomyces cerevisiae decrease upon growth on a nonfermentable carbon source. J. Biol. Chem. 1983, 258:1165-1171.
    • (1983) J. Biol. Chem. , vol.258 , pp. 1165-1171
    • Denis, C.L.1    Ferguson, J.2    Young, E.T.3
  • 8
    • 37049094736 scopus 로고
    • Triacetic acid lactone as a polyketide synthon: synthesis of toralactone and polyketide-type anthracene derivatives
    • Evans G.E., Leeper F.J., Murphy J.A., Staunton J. Triacetic acid lactone as a polyketide synthon: synthesis of toralactone and polyketide-type anthracene derivatives. J. Chem. Soc. Chem. Commun. 1979, 205-206. 10.1039/C39790000205.
    • (1979) J. Chem. Soc. Chem. Commun. , pp. 205-206
    • Evans, G.E.1    Leeper, F.J.2    Murphy, J.A.3    Staunton, J.4
  • 10
    • 73649107925 scopus 로고    scopus 로고
    • NTE1-encoded phosphatidylcholine phospholipase b regulates transcription of phospholipid biosynthetic genes
    • Fernández-Murray J.P., Gaspard G.J., Jesch S.A., McMaster C.R. NTE1-encoded phosphatidylcholine phospholipase b regulates transcription of phospholipid biosynthetic genes. J. Biol. Chem. 2009, 284:36034-36046. 10.1074/jbc.M109.063958.
    • (2009) J. Biol. Chem. , vol.284 , pp. 36034-36046
    • Fernández-Murray, J.P.1    Gaspard, G.J.2    Jesch, S.A.3    McMaster, C.R.4
  • 11
    • 0026562884 scopus 로고
    • Improved method for high efficiency transformation of intact yeast cells
    • (1425)
    • Gietz D., Jean A.S., Woods R.A., Schiestl R.H. Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res. 1992, 20:1425. (1425). 10.1093/nar/20.6.1425.
    • (1992) Nucl. Acids Res. , vol.20 , pp. 1425
    • Gietz, D.1    Jean, A.S.2    Woods, R.A.3    Schiestl, R.H.4
  • 12
    • 68649086473 scopus 로고    scopus 로고
    • Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis
    • Goel A., Ram V.J. Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron 2009, 65:7865-7913. 10.1016/j.tet.2009.06.031.
    • (2009) Tetrahedron , vol.65 , pp. 7865-7913
    • Goel, A.1    Ram, V.J.2
  • 13
    • 13444280500 scopus 로고    scopus 로고
    • Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term
    • Hamelinck C.N., Hooijdonk G.van, Faaij A.P. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass and Bioenergy 2005, 28:384-410. 10.1016/j.biombioe.2004.09.002.
    • (2005) Biomass and Bioenergy , vol.28 , pp. 384-410
    • Hamelinck, C.N.1    Hooijdonk, G.V.2    Faaij, A.P.3
  • 14
    • 0025938044 scopus 로고
    • DMSO-enhanced whole cell yeast transformation
    • (5791)
    • Hill J., Donald K.A.I.G., Griffiths D.E. DMSO-enhanced whole cell yeast transformation. Nucl. Acids Res. 1991, 19:5791. (5791). 10.1093/nar/19.20.5791.
    • (1991) Nucl. Acids Res. , vol.19 , pp. 5791
    • Hill, J.1    Donald, K.A.I.G.2    Griffiths, D.E.3
  • 15
    • 0034526571 scopus 로고    scopus 로고
    • Structural control of polyketide formation in plant-specific polyketide synthases
    • Jez J.M., Austin M.B., Ferrer J.-L., Bowman M.E., Schröder J., Noel J.P. Structural control of polyketide formation in plant-specific polyketide synthases. Chem. Biol. 2000, 7:919-930. 10.1016/S1074-5521(00)00041-7.
    • (2000) Chem. Biol. , vol.7 , pp. 919-930
    • Jez, J.M.1    Austin, M.B.2    Ferrer, J.-L.3    Bowman, M.E.4    Schröder, J.5    Noel, J.P.6
  • 16
    • 0025974219 scopus 로고
    • Tackling the protease problem in Saccharomyces cerevisiae
    • Jones E.W. Tackling the protease problem in Saccharomyces cerevisiae. Methods in Enzymology 1991, 194:428-453.
    • (1991) Methods in Enzymology , vol.194 , pp. 428-453
    • Jones, E.W.1
  • 17
    • 0031905709 scopus 로고    scopus 로고
    • Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts
    • Kealey J.T., Liu L., Santi D.V., Betlach M.C., Barr P.J. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:505-509.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 505-509
    • Kealey, J.T.1    Liu, L.2    Santi, D.V.3    Betlach, M.C.4    Barr, P.J.5
  • 18
    • 84890806590 scopus 로고    scopus 로고
    • Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids
    • Leber C., Da Silva N.A. Engineering of Saccharomyces cerevisiae for the synthesis of short chain fatty acids. Biotechnol. Bioeng. 2013, 111:347-358. 10.1002/bit.25021.
    • (2013) Biotechnol. Bioeng. , vol.111 , pp. 347-358
    • Leber, C.1    Da Silva, N.A.2
  • 19
    • 69249229497 scopus 로고    scopus 로고
    • Determination of the extent of phosphopantetheinylation of polyketide synthases expressed in Escherichia coli and Saccharomyces cerevisiae
    • Lee K.K.M., Da Silva N.A., Kealey J.T. Determination of the extent of phosphopantetheinylation of polyketide synthases expressed in Escherichia coli and Saccharomyces cerevisiae. Anal. Biochem. 2009, 394:75-80. 10.1016/j.ab.2009.07.010.
    • (2009) Anal. Biochem. , vol.394 , pp. 75-80
    • Lee, K.K.M.1    Da Silva, N.A.2    Kealey, J.T.3
  • 20
    • 18944370824 scopus 로고    scopus 로고
    • Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis
    • Lee M.K., Da Silva N.A. Evaluation of the Saccharomyces cerevisiae ADH2 promoter for protein synthesis. Yeast 2005, 22:431-440. 10.1002/yea.1221.
    • (2005) Yeast , vol.22 , pp. 431-440
    • Lee, M.K.1    Da Silva, N.A.2
  • 21
    • 0035929571 scopus 로고    scopus 로고
    • Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae
    • Lin S.S., Manchester J.K., Gordon J.I. Enhanced gluconeogenesis and increased energy storage as hallmarks of aging in Saccharomyces cerevisiae. J. Biol. Chem. 2001, 276:36000-36007. 10.1074/jbc.M103509200.
    • (2001) J. Biol. Chem. , vol.276 , pp. 36000-36007
    • Lin, S.S.1    Manchester, J.K.2    Gordon, J.I.3
  • 24
    • 65649126379 scopus 로고    scopus 로고
    • Connecting extracellular metabolomic measurements to intracellular flux states in yeast
    • Mo M.L., Palsson B.O., Herrgård M.J. Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst. Biol. 2009, 3:37. 10.1186/1752-0509-3-37.
    • (2009) BMC Syst. Biol. , vol.3 , pp. 37
    • Mo, M.L.1    Palsson, B.O.2    Herrgård, M.J.3
  • 25
    • 0000492007 scopus 로고
    • Palladium catalyzed allylic C-alkylation of highly acidic and enolic heterocyclic substrates: tetronic acid and triacetic acid lactone
    • Moreno-Mañas M., Prat M., Ribas J., Virgili A. Palladium catalyzed allylic C-alkylation of highly acidic and enolic heterocyclic substrates: tetronic acid and triacetic acid lactone. Tetrahedron Lett. 1988, 29:581-584. 10.1016/S0040-4039(00)80156-2.
    • (1988) Tetrahedron Lett. , vol.29 , pp. 581-584
    • Moreno-Mañas, M.1    Prat, M.2    Ribas, J.3    Virgili, A.4
  • 26
    • 33645057433 scopus 로고    scopus 로고
    • Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae
    • Mutka S.C., Bondi S.M., Carney J.R., Da Silva N.A., Kealey J.T. Metabolic pathway engineering for complex polyketide biosynthesis in Saccharomyces cerevisiae. FEMS Yeast Res. 2006, 6:40-47. 10.1111/j.1567-1356.2005.00001.x.
    • (2006) FEMS Yeast Res. , vol.6 , pp. 40-47
    • Mutka, S.C.1    Bondi, S.M.2    Carney, J.R.3    Da Silva, N.A.4    Kealey, J.T.5
  • 27
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • Ng C.Y., Jung M., Lee J., Oh M.-K. Production of 2,3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Factories 2012, 11:68. 10.1186/1475-2859-11-68.
    • (2012) Microb. Cell Factories , vol.11 , pp. 68
    • Ng, C.Y.1    Jung, M.2    Lee, J.3    Oh, M.-K.4
  • 28
    • 0029083543 scopus 로고
    • Response of a yeast glycogen synthase gene to stress
    • Ni H.T., LaPorte D.C. Response of a yeast glycogen synthase gene to stress. Mol. Microbiol. 1995, 16:1197-1205.
    • (1995) Mol. Microbiol. , vol.16 , pp. 1197-1205
    • Ni, H.T.1    LaPorte, D.C.2
  • 29
    • 43549122821 scopus 로고    scopus 로고
    • Platform biochemicals for a biorenewable chemical industry
    • Nikolau B.J., Perera M.A.D.N., Brachova L., Shanks B. Platform biochemicals for a biorenewable chemical industry. Plant J. 2008, 54:536-545. 10.1111/j.1365-313X.2008.03484.x.
    • (2008) Plant J. , vol.54 , pp. 536-545
    • Nikolau, B.J.1    Perera, M.A.D.N.2    Brachova, L.3    Shanks, B.4
  • 30
    • 0025670111 scopus 로고
    • Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase
    • Nogae I., Johnston M. Isolation and characterization of the ZWF1 gene of Saccharomyces cerevisiae, encoding glucose-6-phosphate dehydrogenase. Gene 1990, 96:161-169.
    • (1990) Gene , vol.96 , pp. 161-169
    • Nogae, I.1    Johnston, M.2
  • 31
    • 0017137380 scopus 로고
    • The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis
    • Omura S. The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bacteriol. Rev. 1976, 40:681-697.
    • (1976) Bacteriol. Rev. , vol.40 , pp. 681-697
    • Omura, S.1
  • 32
    • 0030448870 scopus 로고    scopus 로고
    • Pyruvate metabolism in Saccharomyces cerevisiae
    • (10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4)
    • Pronk J.T., Yde Steensma H., Van Dijken J.P. Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 1996, 12:1607-1633. (10.1002/(SICI)1097-0061(199612)12:16<1607::AID-YEA70>3.0.CO;2-4).
    • (1996) Yeast , vol.12 , pp. 1607-1633
    • Pronk, J.T.1    Yde Steensma, H.2    Van Dijken, J.P.3
  • 33
    • 0033107932 scopus 로고    scopus 로고
    • Tolerance and specificity of recombinant 6-methylsalicylic acid synthase
    • Richardson M.T., Pohl N.L., Kealey J.T., Khosla C. Tolerance and specificity of recombinant 6-methylsalicylic acid synthase. Metab. Eng. 1999, 1:180-187. 10.1006/mben.1999.0113.
    • (1999) Metab. Eng. , vol.1 , pp. 180-187
    • Richardson, M.T.1    Pohl, N.L.2    Kealey, J.T.3    Khosla, C.4
  • 36
    • 4544275674 scopus 로고    scopus 로고
    • Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems
    • Schweizer E., Hofmann J. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol. Mol. Biol. Rev. 2004, 68:501-517. 10.1128/MMBR.68.3.501-517.2004.
    • (2004) Microbiol. Mol. Biol. Rev. , vol.68 , pp. 501-517
    • Schweizer, E.1    Hofmann, J.2
  • 37
    • 84871001671 scopus 로고    scopus 로고
    • Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae
    • Shen M.W.Y., Fang F., Sandmeyer S., Da Silva N.A. Development and characterization of a vector set with regulated promoters for systematic metabolic engineering in Saccharomyces cerevisiae. Yeast 2012, 29:495-503. 10.1002/yea.2930.
    • (2012) Yeast , vol.29 , pp. 495-503
    • Shen, M.W.Y.1    Fang, F.2    Sandmeyer, S.3    Da Silva, N.A.4
  • 38
    • 84969518883 scopus 로고    scopus 로고
    • Ketenes, ketene dimers, and related substances
    • John Wiley & Sons, Inc., Hoboken, NJ, USA
    • Taeschler C. Ketenes, ketene dimers, and related substances. Kirk-Othmer Encyclopedia of Chemical Technology 2010, John Wiley & Sons, Inc., Hoboken, NJ, USA.
    • (2010) Kirk-Othmer Encyclopedia of Chemical Technology
    • Taeschler, C.1
  • 39
    • 84879999713 scopus 로고    scopus 로고
    • Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter
    • Tang S.-Y., Qian S., Akinterinwa O., Frei C.S., Gredell J.A., Cirino P.C. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. J. Am. Chem. Soc. 2013, 135:10099-10103. 10.1021/ja402654z.
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 10099-10103
    • Tang, S.-Y.1    Qian, S.2    Akinterinwa, O.3    Frei, C.S.4    Gredell, J.A.5    Cirino, P.C.6
  • 41
    • 0020643469 scopus 로고
    • Fatty acid synthesis and its regulation
    • Wakil S.J., Stoops J.K., Joshi V.C. Fatty acid synthesis and its regulation. Ann. Rev. Biochem. 1983, 52:537-579. 10.1146/annurev.bi.52.070183.002541.
    • (1983) Ann. Rev. Biochem. , vol.52 , pp. 537-579
    • Wakil, S.J.1    Stoops, J.K.2    Joshi, V.C.3
  • 42
    • 50249105159 scopus 로고    scopus 로고
    • Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply
    • Wattanachaisaereekul S., Lantz A.E., Nielsen M.L., Nielsen J. Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply. Metab. Eng. 2008, 10:246-254. 10.1016/j.ymben.2008.04.005.
    • (2008) Metab. Eng. , vol.10 , pp. 246-254
    • Wattanachaisaereekul, S.1    Lantz, A.E.2    Nielsen, M.L.3    Nielsen, J.4
  • 45
    • 1842688251 scopus 로고    scopus 로고
    • Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from D-glucose in vivo
    • Zha W., Shao Z., Frost J.W., Zhao H. Rational pathway engineering of type I fatty acid synthase allows the biosynthesis of triacetic acid lactone from D-glucose in vivo. J. Am. Chem. Soc. 2004, 126:4534-4535. 10.1021/ja0317271.
    • (2004) J. Am. Chem. Soc. , vol.126 , pp. 4534-4535
    • Zha, W.1    Shao, Z.2    Frost, J.W.3    Zhao, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.