메뉴 건너뛰기




Volumn 31, Issue 6, 2010, Pages 454-461

Cluster validation using information stability measures

Author keywords

Cluster validation; Information theory; Stability index

Indexed keywords

CLUSTER STABILITY; CLUSTER VALIDATION; CLUSTERING MODEL; CLUSTERING SOLUTIONS; INFORMATION MEASURES; NOVEL TECHNIQUES; SAMPLE SETS; STABILITY INDICES; STABILITY MEASURE;

EID: 77249122077     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2009.07.009     Document Type: Article
Times cited : (33)

References (24)
  • 1
    • 0036359730 scopus 로고    scopus 로고
    • A stability based method for discovering structure in clustered data
    • Ben-Hur A., Elisseeff A., and Guyon I. A stability based method for discovering structure in clustered data. Pacific Symp. Biocomput. (2002) 6-17
    • (2002) Pacific Symp. Biocomput. , pp. 6-17
    • Ben-Hur, A.1    Elisseeff, A.2    Guyon, I.3
  • 2
    • 0142057962 scopus 로고    scopus 로고
    • Detecting stable clusters using principal component analysis
    • Brownstein, M, Khodursky, A, Eds, Humana Press, pp
    • Ben-Hur, A., Guyon, I., 2003. Detecting stable clusters using principal component analysis. In: Brownstein, M., Khodursky, A. (Eds.), Methods in Molecular Biology, Humana Press, pp. 159-182.
    • (2003) Methods in Molecular Biology , pp. 159-182
    • Ben-Hur, A.1    Guyon, I.2
  • 4
    • 0037399775 scopus 로고    scopus 로고
    • Cluster validation techniques for genome expression data
    • Bolshakova N., and Azuaje F. Cluster validation techniques for genome expression data. Signal Process. 83 (2003) 825-833
    • (2003) Signal Process. , vol.83 , pp. 825-833
    • Bolshakova, N.1    Azuaje, F.2
  • 5
    • 33745841541 scopus 로고    scopus 로고
    • An Objective approach to cluster validation
    • Bouguessa M., Wang S., and Sun H. An Objective approach to cluster validation. Pattern Recogn. Lett. 27 (2006) 1419-1430
    • (2006) Pattern Recogn. Lett. , vol.27 , pp. 1419-1430
    • Bouguessa, M.1    Wang, S.2    Sun, H.3
  • 8
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • Dunn J.C. Well separated clusters and optimal fuzzy partitions. J. Cybernetica 4 (1974) 95-104
    • (1974) J. Cybernetica , vol.4 , pp. 95-104
    • Dunn, J.C.1
  • 12
    • 14944348667 scopus 로고    scopus 로고
    • Clustering validity assessment: Finding the optimal partitioning of a data set
    • Halkidi, M., Vazirgiannis, M., 2001. Clustering validity assessment: Finding the optimal partitioning of a data set. In: Proceedings of ICDM 2001, pp. 187-194.
    • (2001) Proceedings of ICDM 2001 , pp. 187-194
    • Halkidi, M.1    Vazirgiannis, M.2
  • 15
    • 2442611856 scopus 로고    scopus 로고
    • Stability-based validation of clustering solutions
    • Lange T., Braun M.L., and Buhmann J.M. Stability-based validation of clustering solutions. Neural Comput. 16 (2004) 1299-1323
    • (2004) Neural Comput. , vol.16 , pp. 1299-1323
    • Lange, T.1    Braun, M.L.2    Buhmann, J.M.3
  • 16
    • 0025952277 scopus 로고    scopus 로고
    • Divergence measures based on Shannon entropy
    • Li J. Divergence measures based on Shannon entropy. Information Theory 37 1 (1997) 145-151
    • (1997) Information Theory , vol.37 , Issue.1 , pp. 145-151
    • Li, J.1
  • 17
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan G.W., and Cooper M.C. An examination of procedures for determining the number of clusters in a data set. Psycometrika 50 (1985) 159-179
    • (1985) Psycometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 18
    • 41549083587 scopus 로고    scopus 로고
    • Determining the number of groups from measures of cluster validity
    • Mufti, G.B., Bertrand, P., Moubarki, L.E., 2005. Determining the number of groups from measures of cluster validity. In: Proceedings of ASMDA2005, pp. 404-414.
    • (2005) Proceedings of ASMDA2005 , pp. 404-414
    • Mufti, G.B.1    Bertrand, P.2    Moubarki, L.E.3
  • 19
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Pal N.R., and Bezdek J.C. On cluster validity for the fuzzy c-means model. IEEE Trans. Fuzzy Syst 3 3 (1995) 370-379
    • (1995) IEEE Trans. Fuzzy Syst , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 20
    • 33750547992 scopus 로고    scopus 로고
    • Non parametric local density-based clustering for multimodal overlapping distributions, IDEAL 2006
    • Pascual, D., Pla, F., Sánchez, J.S., 2006. Non parametric local density-based clustering for multimodal overlapping distributions, IDEAL 2006, LNCS, vol. 4224, pp. 671-678.
    • (2006) LNCS , vol.4224 , pp. 671-678
    • Pascual, D.1    Pla, F.2    Sánchez, J.S.3
  • 22
    • 0007180827 scopus 로고    scopus 로고
    • An application of cluster analysis to health services research: Empirically defined health states for depression from the sf-12
    • Technical Report, Stanford University, Stanford
    • Sugar, C., Lenert, L., Olshen, R., 1999. An application of cluster analysis to health services research: Empirically defined health states for depression from the sf-12. Technical Report, Stanford University, Stanford.
    • (1999)
    • Sugar, C.1    Lenert, L.2    Olshen, R.3
  • 24
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • Tibshirani R., Walther G., and Hastie T. Estimating the number of clusters in a data set via the gap statistic. J.R. Statist. Soc. B, Part 2 (2004) 411-423
    • (2004) J.R. Statist. Soc. B, Part 2 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.