메뉴 건너뛰기




Volumn , Issue 13, 2014, Pages 2839-2846

Feature weighting algorithms for classification of hyperspectral images using a support vector machine

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION (OF INFORMATION); CLUSTERING ALGORITHMS; ECONOMIC AND SOCIAL EFFECTS; IMAGE CLASSIFICATION; SPECTROSCOPY; VECTORS;

EID: 84942368799     PISSN: 1559128X     EISSN: 21553165     Source Type: Journal    
DOI: 10.1364/AO.53.002839     Document Type: Article
Times cited : (15)

References (24)
  • 1
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens. 42, 1778-1790 (2004).
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 2
    • 84886600886 scopus 로고    scopus 로고
    • Noise-adjusted subspace discriminant analysis for hyperspectral imagery classification
    • W. Li, S. Prasad, and J. E. Fowler, "Noise-adjusted subspace discriminant analysis for hyperspectral imagery classification," IEEE Trans. Geosci. Remote Sens. 10, 1374-1378 (2013).
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.10 , pp. 1374-1378
    • Li, W.1    Prasad, S.2    Fowler, J.E.3
  • 3
    • 84888288979 scopus 로고    scopus 로고
    • Segmented mixture-of-Gaussian classfication for hyperspectral image analysis
    • S. Prasad, M. Cui, W. Li, and J. E. Fowler, "Segmented mixture-of-Gaussian classfication for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens. 11, 138-142 (2014).
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.11 , pp. 138-142
    • Prasad, S.1    Cui, M.2    Li, W.3    Fowler, J.E.4
  • 4
    • 84872920883 scopus 로고    scopus 로고
    • Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classfication problems
    • P. Gurram and H. Kwon, "Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classfication problems," IEEE Trans. Geosci. Remote Sens. 51, 787-802 (2013).
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , pp. 787-802
    • Gurram, P.1    Kwon, H.2
  • 5
    • 79955532338 scopus 로고    scopus 로고
    • Classification of mental task from EEG signals using immune feature weighted support vector machines
    • L. Guo, Y. Wu, L. Zhao, T. Cao, W. Yan, and X. Shen, "Classification of mental task from EEG signals using immune feature weighted support vector machines," IEEE Trans. Magn. 47, 866-869 (2011).
    • (2011) IEEE Trans. Magn. , vol.47 , pp. 866-869
    • Guo, L.1    Wu, Y.2    Zhao, L.3    Cao, T.4    Yan, W.5    Shen, X.6
  • 6
    • 34249865650 scopus 로고    scopus 로고
    • Feature extraction of hyperspectral images using wavelet and matching pursuit
    • P. Hsu, "Feature extraction of hyperspectral images using wavelet and matching pursuit," ISPRS J. Photogramm. Remote Sens. 62, 78-92 (2007).
    • (2007) ISPRS J. Photogramm. Remote Sens. , vol.62 , pp. 78-92
    • Hsu, P.1
  • 7
    • 73949106180 scopus 로고    scopus 로고
    • Hyperspectral agricultural mapping using support vector machine-based endmember extraction (SVM-BEE)
    • A. M. Filippi, R. Archibald, B. L. Bhaduri, and E. A. Bright, "Hyperspectral agricultural mapping using support vector machine-based endmember extraction (SVM-BEE)," Opt. Express 17, 23823-23842 (2009).
    • (2009) Opt. Express , vol.17 , pp. 23823-23842
    • Filippi, A.M.1    Archibald, R.2    Bhaduri, B.L.3    Bright, E.A.4
  • 8
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • C. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens. 43, 1351-1362 (2005).
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , pp. 1351-1362
    • Camps-Valls, C.1    Bruzzone, L.2
  • 9
  • 10
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • Y. Bazi and F. Melgani, "Toward an optimal SVM classification system for hyperspectral remote sensing images," IEEE Trans. Geosci. Remote Sens. 44, 3374-3385 (2006).
    • (2006) IEEE Trans. Geosci. Remote Sens. , vol.44 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 11
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens. 46, 3804-3814 (2008).
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 12
    • 80455122749 scopus 로고    scopus 로고
    • SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification
    • F. A. Mianji and Y. Zhang, "SVM-based unmixing-to-classification conversion for hyperspectral abundance quantification," IEEE Trans. Geosci. Remote Sens. 49, 4318-4327 (2011).
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , pp. 4318-4327
    • Mianji, F.A.1    Zhang, Y.2
  • 13
    • 84880301480 scopus 로고    scopus 로고
    • Optimized laplacian SVM with distance metric learning for hyperspectral image classification
    • Y. Gu and K. Feng, "Optimized Laplacian SVM with distance metric learning for hyperspectral image classification," IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6, 1109-1117 (2013).
    • (2013) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.6 , pp. 1109-1117
    • Gu, Y.1    Feng, K.2
  • 14
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • M. Pal and G. M. Foody, "Feature selection for classification of hyperspectral data by SVM," IEEE Trans. Geosci. Remote Sens. 48, 2297-2307 (2010).
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 15
    • 84859784358 scopus 로고    scopus 로고
    • Locality-preserving dimensionality reduction and classification for hyperspectral image analysis
    • W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, "Locality-preserving dimensionality reduction and classification for hyperspectral image analysis," IEEE Trans. Geosci. Remote Sens. 50, 1185-1198 (2012).
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 1185-1198
    • Li, W.1    Prasad, S.2    Fowler, J.E.3    Bruce, L.M.4
  • 16
    • 18844367208 scopus 로고    scopus 로고
    • Band selection based on feature weighting for classification of hyperspectral data
    • R. Huang and M. He, "Band selection based on feature weighting for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens. 2, 156-159 (2005).
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.2 , pp. 156-159
    • Huang, R.1    He, M.2
  • 17
    • 84555223724 scopus 로고    scopus 로고
    • Use of weighting algorithms to improve traditional support vector machine based classifications of relflectance data
    • B. Qi, C. Zhao, E. Youn, and C. Nansen, "Use of weighting algorithms to improve traditional support vector machine based classifications of relflectance data," Opt. Express 19, 26816-26826 (2011).
    • (2011) Opt. Express , vol.19 , pp. 26816-26826
    • Qi, B.1    Zhao, C.2    Youn, E.3    Nansen, C.4
  • 19
    • 0023854011 scopus 로고
    • A transformation for ordering multispectral data in terms of image quality with implications for noise removal
    • A. A. Green, M. Berman, P. Switzer, and M. D. Craig, "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens. 26, 65-74 (1988).
    • (1988) IEEE Trans. Geosci. Remote Sens. , vol.26 , pp. 65-74
    • Green, A.A.1    Berman, M.2    Switzer, P.3    Craig, M.D.4
  • 21
    • 41849112041 scopus 로고    scopus 로고
    • Customizing kernel functions for SVM-based hyperspectral image classification
    • B. Guo, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, "Customizing kernel functions for SVM-based hyperspectral image classification," IEEE Trans. Image Process. 17, 622-629 (2008).
    • (2008) IEEE Trans. Image Process , vol.17 , pp. 622-629
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 22
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • C. Huang, L. S. Davis, and J. R. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens. 23, 725-749 (2002).
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.