메뉴 건너뛰기




Volumn 115, Issue 7, 2018, Pages E1419-E1428

Molecular basis for the recognition of the human AAUAAA polyadenylation signal

Author keywords

polyadenylation; Pre mRNA 3 end processing; RNA recognition; WD40 domains; zinc finger

Indexed keywords

ALANINE; CARRIER PROTEINS AND BINDING PROTEINS; CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR; CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR 30; PROTEIN WDR33; RNA; SELENOCYSTEINE; UNCLASSIFIED DRUG; ZINC FINGER 2 PROTEIN; ZINC FINGER PROTEIN; MESSENGER RNA; NUCLEAR PROTEIN; POLYADENYLIC ACID; RNA PRECURSOR; WDR33 PROTEIN, HUMAN;

EID: 85041959711     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1718723115     Document Type: Article
Times cited : (122)

References (73)
  • 1
    • 80052447253 scopus 로고    scopus 로고
    • Ending the message: Poly(A) signals then and now
    • Proudfoot NJ (2011) Ending the message: Poly(A) signals then and now. Genes Dev 25: 1770–1782.
    • (2011) Genes Dev , vol.25 , pp. 1770-1782
    • Proudfoot, N.J.1
  • 2
    • 84857743195 scopus 로고    scopus 로고
    • Structural biology of poly(A) site definition
    • Yang Q, Doublié S (2011) Structural biology of poly(A) site definition. Wiley Interdiscip Rev RNA 2:732–747.
    • (2011) Wiley Interdiscip Rev RNA , vol.2 , pp. 732-747
    • Yang, Q.1    Doublié, S.2
  • 3
    • 84899869788 scopus 로고    scopus 로고
    • Delineating the structural blueprint of the pre-mRNA 3′-end processing machinery
    • Xiang K, Tong L, Manley JL (2014) Delineating the structural blueprint of the pre-mRNA 3′-end processing machinery. Mol Cell Biol 34:1894–1910.
    • (2014) Mol Cell Biol , vol.34 , pp. 1894-1910
    • Xiang, K.1    Tong, L.2    Manley, J.L.3
  • 5
    • 84929453434 scopus 로고    scopus 로고
    • The end of the message: Multiple protein-RNA interactions define the mRNA polyadenylation site
    • Shi Y, Manley JL (2015) The end of the message: Multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev 29:889–897.
    • (2015) Genes Dev , vol.29 , pp. 889-897
    • Shi, Y.1    Manley, J.L.2
  • 6
    • 54149091257 scopus 로고    scopus 로고
    • Metabolism and regulation of canonical histone mRNAs: Life without a poly(A) tail
    • Marzluff WF, Wagner EJ, Duronio RJ (2008) Metabolism and regulation of canonical histone mRNAs: Life without a poly(A) tail. Nat Rev Genet 9:843–854.
    • (2008) Nat Rev Genet , vol.9 , pp. 843-854
    • Marzluff, W.F.1    Wagner, E.J.2    Duronio, R.J.3
  • 7
    • 84958247966 scopus 로고    scopus 로고
    • Cycling in the nucleus: Regulation of RNA 3′ processing and nuclear organization of replication-dependent histone genes
    • Romeo V, Schümperli D (2016) Cycling in the nucleus: Regulation of RNA 3′ processing and nuclear organization of replication-dependent histone genes. Curr Opin Cell Biol 40:23–31.
    • (2016) Curr Opin Cell Biol , vol.40 , pp. 23-31
    • Romeo, V.1    Schümperli, D.2
  • 8
    • 0033059981 scopus 로고    scopus 로고
    • Formation of mRNA 3′ ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mRNA synthesis
    • Zhao J, Hyman L, Moore C (1999) Formation of mRNA 3′ ends in eukaryotes: Mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 63:405–445.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 405-445
    • Zhao, J.1    Hyman, L.2    Moore, C.3
  • 9
    • 42449084129 scopus 로고    scopus 로고
    • Protein factors in pre-mRNA 3′-end processing
    • Mandel CR, Bai Y, Tong L (2008) Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 65:1099–1122.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 1099-1122
    • Mandel, C.R.1    Bai, Y.2    Tong, L.3
  • 10
    • 59649122202 scopus 로고    scopus 로고
    • Molecular architecture of the human pre-mRNA 3′ processing complex
    • Shi Y, et al. (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33:365–376.
    • (2009) Mol Cell , vol.33 , pp. 365-376
    • Shi, Y.1
  • 11
    • 0026009674 scopus 로고
    • Purification of the cleavage and polyadenylation factor involved in the 3′-processing of messenger RNA precursors
    • Bienroth S, Wahle E, Suter-Crazzolara C, Keller W (1991) Purification of the cleavage and polyadenylation factor involved in the 3′-processing of messenger RNA precursors. J Biol Chem 266:19768–19776.
    • (1991) J Biol Chem , vol.266 , pp. 19768-19776
    • Bienroth, S.1    Wahle, E.2    Suter-Crazzolara, C.3    Keller, W.4
  • 12
    • 0026694636 scopus 로고
    • Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus
    • Murthy KGK, Manley JL (1992) Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem 267:14804–14811.
    • (1992) J Biol Chem , vol.267 , pp. 14804-14811
    • Murthy, K.G.K.1    Manley, J.L.2
  • 13
    • 0025695149 scopus 로고
    • A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs
    • Takagaki Y, Manley JL, MacDonald CC, Wilusz J, Shenk T (1990) A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev 4: 2112–2120.
    • (1990) Genes Dev , vol.4 , pp. 2112-2120
    • Takagaki, Y.1    Manley, J.L.2    MacDonald, C.C.3    Wilusz, J.4    Shenk, T.5
  • 14
    • 0026353286 scopus 로고
    • Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA
    • Gilmartin GM, Nevins JR (1991) Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol Cell Biol 11:2432–2438.
    • (1991) Mol Cell Biol , vol.11 , pp. 2432-2438
    • Gilmartin, G.M.1    Nevins, J.R.2
  • 15
    • 33845902048 scopus 로고    scopus 로고
    • Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease
    • Mandel CR, et al. (2006) Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 444:953–956.
    • (2006) Nature , vol.444 , pp. 953-956
    • Mandel, C.R.1
  • 16
    • 84922392412 scopus 로고    scopus 로고
    • CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing
    • Chan SL, et al. (2014) CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing. Genes Dev 28:2370–2380.
    • (2014) Genes Dev , vol.28 , pp. 2370-2380
    • Chan, S.L.1
  • 17
    • 84908457963 scopus 로고    scopus 로고
    • Reconstitution of CPSF active in polyadenylation: Recognition of the polyadenylation signal by WDR33
    • Schönemann L, et al. (2014) Reconstitution of CPSF active in polyadenylation: Recognition of the polyadenylation signal by WDR33. Genes Dev 28:2381–2393.
    • (2014) Genes Dev , vol.28 , pp. 2381-2393
    • Schönemann, L.1
  • 19
    • 13744254695 scopus 로고    scopus 로고
    • A large-scale analysis of mRNA polyadenylation of human and mouse genes
    • Tian B, Hu J, Zhang H, Lutz CS (2005) A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 33:201–212.
    • (2005) Nucleic Acids Res , vol.33 , pp. 201-212
    • Tian, B.1    Hu, J.2    Zhang, H.3    Lutz, C.S.4
  • 20
    • 0017089669 scopus 로고
    • 3′ non-coding region sequences in eukaryotic messenger RNA
    • Proudfoot NJ, Brownlee GG (1976) 3′ non-coding region sequences in eukaryotic messenger RNA. Nature 263:211–214.
    • (1976) Nature , vol.263 , pp. 211-214
    • Proudfoot, N.J.1    Brownlee, G.G.2
  • 21
    • 84879408529 scopus 로고    scopus 로고
    • Alternative cleavage and polyadenylation: Extent, regulation and function
    • Elkon R, Ugalde AP, Agami R (2013) Alternative cleavage and polyadenylation: Extent, regulation and function. Nat Rev Genet 14:496–506.
    • (2013) Nat Rev Genet , vol.14 , pp. 496-506
    • Elkon, R.1    Ugalde, A.P.2    Agami, R.3
  • 22
    • 84893763336 scopus 로고    scopus 로고
    • Means to an end: Mechanisms of alternative polyadenylation of messenger RNA precursors
    • Gruber AR, Martin G, Keller W, Zavolan M (2014) Means to an end: Mechanisms of alternative polyadenylation of messenger RNA precursors. Wiley Interdiscip Rev RNA 5:183–196.
    • (2014) Wiley Interdiscip Rev RNA , vol.5 , pp. 183-196
    • Gruber, A.R.1    Martin, G.2    Keller, W.3    Zavolan, M.4
  • 23
    • 84988719252 scopus 로고    scopus 로고
    • Alternative polyadenylation of mRNA precursors
    • Tian B, Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18:18–30.
    • (2017) Nat Rev Mol Cell Biol , vol.18 , pp. 18-30
    • Tian, B.1    Manley, J.L.2
  • 24
    • 65549149976 scopus 로고    scopus 로고
    • A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs
    • Sullivan KD, Steiniger M, Marzluff WF (2009) A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs. Mol Cell 34:322–332.
    • (2009) Mol Cell , vol.34 , pp. 322-332
    • Sullivan, K.D.1    Steiniger, M.2    Marzluff, W.F.3
  • 25
    • 0033984159 scopus 로고    scopus 로고
    • Complex protein interactions within the human polyadenylation machinery identify a novel component
    • Takagaki Y, Manley JL (2000) Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 20:1515–1525.
    • (2000) Mol Cell Biol , vol.20 , pp. 1515-1525
    • Takagaki, Y.1    Manley, J.L.2
  • 26
    • 26944459450 scopus 로고    scopus 로고
    • Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs
    • Kolev NG, Steitz JA (2005) Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs. Genes Dev 19:2583–2592.
    • (2005) Genes Dev , vol.19 , pp. 2583-2592
    • Kolev, N.G.1    Steitz, J.A.2
  • 27
    • 64649086745 scopus 로고    scopus 로고
    • The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3′-end processing
    • Ghazy MA, He X, Singh BN, Hampsey M, Moore C (2009) The essential N terminus of the Pta1 scaffold protein is required for snoRNA transcription termination and Ssu72 function but is dispensable for pre-mRNA 3′-end processing. Mol Cell Biol 29: 2296–2307.
    • (2009) Mol Cell Biol , vol.29 , pp. 2296-2307
    • Ghazy, M.A.1    He, X.2    Singh, B.N.3    Hampsey, M.4    Moore, C.5
  • 28
    • 77958018260 scopus 로고    scopus 로고
    • Crystal structure of the human symplekin-Ssu72-CTD phos-phopeptide complex
    • Xiang K, et al. (2010) Crystal structure of the human symplekin-Ssu72-CTD phos-phopeptide complex. Nature 467:729–733.
    • (2010) Nature , vol.467 , pp. 729-733
    • Xiang, K.1
  • 29
    • 0029131452 scopus 로고
    • Cloning of cDNAs encoding the 160 kDa subunit of the bovine cleavage and polyadenylation specificity factor
    • Jenny A, Keller W (1995) Cloning of cDNAs encoding the 160 kDa subunit of the bovine cleavage and polyadenylation specificity factor. Nucleic Acids Res 23: 2629–2635.
    • (1995) Nucleic Acids Res , vol.23 , pp. 2629-2635
    • Jenny, A.1    Keller, W.2
  • 30
    • 30344460705 scopus 로고    scopus 로고
    • Structure of DDB1 in complex with a paramyxovirus V protein: Viral hijack of a propeller cluster in ubiquitin ligase
    • Li T, Chen X, Garbutt KC, Zhou P, Zheng N (2006) Structure of DDB1 in complex with a paramyxovirus V protein: Viral hijack of a propeller cluster in ubiquitin ligase. Cell 124:105–117.
    • (2006) Cell , vol.124 , pp. 105-117
    • Li, T.1    Chen, X.2    Garbutt, K.C.3    Zhou, P.4    Zheng, N.5
  • 31
    • 1842329727 scopus 로고    scopus 로고
    • The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins
    • Barabino SML, Hübner W, Jenny A, Minvielle-Sebastia L, Keller W (1997) The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev 11:1703–1716.
    • (1997) Genes Dev , vol.11 , pp. 1703-1716
    • Barabino, S.M.L.1    Hübner, W.2    Jenny, A.3    Minvielle-Sebastia, L.4    Keller, W.5
  • 32
    • 2242469712 scopus 로고    scopus 로고
    • Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element
    • De Guzman RN, et al. (1998) Structure of the HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science 279:384–388.
    • (1998) Science , vol.279 , pp. 384-388
    • De Guzman, R.N.1
  • 33
    • 0024392753 scopus 로고
    • Structure of E. Coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution
    • Rould MA, Perona JJ, Söll D, Steitz TA (1989) Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science 246: 1135–1142.
    • (1989) Science , vol.246 , pp. 1135-1142
    • Rould, M.A.1    Perona, J.J.2    Söll, D.3    Steitz, T.A.4
  • 34
    • 29544449398 scopus 로고    scopus 로고
    • Structural basis for recognition and sequestration of UUU(OH) 3′ temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen
    • Teplova M, et al. (2006) Structural basis for recognition and sequestration of UUU(OH) 3′ temini of nascent RNA polymerase III transcripts by La, a rheumatic disease autoantigen. Mol Cell 21:75–85.
    • (2006) Mol Cell , vol.21 , pp. 75-85
    • Teplova, M.1
  • 35
    • 85022142582 scopus 로고    scopus 로고
    • Structural basis for the dimerization of Nab2 generated by RNA binding provides insight into its contribution to both poly(A) tail length determination and transcript compaction in Saccharomyces cerevisiae
    • Aibara S, Gordon JMB, Riesterer AS, McLaughlin SH, Stewart M (2017) Structural basis for the dimerization of Nab2 generated by RNA binding provides insight into its contribution to both poly(A) tail length determination and transcript compaction in Saccharomyces cerevisiae. Nucleic Acids Res 45:1529–1538.
    • (2017) Nucleic Acids Res , vol.45 , pp. 1529-1538
    • Aibara, S.1    Gordon, J.M.B.2    Riesterer, A.S.3    McLaughlin, S.H.4    Stewart, M.5
  • 36
    • 57149097433 scopus 로고    scopus 로고
    • Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1
    • Teplova M, Patel DJ (2008) Structural insights into RNA recognition by the alternative-splicing regulator muscleblind-like MBNL1. Nat Struct Mol Biol 15:1343–1351.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 1343-1351
    • Teplova, M.1    Patel, D.J.2
  • 37
    • 85027466392 scopus 로고    scopus 로고
    • Structural basis for interaction of the tandem zinc finger domains of human muscleblind with cognate RNA from human cardiac troponin T
    • Park S, et al. (2017) Structural basis for interaction of the tandem zinc finger domains of human muscleblind with cognate RNA from human cardiac troponin T. Biochemistry 56:4154–4168.
    • (2017) Biochemistry , vol.56 , pp. 4154-4168
    • Park, S.1
  • 39
    • 57749198023 scopus 로고    scopus 로고
    • Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex
    • Scrima A, et al. (2008) Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 135:1213–1223.
    • (2008) Cell , vol.135 , pp. 1213-1223
    • Scrima, A.1
  • 40
    • 0021060532 scopus 로고
    • Alpha-thalassaemia caused by a polyadenylation signal mutation
    • Higgs DR, et al. (1983) Alpha-thalassaemia caused by a polyadenylation signal mutation. Nature 306:398–400.
    • (1983) Nature , vol.306 , pp. 398-400
    • Higgs, D.R.1
  • 41
    • 0022021842 scopus 로고
    • Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene
    • Orkin SH, Cheng TC, Antonarakis SE, Kazazian HH, Jr (1985) Thalassemia due to a mutation in the cleavage-polyadenylation signal of the human beta-globin gene. EMBO J 4:453–456.
    • (1985) EMBO J , vol.4 , pp. 453-456
    • Orkin, S.H.1    Cheng, T.C.2    Antonarakis, S.E.3    Kazazian, H.H.4
  • 42
    • 0032086357 scopus 로고    scopus 로고
    • Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3’end formation of cellular pre-mRNAs
    • Nemeroff ME, Barabino SML, Li Y, Keller W, Krug RM (1998) Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3’end formation of cellular pre-mRNAs. Mol Cell 1:991–1000.
    • (1998) Mol Cell , vol.1 , pp. 991-1000
    • Nemeroff, M.E.1    Barabino, S.M.L.2    Li, Y.3    Keller, W.4    Krug, R.M.5
  • 43
    • 51349124912 scopus 로고    scopus 로고
    • Structural basis for suppression of a host antiviral response by influenza A virus
    • Das K, et al. (2008) Structural basis for suppression of a host antiviral response by influenza A virus. Proc Natl Acad Sci USA 105:13093–13098.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 13093-13098
    • Das, K.1
  • 44
    • 33745951912 scopus 로고    scopus 로고
    • The Gemin5 protein of the SMN complex identifies snRNAs
    • Battle DJ, et al. (2006) The Gemin5 protein of the SMN complex identifies snRNAs. Mol Cell 23:273–279.
    • (2006) Mol Cell , vol.23 , pp. 273-279
    • Battle, D.J.1
  • 45
    • 66149121109 scopus 로고    scopus 로고
    • Gemin5-snRNA interaction reveals an RNA binding function for WD repeat domains
    • Lau CK, Bachorik JL, Dreyfuss G (2009) Gemin5-snRNA interaction reveals an RNA binding function for WD repeat domains. Nat Struct Mol Biol 16:486–491.
    • (2009) Nat Struct Mol Biol , vol.16 , pp. 486-491
    • Lau, C.K.1    Bachorik, J.L.2    Dreyfuss, G.3
  • 46
    • 84996931146 scopus 로고    scopus 로고
    • Structural insights into Gemin5-guided selection of pre-snRNAs for snRNP assembly
    • Xu C, et al. (2016) Structural insights into Gemin5-guided selection of pre-snRNAs for snRNP assembly. Genes Dev 30:2376–2390.
    • (2016) Genes Dev , vol.30 , pp. 2376-2390
    • Xu, C.1
  • 47
    • 84996965012 scopus 로고    scopus 로고
    • Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5
    • Jin W, et al. (2016) Structural basis for snRNA recognition by the double-WD40 repeat domain of Gemin5. Genes Dev 30:2391–2403.
    • (2016) Genes Dev , vol.30 , pp. 2391-2403
    • Jin, W.1
  • 48
    • 0035283033 scopus 로고    scopus 로고
    • Exoribonuclease superfamilies: Structural analysis and phylogenetic distribution
    • Zuo Y, Deutscher MP (2001) Exoribonuclease superfamilies: Structural analysis and phylogenetic distribution. Nucleic Acids Res 29:1017–1026.
    • (2001) Nucleic Acids Res , vol.29 , pp. 1017-1026
    • Zuo, Y.1    Deutscher, M.P.2
  • 49
    • 0028789410 scopus 로고
    • The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation
    • Murthy KGK, Manley JL (1995) The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev 9:2672–2683.
    • (1995) Genes Dev , vol.9 , pp. 2672-2683
    • Murthy, K.G.K.1    Manley, J.L.2
  • 50
    • 33947202065 scopus 로고    scopus 로고
    • Crystal structure of murine CstF-77: Dimeric association and implications for polyadenylation of mRNA precursors
    • Bai Y, et al. (2007) Crystal structure of murine CstF-77: Dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell 25:863–875.
    • (2007) Mol Cell , vol.25 , pp. 863-875
    • Bai, Y.1
  • 51
    • 33749535905 scopus 로고    scopus 로고
    • Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery
    • Angers S, et al. (2006) Molecular architecture and assembly of the DDB1-CUL4A ubiquitin ligase machinery. Nature 443:590–593.
    • (2006) Nature , vol.443 , pp. 590-593
    • Angers, S.1
  • 52
    • 1442313922 scopus 로고    scopus 로고
    • Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase
    • Kaufmann I, Martin G, Friedlein A, Langen H, Keller W (2004) Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 23:616–626.
    • (2004) EMBO J , vol.23 , pp. 616-626
    • Kaufmann, I.1    Martin, G.2    Friedlein, A.3    Langen, H.4    Keller, W.5
  • 53
    • 84863093884 scopus 로고    scopus 로고
    • Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length
    • Martin G, Gruber AR, Keller W, Zavolan M (2012) Genome-wide analysis of pre-mRNA 3′ end processing reveals a decisive role of human cleavage factor I in the regulation of 3′ UTR length. Cell Rep 1:753–763.
    • (2012) Cell Rep , vol.1 , pp. 753-763
    • Martin, G.1    Gruber, A.R.2    Keller, W.3    Zavolan, M.4
  • 54
    • 46049095239 scopus 로고    scopus 로고
    • Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein
    • Meinke G, et al. (2008) Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein. Biochemistry 47:6859–6869.
    • (2008) Biochemistry , vol.47 , pp. 6859-6869
    • Meinke, G.1
  • 55
    • 84978976585 scopus 로고    scopus 로고
    • The MultiBac baculovirus/insect cell expression vector system for producing complex protein biologics
    • Sari D, et al. (2016) The MultiBac baculovirus/insect cell expression vector system for producing complex protein biologics. Adv Exp Med Biol 896:199–215.
    • (2016) Adv Exp Med Biol , vol.896 , pp. 199-215
    • Sari, D.1
  • 56
    • 2342662152 scopus 로고    scopus 로고
    • Negative staining and image classification–Powerful tools in modern electron microscopy
    • Ohi M, Li Y, Cheng Y, Walz T (2004) Negative staining and image classification–Powerful tools in modern electron microscopy. Biol Proced Online 6:23–34.
    • (2004) Biol Proced Online , vol.6 , pp. 23-34
    • Ohi, M.1    Li, Y.2    Cheng, Y.3    Walz, T.4
  • 57
    • 25644458666 scopus 로고    scopus 로고
    • Automated electron microscope tomography using robust prediction of specimen movements
    • Mastronarde DN (2005) Automated electron microscope tomography using robust prediction of specimen movements. J Struct Biol 152:36–51.
    • (2005) J Struct Biol , vol.152 , pp. 36-51
    • Mastronarde, D.N.1
  • 58
    • 20544468931 scopus 로고    scopus 로고
    • Automated molecular microscopy: The new Leginon system
    • Suloway C, et al. (2005) Automated molecular microscopy: The new Leginon system. J Struct Biol 151:41–60.
    • (2005) J Struct Biol , vol.151 , pp. 41-60
    • Suloway, C.1
  • 59
    • 85017416492 scopus 로고    scopus 로고
    • Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex
    • Kang JY, et al. (2017) Structural basis of transcription arrest by coliphage HK022 Nun in an Escherichia coli RNA polymerase elongation complex. Elife 6:e25478.
    • (2017) Elife , vol.6 , pp. e25478
    • Kang, J.Y.1
  • 60
    • 33845332754 scopus 로고    scopus 로고
    • EMAN2: An extensible image processing suite for electron microscopy
    • Tang G, et al. (2007) EMAN2: An extensible image processing suite for electron microscopy. J Struct Biol 157:38–46.
    • (2007) J Struct Biol , vol.157 , pp. 38-46
    • Tang, G.1
  • 61
    • 84863011784 scopus 로고    scopus 로고
    • Iterative stable alignment and clustering of 2D transmission electron microscope images
    • Yang Z, Fang J, Chittuluru J, Asturias FJ, Penczek PA (2012) Iterative stable alignment and clustering of 2D transmission electron microscope images. Structure 20:237–247.
    • (2012) Structure , vol.20 , pp. 237-247
    • Yang, Z.1    Fang, J.2    Chittuluru, J.3    Asturias, F.J.4    Penczek, P.A.5
  • 62
    • 33845296470 scopus 로고    scopus 로고
    • SPARX, a new environment for Cryo-EM image processing
    • Hohn M, et al. (2007) SPARX, a new environment for Cryo-EM image processing. J Struct Biol 157:47–55.
    • (2007) J Struct Biol , vol.157 , pp. 47-55
    • Hohn, M.1
  • 63
    • 85014129582 scopus 로고    scopus 로고
    • MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy
    • Zheng SQ, et al. (2017) MotionCor2: Anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14:331–332.
    • (2017) Nat Methods , vol.14 , pp. 331-332
    • Zheng, S.Q.1
  • 64
    • 84946488108 scopus 로고    scopus 로고
    • CTFFIND4: Fast and accurate defocus estimation from electron micrographs
    • Rohou A, Grigorieff N (2015) CTFFIND4: Fast and accurate defocus estimation from electron micrographs. J Struct Biol 192:216–221.
    • (2015) J Struct Biol , vol.192 , pp. 216-221
    • Rohou, A.1    Grigorieff, N.2
  • 65
    • 85009208040 scopus 로고    scopus 로고
    • Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2
    • Kimanius D, Forsberg BO, Scheres SH, Lindahl E (2016) Accelerated cryo-EM structure determination with parallelisation using GPUs in RELION-2. Elife 5:e18722.
    • (2016) Elife , vol.5 , pp. e18722
    • Kimanius, D.1    Forsberg, B.O.2    Scheres, S.H.3    Lindahl, E.4
  • 66
    • 77954065271 scopus 로고    scopus 로고
    • I-TASSER: A unified platform for automated protein structure and function prediction
    • Roy A, Kucukural A, Zhang Y (2010) I-TASSER: A unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738.
    • (2010) Nat Protoc , vol.5 , pp. 725-738
    • Roy, A.1    Kucukural, A.2    Zhang, Y.3
  • 68
    • 4444221565 scopus 로고    scopus 로고
    • UCSF Chimera—A visualization system for exploratory research and analysis
    • Pettersen EF, et al. (2004) UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.
    • (2004) J Comput Chem , vol.25 , pp. 1605-1612
    • Pettersen, E.F.1
  • 69
    • 84996565974 scopus 로고    scopus 로고
    • Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta
    • Wang RY, et al. (2016) Automated structure refinement of macromolecular assemblies from cryo-EM maps using Rosetta. Elife 5:e17219.
    • (2016) Elife , vol.5 , pp. e17219
    • Wang, R.Y.1
  • 70
    • 13244281317 scopus 로고    scopus 로고
    • Coot: Model-building tools for molecular graphics
    • Emsley P, Cowtan K (2004) Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132.
    • (2004) Acta Crystallogr D Biol Crystallogr , vol.60 , pp. 2126-2132
    • Emsley, P.1    Cowtan, K.2
  • 71
    • 14244272868 scopus 로고    scopus 로고
    • PHENIX: Building new software for automated crystallographic structure determination
    • Adams PD, et al. (2002) PHENIX: Building new software for automated crystallographic structure determination. Acta Crystallogr D Biol Crystallogr 58:1948–1954.
    • (2002) Acta Crystallogr D Biol Crystallogr , vol.58 , pp. 1948-1954
    • Adams, P.D.1
  • 72
    • 80054078476 scopus 로고    scopus 로고
    • Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega
    • Sievers F, et al. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539.
    • (2011) Mol Syst Biol , vol.7 , pp. 539
    • Sievers, F.1
  • 73
    • 0032961270 scopus 로고    scopus 로고
    • ESPript: Analysis of multiple sequence alignments in PostScript
    • Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: Analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308.
    • (1999) Bioinformatics , vol.15 , pp. 305-308
    • Gouet, P.1    Courcelle, E.2    Stuart, D.I.3    Métoz, F.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.