-
1
-
-
85019546678
-
The logic of the 26S proteasome
-
Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169:792–806.
-
(2017)
Cell
, vol.169
, pp. 792-806
-
-
Collins, G.A.1
Goldberg, A.L.2
-
3
-
-
84861783400
-
Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions
-
Husnjak K, Dikic I (2012) Ubiquitin-binding proteins: Decoders of ubiquitin-mediated cellular functions. Annu Rev Biochem 81:291–322.
-
(2012)
Annu Rev Biochem
, vol.81
, pp. 291-322
-
-
Husnjak, K.1
Dikic, I.2
-
5
-
-
84994895357
-
The K48-K63 branched ubiquitin chain regulates NF-kB signaling
-
Ohtake F, Saeki Y, Ishido S, Kanno J, Tanaka K (2016) The K48-K63 branched ubiquitin chain regulates NF-kB signaling. Mol Cell 64:251–266.
-
(2016)
Mol Cell
, vol.64
, pp. 251-266
-
-
Ohtake, F.1
Saeki, Y.2
Ishido, S.3
Kanno, J.4
Tanaka, K.5
-
6
-
-
84961743030
-
Ubiquitin modifications
-
Swatek KN, Komander D (2016) Ubiquitin modifications. Cell Res 26:399–422.
-
(2016)
Cell Res
, vol.26
, pp. 399-422
-
-
Swatek, K.N.1
Komander, D.2
-
7
-
-
84971236561
-
The increasing complexity of the ubiquitin code
-
Yau R, Rape M (2016) The increasing complexity of the ubiquitin code. Nat Cell Biol 18:579–586.
-
(2016)
Nat Cell Biol
, vol.18
, pp. 579-586
-
-
Yau, R.1
Rape, M.2
-
8
-
-
82455179484
-
Systematic and quantitative assessment of the ubiquitin-modified proteome
-
Kim W, et al. (2011) Systematic and quantitative assessment of the ubiquitin-modified proteome. Mol Cell 44:325–340.
-
(2011)
Mol Cell
, vol.44
, pp. 325-340
-
-
Kim, W.1
-
9
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
-
Xu P, et al. (2009) Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137:133–145.
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
-
10
-
-
84982797294
-
Using the ubiquitin-modified proteome to monitor distinct and spatially restricted protein homeostasis dysfunction
-
Gendron JM, et al. (2016) Using the ubiquitin-modified proteome to monitor distinct and spatially restricted protein homeostasis dysfunction. Mol Cell Proteomics 15:2576–2593.
-
(2016)
Mol Cell Proteomics
, vol.15
, pp. 2576-2593
-
-
Gendron, J.M.1
-
11
-
-
84875231510
-
Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes?
-
Nathan JA, Kim HT, Ting L, Gygi SP, Goldberg AL (2013) Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J 32:552–565.
-
(2013)
EMBO J
, vol.32
, pp. 552-565
-
-
Nathan, J.A.1
Kim, H.T.2
Ting, L.3
Gygi, S.P.4
Goldberg, A.L.5
-
12
-
-
72149130935
-
The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome
-
Jacobson AD, et al. (2009) The lysine 48 and lysine 63 ubiquitin conjugates are processed differently by the 26 s proteasome. J Biol Chem 284:35485–35494.
-
(2009)
J Biol Chem
, vol.284
, pp. 35485-35494
-
-
Jacobson, A.D.1
-
13
-
-
84900337781
-
Enhanced protein degradation by branched ubiquitin chains
-
Meyer HJ, Rape M (2014) Enhanced protein degradation by branched ubiquitin chains. Cell 157:910–921.
-
(2014)
Cell
, vol.157
, pp. 910-921
-
-
Meyer, H.J.1
Rape, M.2
-
14
-
-
85011659378
-
Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains
-
Liu C, Liu W, Ye Y, Li W (2017) Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains. Nat Commun 8:14274.
-
(2017)
Nat Commun
, vol.8
, pp. 14274
-
-
Liu, C.1
Liu, W.2
Ye, Y.3
Li, W.4
-
15
-
-
84884345970
-
Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains
-
Emmerich CH, et al. (2013) Activation of the canonical IKK complex by K63/M1-linked hybrid ubiquitin chains. Proc Natl Acad Sci USA 110:15247–15252.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 15247-15252
-
-
Emmerich, C.H.1
-
16
-
-
85019621359
-
In vivo ubiquitin linkage-type analysis reveals that the Cdc48-Rad23/Dsk2 axis contributes to K48-linked chain specificity of the proteasome
-
Tsuchiya H, et al. (2017) In vivo ubiquitin linkage-type analysis reveals that the Cdc48-Rad23/Dsk2 axis contributes to K48-linked chain specificity of the proteasome. Mol Cell 66:488–502 e7.
-
(2017)
Mol Cell
, vol.66
-
-
Tsuchiya, H.1
-
18
-
-
79955763306
-
Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals
-
Phu L, et al. (2011) Improved quantitative mass spectrometry methods for characterizing complex ubiquitin signals. Mol Cell Proteomics 10:M110.003756.
-
(2011)
Mol Cell Proteomics
, vol.10
-
-
Phu, L.1
-
19
-
-
78650915537
-
Deubiquitinases in the regulation of NF-κB signaling
-
Harhaj EW, Dixit VM (2011) Deubiquitinases in the regulation of NF-κB signaling. Cell Res 21:22–39.
-
(2011)
Cell Res
, vol.21
, pp. 22-39
-
-
Harhaj, E.W.1
Dixit, V.M.2
-
20
-
-
70350015537
-
A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta
-
Xu M, Skaug B, Zeng W, Chen ZJ (2009) A ubiquitin replacement strategy in human cells reveals distinct mechanisms of IKK activation by TNFalpha and IL-1beta. Mol Cell 36:302–314.
-
(2009)
Mol Cell
, vol.36
, pp. 302-314
-
-
Xu, M.1
Skaug, B.2
Zeng, W.3
Chen, Z.J.4
-
21
-
-
34547130325
-
Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages
-
Kim HT, et al. (2007) Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J Biol Chem 282:17375–17386.
-
(2007)
J Biol Chem
, vol.282
, pp. 17375-17386
-
-
Kim, H.T.1
-
22
-
-
84926417515
-
K63 polyubiquitination is a new modulator of the oxidative stress response
-
Silva GM, Finley D, Vogel C (2015) K63 polyubiquitination is a new modulator of the oxidative stress response. Nat Struct Mol Biol 22:116–123.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 116-123
-
-
Silva, G.M.1
Finley, D.2
Vogel, C.3
-
23
-
-
84890136771
-
Mammalian HECT ubiquitin-protein ligases: Biological and pathophysiological aspects
-
Scheffner M, Kumar S (2014) Mammalian HECT ubiquitin-protein ligases: Biological and pathophysiological aspects. Biochim Biophys Acta 1843:61–74.
-
(2014)
Biochim Biophys Acta
, vol.1843
, pp. 61-74
-
-
Scheffner, M.1
Kumar, S.2
-
24
-
-
45849153870
-
The HECT family of E3 ubiquitin ligases: Multiple players in cancer development
-
Bernassola F, Karin M, Ciechanover A, Melino G (2008) The HECT family of E3 ubiquitin ligases: Multiple players in cancer development. Cancer Cell 14:10–21.
-
(2008)
Cancer Cell
, vol.14
, pp. 10-21
-
-
Bernassola, F.1
Karin, M.2
Ciechanover, A.3
Melino, G.4
-
25
-
-
54949108684
-
ITCH is a putative target for a novel 20q11.22 amplification detected in anaplastic thyroid carcinoma cells by array-based comparative genomic hybridization
-
Ishihara T, et al. (2008) ITCH is a putative target for a novel 20q11.22 amplification detected in anaplastic thyroid carcinoma cells by array-based comparative genomic hybridization. Cancer Sci 99:1940–1949.
-
(2008)
Cancer Sci
, vol.99
, pp. 1940-1949
-
-
Ishihara, T.1
-
26
-
-
79952266588
-
Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity
-
Salah Z, Melino G, Aqeilan RI (2011) Negative regulation of the Hippo pathway by E3 ubiquitin ligase ITCH is sufficient to promote tumorigenicity. Cancer Res 71:2010–2020.
-
(2011)
Cancer Res
, vol.71
, pp. 2010-2020
-
-
Salah, Z.1
Melino, G.2
Aqeilan, R.I.3
-
27
-
-
84878900697
-
Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming
-
Maspero E, et al. (2013) Structure of a ubiquitin-loaded HECT ligase reveals the molecular basis for catalytic priming. Nat Struct Mol Biol 20:696–701.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 696-701
-
-
Maspero, E.1
-
28
-
-
77950580572
-
The ubiquitin ligase itch regulates apoptosis by targeting thioredoxin-interacting protein for ubiquitin-dependent degradation
-
Zhang P, et al. (2010) The ubiquitin ligase itch regulates apoptosis by targeting thioredoxin-interacting protein for ubiquitin-dependent degradation. J Biol Chem 285:8869–8879.
-
(2010)
J Biol Chem
, vol.285
, pp. 8869-8879
-
-
Zhang, P.1
-
29
-
-
60549107173
-
Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
-
Saeki Y, et al. (2009) Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J 28:359–371.
-
(2009)
EMBO J
, vol.28
, pp. 359-371
-
-
Saeki, Y.1
-
30
-
-
33745170043
-
Hepatocellular carcinoma in Txnip-deficient mice
-
Sheth SS, et al. (2006) Hepatocellular carcinoma in Txnip-deficient mice. Oncogene 25: 3528–3536.
-
(2006)
Oncogene
, vol.25
, pp. 3528-3536
-
-
Sheth, S.S.1
-
31
-
-
84879858404
-
TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress
-
Jung H, et al. (2013) TXNIP maintains the hematopoietic cell pool by switching the function of p53 under oxidative stress. Cell Metab 18:75–85.
-
(2013)
Cell Metab
, vol.18
, pp. 75-85
-
-
Jung, H.1
-
32
-
-
84864693470
-
Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome
-
Oslowski CM, et al. (2012) Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab 16:265–273.
-
(2012)
Cell Metab
, vol.16
, pp. 265-273
-
-
Oslowski, C.M.1
-
33
-
-
84875710846
-
WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells
-
Yeung B, Ho KC, Yang X (2013) WWP1 E3 ligase targets LATS1 for ubiquitin-mediated degradation in breast cancer cells. PLoS One 8:e61027.
-
(2013)
PLoS One
, vol.8
, pp. e61027
-
-
Yeung, B.1
Ho, K.C.2
Yang, X.3
-
34
-
-
84878832998
-
OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis
-
Mevissen TE, et al. (2013) OTU deubiquitinases reveal mechanisms of linkage specificity and enable ubiquitin chain restriction analysis. Cell 154:169–184.
-
(2013)
Cell
, vol.154
, pp. 169-184
-
-
Mevissen, T.E.1
-
35
-
-
84988530002
-
A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins
-
Sung MK, et al. (2016) A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. Elife 5:e19105.
-
(2016)
Elife
, vol.5
, pp. e19105
-
-
Sung, M.K.1
-
36
-
-
37249016853
-
Structural basis of ubiquitin recognition by the ubiquitin-associated (UBA) domain of the ubiquitin ligase EDD
-
Kozlov G, et al. (2007) Structural basis of ubiquitin recognition by the ubiquitin-associated (UBA) domain of the ubiquitin ligase EDD. J Biol Chem 282:35787–35795.
-
(2007)
J Biol Chem
, vol.282
, pp. 35787-35795
-
-
Kozlov, G.1
-
37
-
-
84882605310
-
Acetylation stabilizes ATP-citrate lyase to promote lipid bio-synthesis and tumor growth
-
Lin R, et al. (2013) Acetylation stabilizes ATP-citrate lyase to promote lipid bio-synthesis and tumor growth. Mol Cell 51:506–518.
-
(2013)
Mol Cell
, vol.51
, pp. 506-518
-
-
Lin, R.1
-
38
-
-
26944465404
-
Diverse polyubiquitin interaction properties of ubiquitin-associated domains
-
Raasi S, Varadan R, Fushman D, Pickart CM (2005) Diverse polyubiquitin interaction properties of ubiquitin-associated domains. Nat Struct Mol Biol 12:708–714.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 708-714
-
-
Raasi, S.1
Varadan, R.2
Fushman, D.3
Pickart, C.M.4
-
39
-
-
84955453250
-
Structural basis for the regulatory role of the PPxY motifs in the thioredoxin-interacting protein TXNIP
-
Liu Y, et al. (2016) Structural basis for the regulatory role of the PPxY motifs in the thioredoxin-interacting protein TXNIP. Biochem J 473:179–187.
-
(2016)
Biochem J
, vol.473
, pp. 179-187
-
-
Liu, Y.1
-
40
-
-
84981344780
-
Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients
-
Szász AM, et al. (2016) Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget 7:49322–49333.
-
(2016)
Oncotarget
, vol.7
, pp. 49322-49333
-
-
Szász, A.M.1
-
41
-
-
85031281723
-
Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control
-
e20
-
Yau RG, et al. (2017) Assembly and function of heterotypic ubiquitin chains in cell-cycle and protein quality control. Cell 171:918–933 e20.
-
(2017)
Cell
, vol.171
, pp. 918-933
-
-
Yau, R.G.1
-
42
-
-
73949101221
-
Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation
-
Harreman M, et al. (2009) Distinct ubiquitin ligases act sequentially for RNA polymerase II polyubiquitylation. Proc Natl Acad Sci USA 106:20705–20710.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 20705-20710
-
-
Harreman, M.1
-
43
-
-
84990861120
-
Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress
-
Fang NN, Zhu M, Rose A, Wu KP, Mayor T (2016) Deubiquitinase activity is required for the proteasomal degradation of misfolded cytosolic proteins upon heat-stress. Nat Commun 7:12907.
-
(2016)
Nat Commun
, vol.7
, pp. 12907
-
-
Fang, N.N.1
Zhu, M.2
Rose, A.3
Wu, K.P.4
Mayor, T.5
-
44
-
-
85021679701
-
Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase
-
French ME, et al. (2017) Mechanism of ubiquitin chain synthesis employed by a HECT domain ubiquitin ligase. J Biol Chem 292:10398–10413.
-
(2017)
J Biol Chem
, vol.292
, pp. 10398-10413
-
-
French, M.E.1
-
45
-
-
49549117842
-
Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies
-
Newton K, et al. (2008) Ubiquitin chain editing revealed by polyubiquitin linkage-specific antibodies. Cell 134:668–678.
-
(2008)
Cell
, vol.134
, pp. 668-678
-
-
Newton, K.1
-
46
-
-
84877576390
-
Mixed-linkage ubiquitin chains send mixed messages
-
Nakasone MA, Livnat-Levanon N, Glickman MH, Cohen RE, Fushman D (2013) Mixed-linkage ubiquitin chains send mixed messages. Structure 21:727–740.
-
(2013)
Structure
, vol.21
, pp. 727-740
-
-
Nakasone, M.A.1
Livnat-Levanon, N.2
Glickman, M.H.3
Cohen, R.E.4
Fushman, D.5
|