메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 2858-2866

Deep watershed transform for instance segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; DEEP LEARNING; IMAGE SEGMENTATION; TEMPLATE MATCHING; WATERSHEDS;

EID: 85041930535     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.305     Document Type: Conference Paper
Times cited : (537)

References (34)
  • 2
    • 85044534252 scopus 로고    scopus 로고
    • Bottom-up instance segmentation using deep higher-order crfs
    • 2
    • A. Arnab and P. Torr. Bottom-up instance segmentation using deep higher-order crfs. In BMVC, 2016. 1, 2
    • (2016) BMVC , pp. 1
    • Arnab, A.1    Torr, P.2
  • 3
    • 0001722484 scopus 로고
    • The watershed transformation applied to image segmentation
    • 1, 2
    • S. Beucher. The watershed transformation applied to image segmentation. Scanning Microscopy International, Suppl:6(1):299-314, 1991. 1, 2
    • (1991) Scanning Microscopy International Suppl , vol.6 , Issue.1 , pp. 299-314
    • Beucher, S.1
  • 5
    • 84986290525 scopus 로고    scopus 로고
    • Bottom-up instance segmentation using deep higher-order crfs
    • Y. Chen, X. Liu, and M. Yang. Bottom-up instance segmentation using deep higher-order crfs. In CVPR, 2015. 2
    • (2015) CVPR , pp. 2
    • Chen, Y.1    Liu, X.2    Yang, M.3
  • 7
    • 84986282070 scopus 로고    scopus 로고
    • Instance-aware semantic segmentation via multi-task network cascades
    • 2
    • J. Dai, K. He, and J. Sun. Instance-aware semantic segmentation via multi-task network cascades. In CVPR, 2016. 1, 2
    • (2016) CVPR , pp. 1
    • Dai, J.1    He, K.2    Sun, J.3
  • 9
    • 85028048141 scopus 로고    scopus 로고
    • Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation
    • 6, 7
    • C. F. G. Ghiasi. Laplacian Pyramid Reconstruction and Refinement for Semantic Segmentation. In ECCV, 2016. 4, 6, 7
    • (2016) ECCV , pp. 4
    • Ghiasi, C.F.G.1
  • 10
    • 79951563340 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, 2010. 5
    • (2010) AISTATS , pp. 5
    • Glorot, X.1    Bengio, Y.2
  • 11
    • 1942486776 scopus 로고    scopus 로고
    • Improved watershed transform for medical image segmentation using prior information
    • 1
    • V. Grau, A. Mewes, M. Alcaiz, R. Kikinis, and S. Warfield. Improved watershed transform for medical image segmentation using prior information. IEEE Transactions on Medical Imaging, 23(4):447-458, 2004. 1
    • (2004) IEEE Transactions on Medical Imaging , vol.23 , Issue.4 , pp. 447-458
    • Grau, V.1    Mewes, A.2    Alcaiz, M.3    Kikinis, R.4    Warfield, S.5
  • 13
    • 85044374484 scopus 로고    scopus 로고
    • Iterative instance segmentation
    • K. Li, B. Hariharan, and J. Malik. Iterative instance segmentation. In CVPR, 2016. 2
    • (2016) CVPR , pp. 2
    • Li, K.1    Hariharan, B.2    Malik, J.3
  • 14
  • 16
    • 84959205572 scopus 로고    scopus 로고
    • Fully Convolutional Networks for Semantic Segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional Networks for Semantic Segmentation. In CVPR, 2015. 4
    • (2015) CVPR , pp. 4
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 17
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In ICCV, 2001. 6
    • (2001) ICCV , pp. 6
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 20
    • 85044363013 scopus 로고    scopus 로고
    • Learning to segment object candidates
    • 2
    • P. O. Pinheiro, R. Collobert, and P. Dollr. Learning to segment object candidates. In NIPS, 2015. 1, 2
    • (2015) NIPS , pp. 1
    • Pinheiro, P.O.1    Collobert, R.2    Dollr, P.3
  • 21
    • 85044347096 scopus 로고    scopus 로고
    • Segmentation of 3d head mr images using morphological reconstruction under constraints and automatic selection of markers
    • 1
    • P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollr. Segmentation of 3d head mr images using morphological reconstruction under constraints and automatic selection of markers. In ICIP, pages 1075-1078, 2001. 1
    • (2001) ICIP , pp. 1075-1078
    • Pinheiro, P.O.1    Lin, T.-Y.2    Collobert, R.3    Dollr, P.4
  • 24
    • 85030264885 scopus 로고    scopus 로고
    • Recurrent Instance Segmentation
    • 2
    • B. Romera-Paredes and P. H. S. Torr. Recurrent Instance Segmentation. In ECCV, 2016. 1, 2
    • (2016) ECCV , pp. 1
    • Romera-Paredes, B.1    Torr, P.H.S.2
  • 25
    • 84965121965 scopus 로고    scopus 로고
    • Convolutional LSTM network: A machine learning approach for precipitation nowcasting
    • X. Shi, Z. Chen, H.Wang, D. Yeung, W.Wong, andW.Woo. Convolutional LSTM network: A machine learning approach for precipitation nowcasting. In NIPS, 2015. 2
    • (2015) NIPS , pp. 2
    • Shi, X.1    Chen, Z.2    Wang, H.3    Yeung, D.4    Wong, W.5    Woo, W.6
  • 26
    • 84959205514 scopus 로고    scopus 로고
    • Instance segmentation of indoor scenes using a coverage loss
    • 7
    • N. Silberman, D. Sontag, and R. Fergus. Instance segmentation of indoor scenes using a coverage loss. In ECCV, 2014. 6, 7
    • (2014) ECCV , pp. 6
    • Silberman, N.1    Sontag, D.2    Fergus, R.3
  • 27
    • 85083953063 scopus 로고    scopus 로고
    • Very Deep Convolutional Networks for Large-Scale Image Recognition
    • 5
    • K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale Image Recognition. In ICLR, 2015. 4, 5
    • (2015) ICLR , pp. 4
    • Simonyan, K.1    Zisserman, A.2
  • 28
    • 85020190110 scopus 로고    scopus 로고
    • Pixel-level Encoding and Depth Layering for Instance-level Semantic Labeling
    • 2, 6, 7
    • J. Uhrig, M. Cordts, U. Franke, and T. Brox. Pixel-level Encoding and Depth Layering for Instance-level Semantic Labeling. In GCPR, 2016. 1, 2, 6, 7
    • (2016) GCPR , pp. 1
    • Uhrig, J.1    Cordts, M.2    Franke, U.3    Brox, T.4
  • 29
    • 85044344056 scopus 로고    scopus 로고
    • Instance-level Segmentation of Vehicles by Deep Contours
    • J. van den Brand, M. Ochs, and R. Mester. Instance-level Segmentation of Vehicles by Deep Contours. In ACCVWorkshop, 2016. 6
    • (2016) ACCVWorkshop , pp. 6
    • Van den Brand, J.1    Ochs, M.2    Mester, R.3
  • 30
    • 85083952059 scopus 로고    scopus 로고
    • Multi-Scale Context Aggregation by Dilated Convolutions
    • F. Yu and V. Koltun. Multi-Scale Context Aggregation by Dilated Convolutions. In ICLR, 2016. 4
    • (2016) ICLR , pp. 4
    • Yu, F.1    Koltun, V.2
  • 32
    • 85060481824 scopus 로고    scopus 로고
    • Instance-Level Segmentation with Deep Densely Connected MRFs
    • 2
    • Z. Zhang, S. Fidler, and R. Urtasun. Instance-Level Segmentation with Deep Densely Connected MRFs. In CVPR, 2016. 1, 2
    • (2016) CVPR , pp. 1
    • Zhang, Z.1    Fidler, S.2    Urtasun, R.3
  • 33
    • 84973891613 scopus 로고    scopus 로고
    • Monocular object instance segmentation and depth ordering with cnns
    • 2
    • Z. Zhang, A. Schwing, S. Fidler, and R. Urtasun. Monocular object instance segmentation and depth ordering with cnns. In ICCV, 2015. 1, 2
    • (2015) ICCV , pp. 1
    • Zhang, Z.1    Schwing, A.2    Fidler, S.3    Urtasun, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.