메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 1431-1439

Webly supervised learning of convolutional networks

Author keywords

[No Author keywords available]

Indexed keywords

CURRICULA; FACE RECOGNITION; SUPERVISED LEARNING;

EID: 84973865248     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.168     Document Type: Conference Paper
Times cited : (430)

References (60)
  • 1
    • 84973913759 scopus 로고    scopus 로고
    • YFCC dataset
    • YFCC dataset. labs. yahoo. com/news/yfcc100m/.
  • 2
    • 84973389608 scopus 로고    scopus 로고
    • Analyzing the performance of multilayer neural networks for object recognition
    • P. Agrawal, R. Girshick, and J. Malik. Analyzing the performance of multilayer neural networks for object recognition. In ECCV. 2014.
    • (2014) ECCV
    • Agrawal, P.1    Girshick, R.2    Malik, J.3
  • 4
    • 70449602122 scopus 로고    scopus 로고
    • Finding iconic images
    • T. L. Berg and A. C. Berg. Finding iconic images. In CVPRW, 2009.
    • (2009) CVPRW
    • Berg, T.L.1    Berg, A.C.2
  • 7
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach. In NIPS, 2010.
    • (2010) NIPS
    • Bergamo, A.1    Torresani, L.2
  • 9
    • 84898803720 scopus 로고    scopus 로고
    • NEIL: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting visual knowledge from web data. In ICCV, 2013.
    • (2013) ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 10
    • 84911458493 scopus 로고    scopus 로고
    • Enriching visual knowledge bases via object discovery and segmentation
    • X. Chen, A. Shrivastava, and A. Gupta. Enriching visual knowledge bases via object discovery and segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 11
    • 34948861144 scopus 로고    scopus 로고
    • Weakly supervised learning of part-based spatial models for visual object recognition
    • D. J. Crandall and D. P. Huttenlocher. Weakly supervised learning of part-based spatial models for visual object recognition. In ECCV. 2006.
    • (2006) ECCV
    • Crandall, D.J.1    Huttenlocher, D.P.2
  • 12
    • 84867062047 scopus 로고    scopus 로고
    • Weakly supervised localization and learning with generic knowledge
    • T. Deselaers, B. Alexe, and V. Ferrari. Weakly supervised localization and learning with generic knowledge. IJCV, 2012.
    • (2012) IJCV
    • Deselaers, T.1    Alexe, B.2    Ferrari, V.3
  • 13
    • 84911368326 scopus 로고    scopus 로고
    • Learning everything about anything: Webly-supervised visual concept learning
    • S. K. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014.
    • (2014) CVPR
    • Divvala, S.K.1    Farhadi, A.2    Guestrin, C.3
  • 15
    • 77956002586 scopus 로고    scopus 로고
    • Harvesting large-scale weaklytagged image databases from the web
    • J. Fan, Y. Shen, N. Zhou, and Y. Gao. Harvesting large-scale weaklytagged image databases from the web. In CVPR, 2010.
    • (2010) CVPR
    • Fan, J.1    Shen, Y.2    Zhou, N.3    Gao, Y.4
  • 18
    • 24644456520 scopus 로고    scopus 로고
    • A visual category filter for google images
    • R. Fergus, P. Perona, and A. Zisserman. A visual category filter for google images. In ECCV. 2004.
    • (2004) ECCV
    • Fergus, R.1    Perona, P.2    Zisserman, A.3
  • 19
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 20
    • 84951930934 scopus 로고    scopus 로고
    • Conceptmap: Mining noisy web data for concept learning
    • E. Golge and P. Duygulu. Conceptmap: Mining noisy web data for concept learning. In ECCV. 2014.
    • (2014) ECCV
    • Golge, E.1    Duygulu, P.2
  • 22
    • 84887395819 scopus 로고    scopus 로고
    • Discriminative decorrelation for clustering and classification
    • B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV.
    • ECCV
    • Hariharan, B.1    Malik, J.2    Ramanan, D.3
  • 24
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 25
    • 85161967298 scopus 로고    scopus 로고
    • Self-paced learning for latent variable models
    • M. P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models. In NIPS, 2010.
    • (2010) NIPS
    • Kumar, M.P.1    Packer, B.2    Koller, D.3
  • 26
    • 80052880043 scopus 로고    scopus 로고
    • Learning the easy things first: Self-paced visual category discovery
    • Y. J. Lee and K. Grauman. Learning the easy things first: Self-paced visual category discovery. In CVPR, 2011.
    • (2011) CVPR
    • Lee, Y.J.1    Grauman, K.2
  • 27
    • 77951297833 scopus 로고    scopus 로고
    • OPTIMOL: Automatic online picture collection via incremental model learning
    • L.-J. Li and L. Fei-Fei. OPTIMOL: Automatic online picture collection via incremental model learning. IJCV, 2010.
    • (2010) IJCV
    • Li, L.-J.1    Fei-Fei, L.2
  • 28
    • 84887327253 scopus 로고    scopus 로고
    • Harvesting mid-level visual concepts from large-scale internet images
    • Q. Li, J. Wu, and Z. Tu. Harvesting mid-level visual concepts from large-scale internet images. In CVPR, 2013.
    • (2013) CVPR
    • Li, Q.1    Wu, J.2    Tu, Z.3
  • 30
    • 84877751270 scopus 로고    scopus 로고
    • Learning about canonical views from internet image collections
    • E. Mezuman and Y. Weiss. Learning about canonical views from internet image collections. In NIPS, 2012.
    • (2012) NIPS
    • Mezuman, E.1    Weiss, Y.2
  • 32
    • 84919730581 scopus 로고    scopus 로고
    • Weakly supervised object recognition with convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J. Sivic. Weakly supervised object recognition with convolutional neural networks. Technical report, 2014.
    • (2014) Technical Report
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 33
    • 85162522202 scopus 로고    scopus 로고
    • Im2text: Describing images using 1 million captioned photographs
    • V. Ordonez, G. Kulkarni, and T. L. Berg. Im2text: Describing images using 1 million captioned photographs. In NIPS, 2011.
    • (2011) NIPS
    • Ordonez, V.1    Kulkarni, G.2    Berg, T.L.3
  • 34
    • 84856650974 scopus 로고    scopus 로고
    • Scene recognition and weakly supervised object localization with deformable part-based models
    • M. Pandey and S. Lazebnik. Scene recognition and weakly supervised object localization with deformable part-based models. In ICCV, 2011.
    • (2011) ICCV
    • Pandey, M.1    Lazebnik, S.2
  • 37
    • 70450162315 scopus 로고    scopus 로고
    • Recognizing indoor scenes
    • A. Quattoni and A. Torralba. Recognizing indoor scenes. In CVPR, 2009.
    • (2009) CVPR
    • Quattoni, A.1    Torralba, A.2
  • 38
    • 51849144124 scopus 로고    scopus 로고
    • Computing iconic summaries of general visual concepts
    • R. Raguram and S. Lazebnik. Computing iconic summaries of general visual concepts. In CVPRW, 2008.
    • (2008) CVPRW
    • Raguram, R.1    Lazebnik, S.2
  • 39
    • 84908537903 scopus 로고    scopus 로고
    • Cnn features off-the-shelf: An astounding baseline for recognition
    • A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. Cnn features off-the-shelf: An astounding baseline for recognition. In CVPRW, 2014.
    • (2014) CVPRW
    • Razavian, A.S.1    Azizpour, H.2    Sullivan, J.3    Carlsson, S.4
  • 42
    • 77955111164 scopus 로고    scopus 로고
    • Unsupervised learning of visual sense models for polysemous words
    • K. Saenko and T. Darrell. Unsupervised learning of visual sense models for polysemous words. In NIPS, 2009.
    • (2009) NIPS
    • Saenko, K.1    Darrell, T.2
  • 46
    • 0345414182 scopus 로고    scopus 로고
    • Video google: A text retrieval approach to object matching in videos
    • J. Sivic and A. Zisserman. Video google: A text retrieval approach to object matching in videos. In ICCV, 2003.
    • (2003) ICCV
    • Sivic, J.1    Zisserman, A.2
  • 51
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 52
    • 80052908300 scopus 로고    scopus 로고
    • Unbiased look at dataset bias
    • A. Torralba and A. A. Efros. Unbiased look at dataset bias. In CVPR, 2011.
    • (2011) CVPR
    • Torralba, A.1    Efros, A.A.2
  • 53
    • 80052896768 scopus 로고    scopus 로고
    • Efficient object category recognition using classemes
    • L. Torresani, M. Szummer, and A. Fitzgibbon. Efficient object category recognition using classemes. In ECCV. 2010.
    • (2010) ECCV
    • Torresani, L.1    Szummer, M.2    Fitzgibbon, A.3
  • 54
    • 51949096901 scopus 로고    scopus 로고
    • Keywords to visual categories: Multiple-instance learning forweakly supervised object categorization
    • S. Vijayanarasimhan and K. Grauman. Keywords to visual categories: Multiple-instance learning forweakly supervised object categorization. In CVPR, 2008.
    • (2008) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 55
    • 84956604127 scopus 로고    scopus 로고
    • Weakly supervised object localization with latent category learning
    • C. Wang, W. Ren, K. Huang, and T. Tan. Weakly supervised object localization with latent category learning. In ECCV. 2014.
    • (2014) ECCV
    • Wang, C.1    Ren, W.2    Huang, K.3    Tan, T.4
  • 56
    • 54849395400 scopus 로고    scopus 로고
    • Annotating images by mining image search results
    • X.-J. Wang, L. Zhang, X. Li, and W.-Y. Ma. Annotating images by mining image search results. TPAMI, 2008.
    • (2008) TPAMI
    • Wang, X.-J.1    Zhang, L.2    Li, X.3    Ma, W.-Y.4
  • 57
    • 84951972106 scopus 로고    scopus 로고
    • Well begun is half done: Generating high-quality seeds for automatic image dataset construction from web
    • Y. Xia, X. Cao, F. Wen, and J. Sun. Well begun is half done: Generating high-quality seeds for automatic image dataset construction from web. In ECCV. 2014.
    • (2014) ECCV
    • Xia, Y.1    Cao, X.2    Wen, F.3    Sun, J.4
  • 58
    • 77955988947 scopus 로고    scopus 로고
    • Sun database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. Sun database: Large-scale scene recognition from abbey to zoo. In CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5
  • 59
    • 84937964578 scopus 로고    scopus 로고
    • Learning deep features for scene recognition using places database
    • B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep features for scene recognition using places database. In NIPS, 2014.
    • (2014) NIPS
    • Zhou, B.1    Lapedriza, A.2    Xiao, J.3    Torralba, A.4    Oliva, A.5
  • 60
    • 84952018709 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV. 2014.
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.