메뉴 건너뛰기




Volumn 58, Issue 1, 2018, Pages 164-207

Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review

Author keywords

bioactive glasses; bone tissue engineering; calcium phosphate based ceramics; composite scaffolds; Polycaprolactone

Indexed keywords

BIOACTIVE GLASS; BIOCOMPATIBILITY; BIOMECHANICS; BONE; CALCIUM; CALCIUM COMPOUNDS; CALCIUM PHOSPHATE; CELL ADHESION; CELL ENGINEERING; CERAMIC MATERIALS; CONTROLLED DRUG DELIVERY; DEGRADATION; DRUG DELIVERY; FABRICATION; GLASS; MECHANICAL PROPERTIES; POLYCAPROLACTONE; POLYMERIC IMPLANTS; SCAFFOLDS (BIOLOGY); TISSUE;

EID: 85041424399     PISSN: 15583724     EISSN: 15583716     Source Type: Journal    
DOI: 10.1080/15583724.2017.1332640     Document Type: Review
Times cited : (207)

References (278)
  • 1
    • 80054062393 scopus 로고    scopus 로고
    • Biomimetic nanofibrous scaffolds for bone tissue engineering
    • Holzwarth, J. M.,; Ma, P. X., “Biomimetic nanofibrous scaffolds for bone tissue engineering”, Biomaterials 2011, 32, 9622–9629.
    • (2011) Biomaterials , vol.32 , pp. 9622-9629
    • Holzwarth, J.M.1    Ma, P.X.2
  • 2
    • 0034672872 scopus 로고    scopus 로고
    • Scaffolds in tissue engineering bone and cartilage
    • Hutmacher, D. W., “Scaffolds in tissue engineering bone and cartilage”, Biomaterials 2000, 21, 2529–2543.
    • (2000) Biomaterials , vol.21 , pp. 2529-2543
    • Hutmacher, D.W.1
  • 3
    • 0035089551 scopus 로고    scopus 로고
    • Biodegradable polymeric scaffolds for musculoskeletal tissue engineering
    • Agrawal, C.,; Ray, R. B., “Biodegradable polymeric scaffolds for musculoskeletal tissue engineering”, Journal of Biomedical Materials Research 2001, 55, 141–150.
    • (2001) Journal of Biomedical Materials Research , vol.55 , pp. 141-150
    • Agrawal, C.1    Ray, R.B.2
  • 5
    • 0028022414 scopus 로고
    • Biodegradable polymers for biomedical uses
    • Hayashi, T., “Biodegradable polymers for biomedical uses”, Progress in Polymer Science 1994, 19, 663–702.
    • (1994) Progress in Polymer Science , vol.19 , pp. 663-702
    • Hayashi, T.1
  • 6
    • 70349319369 scopus 로고    scopus 로고
    • A review on biodegradable polymeric materials for bone tissue engineering applications
    • Sabir, M. I.,; Xu, X.,; Li, L., “A review on biodegradable polymeric materials for bone tissue engineering applications”, Journal of Materials Science 2009, 44, 5713–5724.
    • (2009) Journal of Materials Science , vol.44 , pp. 5713-5724
    • Sabir, M.I.1    Xu, X.2    Li, L.3
  • 11
    • 0001922118 scopus 로고
    • Poly-ϵ-caprolactone and its copolymers
    • Pitt, C. G., “Poly-ϵ-caprolactone and its copolymers”, Drugs and the Pharmaceutical Sciences 1990, 45, 71–120.
    • (1990) Drugs and the Pharmaceutical Sciences , vol.45 , pp. 71-120
    • Pitt, C.G.1
  • 12
    • 0037358343 scopus 로고    scopus 로고
    • Tissue engineering and cell therapy of cartilage and bone
    • Cancedda, R.,; Dozin, B.,; Giannoni, P.,; Quarto, R., “Tissue engineering and cell therapy of cartilage and bone”, Matrix Biology 2003, 22, 81–91.
    • (2003) Matrix Biology , vol.22 , pp. 81-91
    • Cancedda, R.1    Dozin, B.2    Giannoni, P.3    Quarto, R.4
  • 13
    • 35948986208 scopus 로고    scopus 로고
    • Biodegradable synthetic polymers for tissue engineering
    • Gunatillake, P. A.,; Adhikari, R., “Biodegradable synthetic polymers for tissue engineering”, Eur Cell Mater. 2003, 5, 1–16.
    • (2003) Eur Cell Mater , vol.5 , pp. 1-16
    • Gunatillake, P.A.1    Adhikari, R.2
  • 14
    • 70349874778 scopus 로고    scopus 로고
    • Preparation of poly (ϵ-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning
    • Han, J.,; Branford-White, C. J.,; Zhu, L.-M., “Preparation of poly (ϵ-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning”, Carbohydrate Polymers 2010, 79, 214–218.
    • (2010) Carbohydrate Polymers , vol.79 , pp. 214-218
    • Han, J.1    Branford-White, C.J.2    Zhu, L.-M.3
  • 17
    • 33750207993 scopus 로고    scopus 로고
    • Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds
    • Kang, X.,; Xie, Y.,; Powell, H. M.,; Lee, L. J.,; Belury, M. A.,; Lannutti, J. J.,; Kniss, D. A., “Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds”, Biomaterials 2007, 28, 450–458.
    • (2007) Biomaterials , vol.28 , pp. 450-458
    • Kang, X.1    Xie, Y.2    Powell, H.M.3    Lee, L.J.4    Belury, M.A.5    Lannutti, J.J.6    Kniss, D.A.7
  • 20
    • 0035671158 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part I. Traditional factors
    • Yang, S.,; Leong, K.-F.,; Du, Z.,; Chua, C.-K., “The design of scaffolds for use in tissue engineering. Part I. Traditional factors”, Tissue Engineering 2001, 7, 679–689.
    • (2001) Tissue Engineering , vol.7 , pp. 679-689
    • Yang, S.1    Leong, K.-F.2    Du, Z.3    Chua, C.-K.4
  • 21
    • 0036118385 scopus 로고    scopus 로고
    • Biocomposites of non-crosslinked natural and synthetic polymers
    • Coombes, A.,; Verderio, E.,; Shaw, B.,; Li, X.,; Griffin, M.,; Downes, S., “Biocomposites of non-crosslinked natural and synthetic polymers”, Biomaterials 2002, 23, 2113–2118.
    • (2002) Biomaterials , vol.23 , pp. 2113-2118
    • Coombes, A.1    Verderio, E.2    Shaw, B.3    Li, X.4    Griffin, M.5    Downes, S.6
  • 23
    • 78650276410 scopus 로고    scopus 로고
    • The effect of elastin on chondrocyte adhesion and proliferation on poly (ϵ-caprolactone)/elastin composites
    • Annabi, N.,; Fathi, A.,; Mithieux, S. M.,; Martens, P.,; Weiss, A. S.,; Dehghani, F., “The effect of elastin on chondrocyte adhesion and proliferation on poly (ϵ-caprolactone)/elastin composites”, Biomaterials 2011, 32, 1517–1525.
    • (2011) Biomaterials , vol.32 , pp. 1517-1525
    • Annabi, N.1    Fathi, A.2    Mithieux, S.M.3    Martens, P.4    Weiss, A.S.5    Dehghani, F.6
  • 25
    • 17844390359 scopus 로고    scopus 로고
    • Characterization of chitosan–polycaprolactone blends for tissue engineering applications
    • Sarasam, A.,; Madihally, S. V., “Characterization of chitosan–polycaprolactone blends for tissue engineering applications”, Biomaterials 2005, 26, 5500–5508.
    • (2005) Biomaterials , vol.26 , pp. 5500-5508
    • Sarasam, A.1    Madihally, S.V.2
  • 26
    • 0030081994 scopus 로고    scopus 로고
    • Biodegradable lactone copolymers. I. Characterization and mechanical behavior of ϵ-caprolactone and lactide copolymers
    • Hiljanen-Vainio, M.,; Karjalainen, T.,; Seppälä, J., “Biodegradable lactone copolymers. I. Characterization and mechanical behavior of ϵ-caprolactone and lactide copolymers”, Journal of Applied Polymer Science 1996, 59, 1281–1288.
    • (1996) Journal of Applied Polymer Science , vol.59 , pp. 1281-1288
    • Hiljanen-Vainio, M.1    Karjalainen, T.2    Seppälä, J.3
  • 27
    • 84995784019 scopus 로고    scopus 로고
    • A comprehensive study on the fabrication and properties of biocomposites of poly (lactic acid)/ceramics for bone tissue engineering
    • Tajbakhsh, S.,; Hajiali, F., “A comprehensive study on the fabrication and properties of biocomposites of poly (lactic acid)/ceramics for bone tissue engineering”, Materials Science and Engineering C 2017, 70, 897–912.
    • (2017) Materials Science and Engineering C , vol.70 , pp. 897-912
    • Tajbakhsh, S.1    Hajiali, F.2
  • 28
    • 0142030654 scopus 로고    scopus 로고
    • Tissue engineering of human biliary epithelial cells on polyglycolic acid/polycaprolactone scaffolds maintains long-term phenotypic stability
    • Barralet, J. E.,; Wallace, L. L.,; Strain, A. J., “Tissue engineering of human biliary epithelial cells on polyglycolic acid/polycaprolactone scaffolds maintains long-term phenotypic stability”, Tissue Engineering 2003, 9, 1037–1045.
    • (2003) Tissue Engineering , vol.9 , pp. 1037-1045
    • Barralet, J.E.1    Wallace, L.L.2    Strain, A.J.3
  • 29
    • 32144437418 scopus 로고    scopus 로고
    • How useful is SBF in predicting in vivo bone bioactivity?
    • Kokubo, T.,; Takadama, H., “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials 2006, 27, 2907–2915.
    • (2006) Biomaterials , vol.27 , pp. 2907-2915
    • Kokubo, T.1    Takadama, H.2
  • 30
    • 1642276047 scopus 로고    scopus 로고
    • Porous poly (α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation
    • Maquet, V.,; Boccaccini, A. R.,; Pravata, L.,; Notingher, I.,; Jérôme, R., “Porous poly (α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation”, Biomaterials 2004, 25, 4185–4194.
    • (2004) Biomaterials , vol.25 , pp. 4185-4194
    • Maquet, V.1    Boccaccini, A.R.2    Pravata, L.3    Notingher, I.4    Jérôme, R.5
  • 31
    • 2342428707 scopus 로고    scopus 로고
    • Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering
    • Wei, G.,; Ma, P. X., “Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering”, Biomaterials 2004, 25, 4749–4757.
    • (2004) Biomaterials , vol.25 , pp. 4749-4757
    • Wei, G.1    Ma, P.X.2
  • 32
    • 55749100987 scopus 로고    scopus 로고
    • Nanotechnology and nanomaterials: Promises for improved tissue regeneration
    • Zhang, L.,; Webster, T. J., “Nanotechnology and nanomaterials: Promises for improved tissue regeneration”, Nano Today 2009, 4, 66–80.
    • (2009) Nano Today , vol.4 , pp. 66-80
    • Zhang, L.1    Webster, T.J.2
  • 33
    • 0017365913 scopus 로고
    • Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface
    • Jarcho, M.,; Kay, J. F.,; Gumaer, K. I.,; Doremus, R. H.,; Drobeck, H. P., “Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface”, Journal of Bioengineering 1977, 1, 79–92.
    • (1977) Journal of Bioengineering , vol.1 , pp. 79-92
    • Jarcho, M.1    Kay, J.F.2    Gumaer, K.I.3    Doremus, R.H.4    Drobeck, H.P.5
  • 34
    • 0019447856 scopus 로고
    • Calcium phosphate ceramics as hard tissue prosthetics
    • Jarcho, M., “Calcium phosphate ceramics as hard tissue prosthetics”, Clinical Orthopaedics and Related Research 1981, 157, 259–278.
    • (1981) Clinical Orthopaedics and Related Research , vol.157 , pp. 259-278
    • Jarcho, M.1
  • 36
    • 0025019633 scopus 로고
    • Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics
    • Daculsi, G.,; LeGeros, R.,; Heughebaert, M.,; Barbieux, I., “Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics”, Calcified Tissue International 1990, 46, 20–27.
    • (1990) Calcified Tissue International , vol.46 , pp. 20-27
    • Daculsi, G.1    LeGeros, R.2    Heughebaert, M.3    Barbieux, I.4
  • 39
    • 0021350477 scopus 로고
    • Phosphate minerals in human tissues
    • Springer, Berlin
    • LeGeros, R. Z.,; Legeros, J. P., “Phosphate minerals in human tissues”, In Phosphate Minerals; Springer, Berlin, 1984, pp. 351–385.
    • (1984) In Phosphate Minerals , pp. 351-385
    • LeGeros, R.Z.1    Legeros, J.P.2
  • 40
    • 70349972135 scopus 로고    scopus 로고
    • Organic/inorganic bioactive materials Part I: Synthesis, structure and in vitro assessment of collagen/silicocarnotite biocoatings
    • Hristov, V.,; Radev, L.,; Samuneva, B.,; Apostolov, G., “Organic/inorganic bioactive materials Part I: Synthesis, structure and in vitro assessment of collagen/silicocarnotite biocoatings”, Central European Journal of Chemistry 2009, 7, 702–710.
    • (2009) Central European Journal of Chemistry , vol.7 , pp. 702-710
    • Hristov, V.1    Radev, L.2    Samuneva, B.3    Apostolov, G.4
  • 41
    • 33644934897 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
    • Rezwan, K.,; Chen, Q.,; Blaker, J.,; Boccaccini, A. R., “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering”, Biomaterials 2006, 27, 3413–3431.
    • (2006) Biomaterials , vol.27 , pp. 3413-3431
    • Rezwan, K.1    Chen, Q.2    Blaker, J.3    Boccaccini, A.R.4
  • 42
    • 42149178627 scopus 로고    scopus 로고
    • Biomaterials for bone tissue engineering
    • Stevens, M. M., “Biomaterials for bone tissue engineering”, Materials Today 2008, 11, 18–25.
    • (2008) Materials Today , vol.11 , pp. 18-25
    • Stevens, M.M.1
  • 43
    • 84874426867 scopus 로고    scopus 로고
    • Bone regeneration in osseous defects using hydroxyapatite graft and the extent of ossification in osseous defects treated without grafts: A comparative evaluation
    • Shankar, R.,; Singh, D.,; Shaikh, S.,; Singh, G.,; Yadav, A.,; Jain, R., “Bone regeneration in osseous defects using hydroxyapatite graft and the extent of ossification in osseous defects treated without grafts: A comparative evaluation”, Journal of Maxillofacial and Oral Surgery 2011, 10, 123–126.
    • (2011) Journal of Maxillofacial and Oral Surgery , vol.10 , pp. 123-126
    • Shankar, R.1    Singh, D.2    Shaikh, S.3    Singh, G.4    Yadav, A.5    Jain, R.6
  • 44
    • 0036533143 scopus 로고    scopus 로고
    • Structural evolution of sol–gel-derived hydroxyapatite
    • Liu, D.-M.,; Yang, Q.,; Troczynski, T.,; Tseng, W. J., “Structural evolution of sol–gel-derived hydroxyapatite”, Biomaterials 2002, 23, 1679–1687.
    • (2002) Biomaterials , vol.23 , pp. 1679-1687
    • Liu, D.-M.1    Yang, Q.2    Troczynski, T.3    Tseng, W.J.4
  • 45
    • 3242678855 scopus 로고    scopus 로고
    • Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder
    • Kim, I.-S.,; Kumta, P. N., “Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder”, Materials Science and Engineering B 2004, 111, 232–236.
    • (2004) Materials Science and Engineering B , vol.111 , pp. 232-236
    • Kim, I.-S.1    Kumta, P.N.2
  • 47
    • 69249098359 scopus 로고    scopus 로고
    • Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route
    • Monmaturapoj, N., “Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route”, Journal of Metals, Materials and Minerals 2008, 18, 15–20.
    • (2008) Journal of Metals, Materials and Minerals , vol.18 , pp. 15-20
    • Monmaturapoj, N.1
  • 50
    • 0343183035 scopus 로고    scopus 로고
    • Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids
    • Tas, A. C., “Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids”, Biomaterials 2000, 21, 1429–1438.
    • (2000) Biomaterials , vol.21 , pp. 1429-1438
    • Tas, A.C.1
  • 52
    • 0036166394 scopus 로고    scopus 로고
    • Properties of osteoconductive biomaterials: Calcium phosphates
    • LeGeros, R. Z., “Properties of osteoconductive biomaterials: Calcium phosphates”, Clinical Orthopaedics and Related Research 2002, 395, 81–98.
    • (2002) Clinical Orthopaedics and Related Research , vol.395 , pp. 81-98
    • LeGeros, R.Z.1
  • 55
    • 0028752886 scopus 로고
    • Preparation of α-and β-tricalcium phosphate ceramics, with and without magnesium addition
    • Famery, R.,; Richard, N.,; Boch, P., “Preparation of α-and β-tricalcium phosphate ceramics, with and without magnesium addition”, Ceramics International 1994, 20, 327–336.
    • (1994) Ceramics International , vol.20 , pp. 327-336
    • Famery, R.1    Richard, N.2    Boch, P.3
  • 56
    • 58849109962 scopus 로고    scopus 로고
    • Obtainment of α-tricalcium phosphate by solution combustion synthesis method using urea as combustible
    • Trans Tech Publ
    • Volkmer, T. M.,; Bastos, L.,; Sousa, V.,; Santos, L., “Obtainment of α-tricalcium phosphate by solution combustion synthesis method using urea as combustible”, In Key Engineering Materials; Trans Tech Publ, 2009, pp. 591–594.
    • (2009) In Key Engineering Materials , pp. 591-594
    • Volkmer, T.M.1    Bastos, L.2    Sousa, V.3    Santos, L.4
  • 58
    • 0035499350 scopus 로고    scopus 로고
    • Stem cells in tissue engineering
    • Bianco, P.,; Robey, P. G., “Stem cells in tissue engineering”, Nature 2001, 414, 118–121.
    • (2001) Nature , vol.414 , pp. 118-121
    • Bianco, P.1    Robey, P.G.2
  • 59
    • 80053414071 scopus 로고    scopus 로고
    • Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration
    • Springer, Berlin
    • Pielichowska, K.,; Blazewicz, S., “Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration”, In Biopolymers; Springer, Berlin, 2010, pp. 97–207.
    • (2010) In Biopolymers , pp. 97-207
    • Pielichowska, K.1    Blazewicz, S.2
  • 60
    • 77953397739 scopus 로고    scopus 로고
    • Biodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering
    • Huang, M.-N.,; Wang, Y.-L.,; Luo, Y.-F., “Biodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering”, Journal of Biomedical Science and Engineering 2009, 2, 36–40.
    • (2009) Journal of Biomedical Science and Engineering , vol.2 , pp. 36-40
    • Huang, M.-N.1    Wang, Y.-L.2    Luo, Y.-F.3
  • 62
    • 84862799085 scopus 로고    scopus 로고
    • Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review
    • Zhou, H.,; Lawrence, J. G.,; Bhaduri, S. B., “Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review”, Acta Biomaterialia 2012, 8, 1999–2016.
    • (2012) Acta Biomaterialia , vol.8 , pp. 1999-2016
    • Zhou, H.1    Lawrence, J.G.2    Bhaduri, S.B.3
  • 64
    • 0037114250 scopus 로고    scopus 로고
    • Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods
    • Koutsopoulos, S., “Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods”, Journal of Biomedical Materials Research 2002, 62, 600–612.
    • (2002) Journal of Biomedical Materials Research , vol.62 , pp. 600-612
    • Koutsopoulos, S.1
  • 65
    • 0032785572 scopus 로고    scopus 로고
    • Bioactive glasses and glass-ceramics
    • Trans Tech Publ
    • Hench, L. L., “Bioactive glasses and glass-ceramics”, In Materials Science Forum; Trans Tech Publ, 1999, pp. 37–64.
    • (1999) In Materials Science Forum , pp. 37-64
    • Hench, L.L.1
  • 66
    • 80052271893 scopus 로고    scopus 로고
    • α-Tricalcium phosphate: synthesis, properties and biomedical applications
    • Carrodeguas, R. G.,; De Aza, S., “α-Tricalcium phosphate: synthesis, properties and biomedical applications”, Acta Biomaterialia 2011, 7, 3536–3546.
    • (2011) Acta Biomaterialia , vol.7 , pp. 3536-3546
    • Carrodeguas, R.G.1    De Aza, S.2
  • 67
    • 77956726321 scopus 로고    scopus 로고
    • Mechanical properties, electronic structure and bonding of α-and β-tricalcium phosphates with surface characterization
    • Liang, L.,; Rulis, P.,; Ching, W., “Mechanical properties, electronic structure and bonding of α-and β-tricalcium phosphates with surface characterization”, Acta Biomaterialia 2010, 6, 3763–3771.
    • (2010) Acta Biomaterialia , vol.6 , pp. 3763-3771
    • Liang, L.1    Rulis, P.2    Ching, W.3
  • 69
    • 0030087951 scopus 로고    scopus 로고
    • Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites
    • Dupraz, A.,; De Wijn, J.,; De Groot, K., “Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites”, Journal of Biomedical Materials Research 1996, 30, 231–238.
    • (1996) Journal of Biomedical Materials Research , vol.30 , pp. 231-238
    • Dupraz, A.1    De Wijn, J.2    De Groot, K.3
  • 70
    • 38349047838 scopus 로고    scopus 로고
    • Surface modification of hydroxyapatite by stearic acid: Characterization and in vitro behaviors
    • Li, Y.,; Weng, W., “Surface modification of hydroxyapatite by stearic acid: Characterization and in vitro behaviors”, Journal of Materials Science: Materials in Medicine 2008, 19, 19–25.
    • (2008) Journal of Materials Science: Materials in Medicine , vol.19 , pp. 19-25
    • Li, Y.1    Weng, W.2
  • 71
    • 0038462112 scopus 로고    scopus 로고
    • Surface modification of hydroxyapatite. Part I. Dodecyl alcohol
    • Borum-Nicholas, L.,; Wilson, O., “Surface modification of hydroxyapatite. Part I. Dodecyl alcohol”, Biomaterials 2003, 24, 3671–3679.
    • (2003) Biomaterials , vol.24 , pp. 3671-3679
    • Borum-Nicholas, L.1    Wilson, O.2
  • 72
    • 33750167966 scopus 로고    scopus 로고
    • Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups
    • Choi, H. W.,; Lee, H. J.,; Kim, K. J.,; Kim, H.-M.,; Lee, S. C., “Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups”, Journal of Colloid and Interface Science 2006, 304, 277–281.
    • (2006) Journal of Colloid and Interface Science , vol.304 , pp. 277-281
    • Choi, H.W.1    Lee, H.J.2    Kim, K.J.3    Kim, H.-M.4    Lee, S.C.5
  • 73
    • 0030248988 scopus 로고    scopus 로고
    • Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable composite
    • Liu, Q.,; De Wijn, J. R.,; Bakker, D.,; Van Blitterswijk, C. A., “Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable composite”, Journal of Materials Science: Materials in Medicine 1996, 7, 551–557.
    • (1996) Journal of Materials Science: Materials in Medicine , vol.7 , pp. 551-557
    • Liu, Q.1    De Wijn, J.R.2    Bakker, D.3    Van Blitterswijk, C.A.4
  • 74
    • 0033060760 scopus 로고    scopus 로고
    • Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite
    • El-Ghannam, A.,; Ducheyne, P.,; Shapiro, I., “Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite”, Journal of Orthopaedic Research 1999, 17, 340–345.
    • (1999) Journal of Orthopaedic Research , vol.17 , pp. 340-345
    • El-Ghannam, A.1    Ducheyne, P.2    Shapiro, I.3
  • 75
    • 39749165289 scopus 로고    scopus 로고
    • Surface modification of nanophase hydroxyapatite with chitosan
    • Wilson, O. C.,; Hull, J. R., “Surface modification of nanophase hydroxyapatite with chitosan”, Materials Science and Engineering: C 2008, 28, 434–437.
    • (2008) Materials Science and Engineering: C , vol.28 , pp. 434-437
    • Wilson, O.C.1    Hull, J.R.2
  • 76
    • 39749118075 scopus 로고    scopus 로고
    • Surface modification of nano-hydroxyapatite with silane agent
    • Liao, J.-G.,; Wang, X.-J.,; Zuo, Y., “Surface modification of nano-hydroxyapatite with silane agent”, Journal of Inorganic Materials-Beijing 2008, 23, 145–149.
    • (2008) Journal of Inorganic Materials-Beijing , vol.23 , pp. 145-149
    • Liao, J.-G.1    Wang, X.-J.2    Zuo, Y.3
  • 78
    • 37449010582 scopus 로고    scopus 로고
    • Effect of silane KH-550 to polypropylene/brucite composite
    • Ma, Z.,; Wang, J.,; Zhang, X., “Effect of silane KH-550 to polypropylene/brucite composite”, Journal of Applied Polymer Science 2008, 107, 1000–1005.
    • (2008) Journal of Applied Polymer Science , vol.107 , pp. 1000-1005
    • Ma, Z.1    Wang, J.2    Zhang, X.3
  • 79
    • 33746109976 scopus 로고    scopus 로고
    • Recent developments in processing and surface modification of hydroxyapatite
    • Norton, J.,; Malik, K.,; Darr, J.,; Rehman, I., “Recent developments in processing and surface modification of hydroxyapatite”, Advances in Applied Ceramics 2006, 105, 113–139.
    • (2006) Advances in Applied Ceramics , vol.105 , pp. 113-139
    • Norton, J.1    Malik, K.2    Darr, J.3    Rehman, I.4
  • 80
    • 34548796573 scopus 로고    scopus 로고
    • Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation
    • Kim, H. W., “Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation”, Journal of Biomedical Materials Research Part A 2007, 83, 169–177.
    • (2007) Journal of Biomedical Materials Research Part A , vol.83 , pp. 169-177
    • Kim, H.W.1
  • 81
    • 75149140395 scopus 로고    scopus 로고
    • Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization
    • Karlinsey, R. L.,; Mackey, A. C.,; Walker, E. R.,; Frederick, K. E., “Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization”, Acta Biomaterialia 2010, 6, 969–978.
    • (2010) Acta Biomaterialia , vol.6 , pp. 969-978
    • Karlinsey, R.L.1    Mackey, A.C.2    Walker, E.R.3    Frederick, K.E.4
  • 82
    • 84892859766 scopus 로고    scopus 로고
    • Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials
    • Fan, R.,; Deng, X.,; Zhou, L.,; Gao, X.,; Fan, M.,; Wang, Y.,; Guo, G., “Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials”, International Journal of Nanomedicine 2014, 9, 615–626.
    • (2014) International Journal of Nanomedicine , vol.9 , pp. 615-626
    • Fan, R.1    Deng, X.2    Zhou, L.3    Gao, X.4    Fan, M.5    Wang, Y.6    Guo, G.7
  • 83
    • 84874039747 scopus 로고    scopus 로고
    • Functionalizing calcium phosphate biomaterials with antibacterial silver particles
    • Lee, J. S.,; Murphy, W. L., “Functionalizing calcium phosphate biomaterials with antibacterial silver particles”, Advanced Materials 2013, 25, 1173–1179.
    • (2013) Advanced Materials , vol.25 , pp. 1173-1179
    • Lee, J.S.1    Murphy, W.L.2
  • 84
    • 79957679446 scopus 로고    scopus 로고
    • Nanoscale hydroxyapatite particles for bone tissue engineering
    • Zhou, H.,; Lee, J., “Nanoscale hydroxyapatite particles for bone tissue engineering”, Acta Biomaterialia 2011, 7, 2769–2781.
    • (2011) Acta Biomaterialia , vol.7 , pp. 2769-2781
    • Zhou, H.1    Lee, J.2
  • 86
    • 84922580497 scopus 로고    scopus 로고
    • The effect of nano-hydroxyapatite toothpaste on enamel surface remineralization. An in vitro study
    • Mielczarek, A.,; Michalik, J., “The effect of nano-hydroxyapatite toothpaste on enamel surface remineralization. An in vitro study”, American Journal of Dentistry 2014, 27, 287–290.
    • (2014) American Journal of Dentistry , vol.27 , pp. 287-290
    • Mielczarek, A.1    Michalik, J.2
  • 87
    • 0034489967 scopus 로고    scopus 로고
    • Hydroxyapatite and their use as coatings in dental implants: A review
    • Ong, J. L.,; Chan, D. C., “Hydroxyapatite and their use as coatings in dental implants: A review”, Critical Reviews™ in Biomedical Engineering 2000, 28, 667–707.
    • (2000) Critical Reviews™ in Biomedical Engineering , vol.28 , pp. 667-707
    • Ong, J.L.1    Chan, D.C.2
  • 88
    • 0035009578 scopus 로고    scopus 로고
    • Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: A comparative study 3 and 8 weeks after implantation in rabbit bone
    • Gauthier, O.,; Goyenvalle, E.,; Bouler, J.-M.,; Guicheux, J.,; Pilet, P.,; Weiss, P.,; Daculsi, G., “Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: A comparative study 3 and 8 weeks after implantation in rabbit bone”, Journal of Materials Science: Materials in Medicine 2001, 12, 385–390.
    • (2001) Journal of Materials Science: Materials in Medicine , vol.12 , pp. 385-390
    • Gauthier, O.1    Goyenvalle, E.2    Bouler, J.-M.3    Guicheux, J.4    Pilet, P.5    Weiss, P.6    Daculsi, G.7
  • 89
    • 84859213766 scopus 로고    scopus 로고
    • Interfacial study between high temperature SiO 2–B 2 O 3–AO–La 2 O 3 (A = Sr, Ba) glass seals and Crofer 22APU for solid oxide fuel cell applications
    • Kaur, G.,; Pandey, O.,; Singh, K., “Interfacial study between high temperature SiO 2–B 2 O 3–AO–La 2 O 3 (A = Sr, Ba) glass seals and Crofer 22APU for solid oxide fuel cell applications”, International Journal of Hydrogen Energy 2012, 37, 6862–6874.
    • (2012) International Journal of Hydrogen Energy , vol.37 , pp. 6862-6874
    • Kaur, G.1    Pandey, O.2    Singh, K.3
  • 91
    • 0026298148 scopus 로고
    • An investigation of bioactive glass powders by sol-gel processing
    • Li, R.,; Clark, A.,; Hench, L., “An investigation of bioactive glass powders by sol-gel processing”, Journal of Applied Biomaterials 1991, 2, 231–239.
    • (1991) Journal of Applied Biomaterials , vol.2 , pp. 231-239
    • Li, R.1    Clark, A.2    Hench, L.3
  • 92
    • 84965000258 scopus 로고    scopus 로고
    • Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications
    • Vichery, C.,; Nedelec, J.-M., “Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications”, Materials 2016, 9, 1–17.
    • (2016) Materials , vol.9 , pp. 1-17
    • Vichery, C.1    Nedelec, J.-M.2
  • 94
    • 0030380048 scopus 로고    scopus 로고
    • In-vitro protein interactions with a bioactive gel-glass
    • Lobel, K.,; Hench, L., “In-vitro protein interactions with a bioactive gel-glass”, Journal of Sol-Gel Science and Technology 1996, 7, 69–76.
    • (1996) Journal of Sol-Gel Science and Technology , vol.7 , pp. 69-76
    • Lobel, K.1    Hench, L.2
  • 96
    • 0032143779 scopus 로고    scopus 로고
    • Biomaterials: A forecast for the future
    • Hench, L. L., “Biomaterials: A forecast for the future”, Biomaterials 1998, 19, 1419–1423.
    • (1998) Biomaterials , vol.19 , pp. 1419-1423
    • Hench, L.L.1
  • 99
    • 0034307345 scopus 로고    scopus 로고
    • Development of soluble glasses for biomedical use Part II: The biological response of human osteoblast cell lines to phosphate-based soluble glasses
    • Salih, V.,; Franks, K.,; James, M.,; Hastings, G.,; Knowles, J.,; Olsen, I., “Development of soluble glasses for biomedical use Part II: The biological response of human osteoblast cell lines to phosphate-based soluble glasses”, Journal of Materials Science: Materials in Medicine 2000, 11, 615–620.
    • (2000) Journal of Materials Science: Materials in Medicine , vol.11 , pp. 615-620
    • Salih, V.1    Franks, K.2    James, M.3    Hastings, G.4    Knowles, J.5    Olsen, I.6
  • 100
    • 0032403767 scopus 로고    scopus 로고
    • Properties and cytotoxicity of water soluble Na 2 O–CaO–P 2 O 5 glasses
    • Uo, M.,; Mizuno, M.,; Kuboki, Y.,; Makishima, A.,; Watari, F., “Properties and cytotoxicity of water soluble Na 2 O–CaO–P 2 O 5 glasses”, Biomaterials 1998, 19, 2277–2284.
    • (1998) Biomaterials , vol.19 , pp. 2277-2284
    • Uo, M.1    Mizuno, M.2    Kuboki, Y.3    Makishima, A.4    Watari, F.5
  • 101
    • 0142165118 scopus 로고    scopus 로고
    • Phosphate glasses for tissue engineering: part 2. Processing and characterisation of a ternary-based P 2 O 5–CaO–Na 2 O glass fibre system
    • Ahmed, I.,; Lewis, M.,; Olsen, I.,; Knowles, J., “Phosphate glasses for tissue engineering: part 2. Processing and characterisation of a ternary-based P 2 O 5–CaO–Na 2 O glass fibre system”, Biomaterials 2004, 25, 501–507.
    • (2004) Biomaterials , vol.25 , pp. 501-507
    • Ahmed, I.1    Lewis, M.2    Olsen, I.3    Knowles, J.4
  • 103
    • 44549087564 scopus 로고    scopus 로고
    • Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly (L-lactide) composites
    • Liu, A.,; Hong, Z.,; Zhuang, X.,; Chen, X.,; Cui, Y.,; Liu, Y.,; Jing, X., “Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly (L-lactide) composites”, Acta Biomaterialia 2008, 4, 1005–1015.
    • (2008) Acta Biomaterialia , vol.4 , pp. 1005-1015
    • Liu, A.1    Hong, Z.2    Zhuang, X.3    Chen, X.4    Cui, Y.5    Liu, Y.6    Jing, X.7
  • 104
    • 20144385811 scopus 로고    scopus 로고
    • Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide
    • Qiu, X.,; Hong, Z.,; Hu, J.,; Chen, L.,; Chen, X.,; Jing, X., “Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide”, Biomacromolecules 2005, 6, 1193–1199.
    • (2005) Biomacromolecules , vol.6 , pp. 1193-1199
    • Qiu, X.1    Hong, Z.2    Hu, J.3    Chen, L.4    Chen, X.5    Jing, X.6
  • 105
    • 70149110845 scopus 로고    scopus 로고
    • Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films
    • Gao, Y.,; Chang, J., “Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films”, Journal of Biomaterials Applications 2008, 119–138.
    • (2008) Journal of Biomaterials Applications , pp. 119-138
    • Gao, Y.1    Chang, J.2
  • 106
    • 0031081151 scopus 로고    scopus 로고
    • Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix
    • El-Ghannam, A.,; Ducheyne, P.,; Shapiro, I., “Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix”, Biomaterials 1997, 18, 295–303.
    • (1997) Biomaterials , vol.18 , pp. 295-303
    • El-Ghannam, A.1    Ducheyne, P.2    Shapiro, I.3
  • 110
    • 33845296893 scopus 로고    scopus 로고
    • Bioactive glasses for nonbearing applications in total joint replacement
    • Elsevier, Amsterdam
    • Rahaman, M. N.,; Brown, R. F.,; Bal, B. S.,; Day, D. E., “Bioactive glasses for nonbearing applications in total joint replacement”, In Seminars in Arthroplasty; Elsevier, Amsterdam, 2006, pp. 102–112.
    • (2006) In Seminars in Arthroplasty , pp. 102-112
    • Rahaman, M.N.1    Brown, R.F.2    Bal, B.S.3    Day, D.E.4
  • 111
    • 0021690284 scopus 로고
    • Surface-active Biomaterials
    • Hench, L. L.,; Wilson, J., “Surface-active Biomaterials”, Science 1984, 226, 630–636.
    • (1984) Science , vol.226 , pp. 630-636
    • Hench, L.L.1    Wilson, J.2
  • 112
    • 84870253740 scopus 로고    scopus 로고
    • Review of bioactive glass: from Hench to hybrids
    • Jones, J. R., “Review of bioactive glass: from Hench to hybrids”, Acta Biomaterialia 2013, 9, 4457–4486.
    • (2013) Acta Biomaterialia , vol.9 , pp. 4457-4486
    • Jones, J.R.1
  • 116
    • 2642580599 scopus 로고    scopus 로고
    • Direct fabrication of composite and ceramic hollow nanofibers by electrospinning
    • Li, D.,; Xia, Y., “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning”, Nano Letters 2004, 4, 933–938.
    • (2004) Nano Letters , vol.4 , pp. 933-938
    • Li, D.1    Xia, Y.2
  • 117
    • 70349994292 scopus 로고    scopus 로고
    • Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application
    • Yang, F.,; Both, S. K.,; Yang, X.,; Walboomers, X. F.,; Jansen, J. A., “Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application”, Acta Biomaterialia 2009, 5, 3295–3304.
    • (2009) Acta Biomaterialia , vol.5 , pp. 3295-3304
    • Yang, F.1    Both, S.K.2    Yang, X.3    Walboomers, X.F.4    Jansen, J.A.5
  • 119
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
    • Hutmacher, D. W.,; Sittinger, M.,; Risbud, M. V., “Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems”, Trends in Biotechnology 2004, 22, 354–362.
    • (2004) Trends in Biotechnology , vol.22 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 121
    • 0036191695 scopus 로고    scopus 로고
    • The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
    • Yang, S.,; Leong, K.-F.,; Du, Z.,; Chua, C.-K., “The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques”, Tissue Engineering 2002, 8, 1–11.
    • (2002) Tissue Engineering , vol.8 , pp. 1-11
    • Yang, S.1    Leong, K.-F.2    Du, Z.3    Chua, C.-K.4
  • 122
    • 21444443609 scopus 로고    scopus 로고
    • Selective laser sintering of biocompatible polymers for applications in tissue engineering
    • Tan, K.,; Chua, C.,; Leong, K.,; Cheah, C.,; Gui, W.,; Tan, W.,; Wiria, F., “Selective laser sintering of biocompatible polymers for applications in tissue engineering”, Biomedical Materials and Engineering 2005, 15, 113–124.
    • (2005) Biomedical Materials and Engineering , vol.15 , pp. 113-124
    • Tan, K.1    Chua, C.2    Leong, K.3    Cheah, C.4    Gui, W.5    Tan, W.6    Wiria, F.7
  • 123
    • 0032212853 scopus 로고    scopus 로고
    • Hydroxyapatite fiber reinforced poly (α-hydroxy ester) foams for bone regeneration
    • Thomson, R. C.,; Yaszemski, M. J.,; Powers, J. M.,; Mikos, A. G., “Hydroxyapatite fiber reinforced poly (α-hydroxy ester) foams for bone regeneration”, Biomaterials 1998, 19, 1935–1943.
    • (1998) Biomaterials , vol.19 , pp. 1935-1943
    • Thomson, R.C.1    Yaszemski, M.J.2    Powers, J.M.3    Mikos, A.G.4
  • 125
    • 78651563594 scopus 로고    scopus 로고
    • Preparation of polyoxymethylene/hydroxyapatite nanocomposites by melt processing
    • Pielichowska, K., “Preparation of polyoxymethylene/hydroxyapatite nanocomposites by melt processing”, International Journal of Material Forming 2008, 1, 941–944.
    • (2008) International Journal of Material Forming , vol.1 , pp. 941-944
    • Pielichowska, K.1
  • 126
    • 0029253379 scopus 로고
    • A novel method to fabricate bioabsorbable scaffolds
    • Whang, K.,; Thomas, C.,; Healy, K.,; Nuber, G., “A novel method to fabricate bioabsorbable scaffolds”, Polymer 1995, 36, 837–842.
    • (1995) Polymer , vol.36 , pp. 837-842
    • Whang, K.1    Thomas, C.2    Healy, K.3    Nuber, G.4
  • 128
    • 0002969423 scopus 로고    scopus 로고
    • Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation
    • Nam, Y. S.,; Park, T. G., “Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation”, Journal of Biomedical Materials Research 1999, 47, 8–17.
    • (1999) Journal of Biomedical Materials Research , vol.47 , pp. 8-17
    • Nam, Y.S.1    Park, T.G.2
  • 130
    • 84875212234 scopus 로고    scopus 로고
    • Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite
    • Jaiswal, A.,; Chhabra, H.,; Soni, V.,; Bellare, J., “Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite”, Materials Science and Engineering: C 2013, 33, 2376–2385.
    • (2013) Materials Science and Engineering: C , vol.33 , pp. 2376-2385
    • Jaiswal, A.1    Chhabra, H.2    Soni, V.3    Bellare, J.4
  • 131
    • 77952728005 scopus 로고    scopus 로고
    • Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells
    • Chuenjitkuntaworn, B.,; Inrung, W.,; Damrongsri, D.,; Mekaapiruk, K.,; Supaphol, P.,; Pavasant, P., “Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells”, Journal of Biomedical Materials Research Part A 2010, 94, 241–251.
    • (2010) Journal of Biomedical Materials Research Part A , vol.94 , pp. 241-251
    • Chuenjitkuntaworn, B.1    Inrung, W.2    Damrongsri, D.3    Mekaapiruk, K.4    Supaphol, P.5    Pavasant, P.6
  • 132
    • 80053970001 scopus 로고    scopus 로고
    • The effect of fluorine content on the mechanical properties of poly (ϵ-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone-tissue engineering
    • Johari, N.,; Fathi, M. H.,; Golozar, M. A., “The effect of fluorine content on the mechanical properties of poly (ϵ-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone-tissue engineering”, Ceramics International 2011, 37, 3247–3251.
    • (2011) Ceramics International , vol.37 , pp. 3247-3251
    • Johari, N.1    Fathi, M.H.2    Golozar, M.A.3
  • 133
    • 33645923398 scopus 로고    scopus 로고
    • Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy
    • Verma, D.,; Katti, K.,; Katti, D., “Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy”, Journal of Biomedical Materials Research Part A 2006, 77, 59–66.
    • (2006) Journal of Biomedical Materials Research Part A , vol.77 , pp. 59-66
    • Verma, D.1    Katti, K.2    Katti, D.3
  • 134
    • 0034332587 scopus 로고    scopus 로고
    • A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings
    • Huang, L.-Y.,; Xu, K.-W.,; Lu, J., “A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings”, Journal of Materials Science: Materials in Medicine 2000, 11, 667–673.
    • (2000) Journal of Materials Science: Materials in Medicine , vol.11 , pp. 667-673
    • Huang, L.-Y.1    Xu, K.-W.2    Lu, J.3
  • 136
    • 84869094330 scopus 로고    scopus 로고
    • In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol–gel process
    • Rezaei, A.,; Mohammadi, M., “In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol–gel process”, Materials Science and Engineering: C 2013, 33, 390–396.
    • (2013) Materials Science and Engineering: C , vol.33 , pp. 390-396
    • Rezaei, A.1    Mohammadi, M.2
  • 137
    • 84881462970 scopus 로고    scopus 로고
    • Polycaprolactone scaffolds and hydroxyapatite/polycaprolactone composite scaffolds for bone tissue engineering
    • Sultana, N.,; Hayat Khan, T., “Polycaprolactone scaffolds and hydroxyapatite/polycaprolactone composite scaffolds for bone tissue engineering”, Journal of Bionanoscience 2013, 7, 169–173.
    • (2013) Journal of Bionanoscience , vol.7 , pp. 169-173
    • Sultana, N.1    Hayat Khan, T.2
  • 138
    • 47949116309 scopus 로고    scopus 로고
    • Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching
    • Yang, Y.,; Zhao, J.,; Zhao, Y.,; Wen, L.,; Yuan, X.,; Fan, Y., “Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching”, Journal of Applied Polymer Science 2008, 109, 1232–1241.
    • (2008) Journal of Applied Polymer Science , vol.109 , pp. 1232-1241
    • Yang, Y.1    Zhao, J.2    Zhao, Y.3    Wen, L.4    Yuan, X.5    Fan, Y.6
  • 139
    • 34447325926 scopus 로고    scopus 로고
    • Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix
    • Nichols, H. L.,; Zhang, N.,; Zhang, J.,; Shi, D.,; Bhaduri, S.,; Wen, X., “Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix”, Journal of Biomedical Materials Research Part A 2007, 82, 373–382.
    • (2007) Journal of Biomedical Materials Research Part A , vol.82 , pp. 373-382
    • Nichols, H.L.1    Zhang, N.2    Zhang, J.3    Shi, D.4    Bhaduri, S.5    Wen, X.6
  • 140
    • 8544281701 scopus 로고    scopus 로고
    • Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene
    • Gong, X.-H.,; Tang, C.-Y.,; Hu, H.-C.,; Zhou, X.-P.,; Xie, X.-L., “Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene”, Journal of Materials Science: Materials in Medicine 2004, 15, 1141–1146.
    • (2004) Journal of Materials Science: Materials in Medicine , vol.15 , pp. 1141-1146
    • Gong, X.-H.1    Tang, C.-Y.2    Hu, H.-C.3    Zhou, X.-P.4    Xie, X.-L.5
  • 142
    • 77953325379 scopus 로고    scopus 로고
    • Improved mechanical properties of hydroxyapatite/poly (ϵ-caprolactone) scaffolds by surface modification of hydroxyapatite
    • Wang, Y.,; Dai, J.,; Zhang, Q.,; Xiao, Y.,; Lang, M., “Improved mechanical properties of hydroxyapatite/poly (ϵ-caprolactone) scaffolds by surface modification of hydroxyapatite”, Applied Surface Science 2010, 256, 6107–6112.
    • (2010) Applied Surface Science , vol.256 , pp. 6107-6112
    • Wang, Y.1    Dai, J.2    Zhang, Q.3    Xiao, Y.4    Lang, M.5
  • 144
    • 33750504655 scopus 로고    scopus 로고
    • Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites
    • Lee, H. J.,; Choi, H. W.,; Kim, K. J.,; Lee, S. C., “Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites”, Chemistry of Materials 2006, 18, 5111–5118.
    • (2006) Chemistry of Materials , vol.18 , pp. 5111-5118
    • Lee, H.J.1    Choi, H.W.2    Kim, K.J.3    Lee, S.C.4
  • 145
    • 34247508561 scopus 로고    scopus 로고
    • The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly (ϵ-caprolactone)/hydroxyapatite nanocomposites
    • Lee, H. J.,; Kim, S. E.,; Choi, H. W.,; Kim, C. W.,; Kim, K. J.,; Lee, S. C., “The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly (ϵ-caprolactone)/hydroxyapatite nanocomposites”, European Polymer Journal 2007, 43, 1602–1608.
    • (2007) European Polymer Journal , vol.43 , pp. 1602-1608
    • Lee, H.J.1    Kim, S.E.2    Choi, H.W.3    Kim, C.W.4    Kim, K.J.5    Lee, S.C.6
  • 146
    • 84941944801 scopus 로고    scopus 로고
    • Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro
    • Shor, L.,; Güçeri, S.,; Wen, X.,; Gandhi, M.,; Sun, W., “Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro”, Biomaterials 2007, 28, 5291–5297.
    • (2007) Biomaterials , vol.28 , pp. 5291-5297
    • Shor, L.1    Güçeri, S.2    Wen, X.3    Gandhi, M.4    Sun, W.5
  • 147
    • 66249089054 scopus 로고    scopus 로고
    • In vitro and animal study of novel nano-hydroxyapatite/poly (ϵ-caprolactone) composite scaffolds fabricated by layer manufacturing process
    • Heo, S.-J.,; Kim, S.-E.,; Wei, J.,; Kim, D. H.,; Hyun, Y.-T.,; Yun, H.-S.,; Kim, H. K.,; Yoon, T. R.,; Kim, S.-H.,; Park, S.-A., “In vitro and animal study of novel nano-hydroxyapatite/poly (ϵ-caprolactone) composite scaffolds fabricated by layer manufacturing process”, Tissue Engineering Part A 2008, 15, 977–989.
    • (2008) Tissue Engineering Part A , vol.15 , pp. 977-989
    • Heo, S.-J.1    Kim, S.-E.2    Wei, J.3    Kim, D.H.4    Hyun, Y.-T.5    Yun, H.-S.6    Kim, H.K.7    Yoon, T.R.8    Kim, S.-H.9    Park, S.-A.10
  • 148
    • 62249156226 scopus 로고    scopus 로고
    • Fabrication and characterization of novel nano-and micro-HA/PCL composite scaffolds using a modified rapid prototyping process
    • Heo, S. J.,; Kim, S. E.,; Wei, J.,; Hyun, Y. T.,; Yun, H. S.,; Kim, D. H.,; Shin, J. W.,; Shin, J. W., “Fabrication and characterization of novel nano-and micro-HA/PCL composite scaffolds using a modified rapid prototyping process”, Journal of Biomedical Materials Research Part A 2009, 89, 108–116.
    • (2009) Journal of Biomedical Materials Research Part A , vol.89 , pp. 108-116
    • Heo, S.J.1    Kim, S.E.2    Wei, J.3    Hyun, Y.T.4    Yun, H.S.5    Kim, D.H.6    Shin, J.W.7    Shin, J.W.8
  • 149
    • 0345256537 scopus 로고    scopus 로고
    • Hydroxyapatite/poly (ϵ-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery
    • Kim, H.-W.,; Knowles, J. C.,; Kim, H.-E., “Hydroxyapatite/poly (ϵ-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery”, Biomaterials 2004, 25, 1279–1287.
    • (2004) Biomaterials , vol.25 , pp. 1279-1287
    • Kim, H.-W.1    Knowles, J.C.2    Kim, H.-E.3
  • 150
    • 77950595308 scopus 로고    scopus 로고
    • The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds
    • Zhao, J.,; Duan, K.,; Zhang, J.,; Lu, X.,; Weng, J., “The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds”, Applied Surface Science 2010, 256, 4586–4590.
    • (2010) Applied Surface Science , vol.256 , pp. 4586-4590
    • Zhao, J.1    Duan, K.2    Zhang, J.3    Lu, X.4    Weng, J.5
  • 151
    • 30544447793 scopus 로고    scopus 로고
    • Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles
    • Wutticharoenmongkol, P.,; Sanchavanakit, N.,; Pavasant, P.,; Supaphol, P., “Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles”, Macromolecular Bioscience 2006, 6, 70–77.
    • (2006) Macromolecular Bioscience , vol.6 , pp. 70-77
    • Wutticharoenmongkol, P.1    Sanchavanakit, N.2    Pavasant, P.3    Supaphol, P.4
  • 153
    • 34548257397 scopus 로고    scopus 로고
    • Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles
    • Wutticharoenmongkol, P.,; Pavasant, P.,; Supaphol, P., “Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles”, Biomacromolecules 2007, 8, 2602–2610.
    • (2007) Biomacromolecules , vol.8 , pp. 2602-2610
    • Wutticharoenmongkol, P.1    Pavasant, P.2    Supaphol, P.3
  • 154
    • 33947526994 scopus 로고    scopus 로고
    • Biocomposite nanofibres and osteoblasts for bone tissue engineering
    • Venugopal, J.,; Vadgama, P.,; Kumar, T. S.,; Ramakrishna, S., “Biocomposite nanofibres and osteoblasts for bone tissue engineering”, Nanotechnology 2007, 18, 055101.
    • (2007) Nanotechnology , vol.18 , pp. 55101
    • Venugopal, J.1    Vadgama, P.2    Kumar, T.S.3    Ramakrishna, S.4
  • 156
    • 74749101498 scopus 로고    scopus 로고
    • A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent
    • Ashokan, A.,; Menon, D.,; Nair, S.,; Koyakutty, M., “A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent”, Biomaterials 2010, 31, 2606–2616.
    • (2010) Biomaterials , vol.31 , pp. 2606-2616
    • Ashokan, A.1    Menon, D.2    Nair, S.3    Koyakutty, M.4
  • 157
    • 84911915610 scopus 로고    scopus 로고
    • MR functional nano-hydroxyapatite incorporated PCL composite scaffolds for in situ monitoring of bone tissue regeneration by MRI
    • Ganesh, N.,; Ashokan, A.,; Rajeshkannan, R.,; Chennazhi, K.,; Koyakutty, M.,; Nair, S., “MR functional nano-hydroxyapatite incorporated PCL composite scaffolds for in situ monitoring of bone tissue regeneration by MRI”, Tissue Eng Part A 2014, 20, 2783–2794.
    • (2014) Tissue Eng Part A , vol.20 , pp. 2783-2794
    • Ganesh, N.1    Ashokan, A.2    Rajeshkannan, R.3    Chennazhi, K.4    Koyakutty, M.5    Nair, S.6
  • 159
    • 0033527926 scopus 로고    scopus 로고
    • In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering
    • Marra, K. G.,; Szem, J. W.,; Kumta, P. N.,; DiMilla, P. A.,; Weiss, L. E., “In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering”, Journal of Biomedical Materials Research 1999, 47, 324–335.
    • (1999) Journal of Biomedical Materials Research , vol.47 , pp. 324-335
    • Marra, K.G.1    Szem, J.W.2    Kumta, P.N.3    DiMilla, P.A.4    Weiss, L.E.5
  • 160
    • 77956909529 scopus 로고    scopus 로고
    • Hybrid composite scaffolds prepared by sol–gel method for bone regeneration
    • Raucci, M. G.,; Guarino, V.,; Ambrosio, L., “Hybrid composite scaffolds prepared by sol–gel method for bone regeneration”, Composites Science and Technology 2010, 70, 1861–1868.
    • (2010) Composites Science and Technology , vol.70 , pp. 1861-1868
    • Raucci, M.G.1    Guarino, V.2    Ambrosio, L.3
  • 163
    • 13444311912 scopus 로고    scopus 로고
    • Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity
    • Kim, H.-W.,; Lee, E.-J.,; Kim, H.-E.,; Salih, V.,; Knowles, J. C., “Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity”, Biomaterials 2005, 26, 4395–4404.
    • (2005) Biomaterials , vol.26 , pp. 4395-4404
    • Kim, H.-W.1    Lee, E.-J.2    Kim, H.-E.3    Salih, V.4    Knowles, J.C.5
  • 164
    • 33750618845 scopus 로고    scopus 로고
    • Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering
    • Choong, C. S.,; Hutmacher, D. W.,; Triffitt, J. T., “Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering”, Tissue Engineering 2006, 12, 2521–2531.
    • (2006) Tissue Engineering , vol.12 , pp. 2521-2531
    • Choong, C.S.1    Hutmacher, D.W.2    Triffitt, J.T.3
  • 166
    • 3242700527 scopus 로고    scopus 로고
    • Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds
    • Sachlos, E.,; Czernuszka, J., “Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds”, Eur Cell Mater 2003, 5, 39–40.
    • (2003) Eur Cell Mater , vol.5 , pp. 39-40
    • Sachlos, E.1    Czernuszka, J.2
  • 167
    • 33751346057 scopus 로고    scopus 로고
    • Poly-ϵ-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
    • Wiria, F.,; Leong, K.,; Chua, C.,; Liu, Y., “Poly-ϵ-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering”, Acta Biomaterialia 2007, 3, 1–12.
    • (2007) Acta Biomaterialia , vol.3 , pp. 1-12
    • Wiria, F.1    Leong, K.2    Chua, C.3    Liu, Y.4
  • 168
    • 77955868224 scopus 로고    scopus 로고
    • Selective laser sintering of hydroxyapatite/poly-ϵ-caprolactone scaffolds
    • Eosoly, S.,; Brabazon, D.,; Lohfeld, S.,; Looney, L., “Selective laser sintering of hydroxyapatite/poly-ϵ-caprolactone scaffolds”, Acta Biomaterialia 2010, 6, 2511–2517.
    • (2010) Acta Biomaterialia , vol.6 , pp. 2511-2517
    • Eosoly, S.1    Brabazon, D.2    Lohfeld, S.3    Looney, L.4
  • 169
    • 84866007931 scopus 로고    scopus 로고
    • Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS)
    • Eosoly, S.,; Vrana, N. E.,; Lohfeld, S.,; Hindie, M.,; Looney, L., “Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS)”, Materials Science and Engineering: C 2012, 32, 2250–2257.
    • (2012) Materials Science and Engineering: C , vol.32 , pp. 2250-2257
    • Eosoly, S.1    Vrana, N.E.2    Lohfeld, S.3    Hindie, M.4    Looney, L.5
  • 171
    • 15244354813 scopus 로고    scopus 로고
    • Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release
    • Kim, H.-W.,; Knowles, J. C.,; Kim, H.-E., “Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release”, Journal of Materials Science: Materials in Medicine 2005, 16, 189–195.
    • (2005) Journal of Materials Science: Materials in Medicine , vol.16 , pp. 189-195
    • Kim, H.-W.1    Knowles, J.C.2    Kim, H.-E.3
  • 172
    • 73449086624 scopus 로고    scopus 로고
    • Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro
    • Wang, Y.,; Liu, L.,; Guo, S., “Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro”, Polymer Degradation and Stability 2010, 95, 207–213.
    • (2010) Polymer Degradation and Stability , vol.95 , pp. 207-213
    • Wang, Y.1    Liu, L.2    Guo, S.3
  • 173
    • 84858158840 scopus 로고    scopus 로고
    • Fabrication, characterization and evaluation of the mechanical properties of poly (ϵ-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone tissue engineering
    • Johari, N.,; Fathi, M.,; Golozar, M., “Fabrication, characterization and evaluation of the mechanical properties of poly (ϵ-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone tissue engineering”, Composites Part B: Engineering 2012, 43, 1671–1675.
    • (2012) Composites Part B: Engineering , vol.43 , pp. 1671-1675
    • Johari, N.1    Fathi, M.2    Golozar, M.3
  • 174
    • 23044440198 scopus 로고    scopus 로고
    • Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering
    • Pereira, M. M.,; Jones, J. R.,; Hench, L. L., “Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering”, Advances in Applied Ceramics 2013, 104, 35–42.
    • (2013) Advances in Applied Ceramics , vol.104 , pp. 35-42
    • Pereira, M.M.1    Jones, J.R.2    Hench, L.L.3
  • 175
    • 85019341067 scopus 로고    scopus 로고
    • Evaluate of different bioactive glass on mechanical properties of nanocomposites prepared using electrospinning method
    • Otadi, M.,; Mohebbi-Kalhori, D., “Evaluate of different bioactive glass on mechanical properties of nanocomposites prepared using electrospinning method”, Procedia Materials Science 2015, 11, 196–201.
    • (2015) Procedia Materials Science , vol.11 , pp. 196-201
    • Otadi, M.1    Mohebbi-Kalhori, D.2
  • 176
    • 80052129827 scopus 로고    scopus 로고
    • Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites
    • Tamjid, E.,; Bagheri, R.,; Vossoughi, M.,; Simchi, A., “Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites”, Materials Science and Engineering: C 2011, 31, 1526–1533.
    • (2011) Materials Science and Engineering: C , vol.31 , pp. 1526-1533
    • Tamjid, E.1    Bagheri, R.2    Vossoughi, M.3    Simchi, A.4
  • 178
    • 84907856085 scopus 로고    scopus 로고
    • In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites
    • Ji, L.,; Wang, W.,; Jin, D.,; Zhou, S.,; Song, X., “In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites”, Materials Science and Engineering: C 2015, 46, 1–9.
    • (2015) Materials Science and Engineering: C , vol.46 , pp. 1-9
    • Ji, L.1    Wang, W.2    Jin, D.3    Zhou, S.4    Song, X.5
  • 179
    • 0030419193 scopus 로고    scopus 로고
    • Interfacial bond hydrolytic stability of calcium phosphate fibers with polycaprolactone polymer
    • Foy, K.,; Riddle, D.,; Schutte, H.,; Latour Jr, R. A., “Interfacial bond hydrolytic stability of calcium phosphate fibers with polycaprolactone polymer”, Soc for Biomaterials 1996, 930–940.
    • (1996) Soc for Biomaterials , pp. 930-940
    • Foy, K.1    Riddle, D.2    Schutte, H.3    Latour, R.A.4
  • 180
    • 0032706447 scopus 로고    scopus 로고
    • Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers
    • Rinehart, J. D.,; Taylor, T.,; Tian, Y.,; Latour, R., “Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers”, Journal of Biomedical Materials Research 1999, 48, 833–840.
    • (1999) Journal of Biomedical Materials Research , vol.48 , pp. 833-840
    • Rinehart, J.D.1    Taylor, T.2    Tian, Y.3    Latour, R.4
  • 181
    • 10044224733 scopus 로고    scopus 로고
    • Preparation of poly (ϵ-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant
    • Jiang, G.,; Evans, M.,; Jones, I.,; Rudd, C.,; Scotchford, C.,; Walker, G., “Preparation of poly (ϵ-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant”, Biomaterials 2005, 26, 2281–2288.
    • (2005) Biomaterials , vol.26 , pp. 2281-2288
    • Jiang, G.1    Evans, M.2    Jones, I.3    Rudd, C.4    Scotchford, C.5    Walker, G.6
  • 184
    • 84889027231 scopus 로고    scopus 로고
    • Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration
    • Poh, P. S.,; Hutmacher, D. W.,; Stevens, M. M.,; Woodruff, M. A., “Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration”, Biofabrication 2013, 5, 045005.
    • (2013) Biofabrication , vol.5 , pp. 45005
    • Poh, P.S.1    Hutmacher, D.W.2    Stevens, M.M.3    Woodruff, M.A.4
  • 185
    • 78650683876 scopus 로고    scopus 로고
    • Bioactive glass–poly (ϵ-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks
    • Yun, H.-S.,; Kim, S.-E.,; Park, E. K., “Bioactive glass–poly (ϵ-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks”, Materials Science and Engineering: C 2011, 31, 198–205.
    • (2011) Materials Science and Engineering: C , vol.31 , pp. 198-205
    • Yun, H.-S.1    Kim, S.-E.2    Park, E.K.3
  • 186
    • 34548481304 scopus 로고    scopus 로고
    • Porous hydroxyapatite scaffolds coated with bioactive apatite–wollastonite glass–ceramics
    • Jun, I. K.,; Song, J. H.,; Choi, W. Y.,; Koh, Y. H.,; Kim, H. E.,; Kim, H. W., “Porous hydroxyapatite scaffolds coated with bioactive apatite–wollastonite glass–ceramics”, Journal of the American Ceramic Society 2007, 90, 2703–2708.
    • (2007) Journal of the American Ceramic Society , vol.90 , pp. 2703-2708
    • Jun, I.K.1    Song, J.H.2    Choi, W.Y.3    Koh, Y.H.4    Kim, H.E.5    Kim, H.W.6
  • 187
    • 43949102376 scopus 로고    scopus 로고
    • Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement
    • Esfahani, S. R.,; Tavangarian, F.,; Emadi, R., “Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement”, Materials Letters 2008, 62, 3428–3430.
    • (2008) Materials Letters , vol.62 , pp. 3428-3430
    • Esfahani, S.R.1    Tavangarian, F.2    Emadi, R.3
  • 188
    • 38949201618 scopus 로고    scopus 로고
    • Improvement of mechanical and biological properties of porous CaSiO 3 scaffolds by poly (d, l-lactic acid) modification
    • Wu, C.,; Ramaswamy, Y.,; Boughton, P.,; Zreiqat, H., “Improvement of mechanical and biological properties of porous CaSiO 3 scaffolds by poly (d, l-lactic acid) modification”, Acta Biomaterialia 2008, 4, 343–353.
    • (2008) Acta Biomaterialia , vol.4 , pp. 343-353
    • Wu, C.1    Ramaswamy, Y.2    Boughton, P.3    Zreiqat, H.4
  • 189
    • 41549155901 scopus 로고    scopus 로고
    • Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid)
    • Miao, X.,; Tan, D. M.,; Li, J.,; Xiao, Y.,; Crawford, R., “Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid)”, Acta Biomaterialia 2008, 4, 638–645.
    • (2008) Acta Biomaterialia , vol.4 , pp. 638-645
    • Miao, X.1    Tan, D.M.2    Li, J.3    Xiao, Y.4    Crawford, R.5
  • 190
    • 77953028358 scopus 로고    scopus 로고
    • The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites
    • Roohani-Esfahani, S.-I.,; Nouri-Khorasani, S.,; Lu, Z.,; Appleyard, R.,; Zreiqat, H., “The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites”, Biomaterials 2010, 31, 5498–5509.
    • (2010) Biomaterials , vol.31 , pp. 5498-5509
    • Roohani-Esfahani, S.-I.1    Nouri-Khorasani, S.2    Lu, Z.3    Appleyard, R.4    Zreiqat, H.5
  • 191
    • 79251644177 scopus 로고    scopus 로고
    • Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds
    • Roohani-Esfahani, S.,; Nouri-Khorasani, S.,; Lu, Z.,; Appleyard, R.,; Zreiqat, H., “Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds”, Acta Biomaterialia 2011, 7, 1307–1318.
    • (2011) Acta Biomaterialia , vol.7 , pp. 1307-1318
    • Roohani-Esfahani, S.1    Nouri-Khorasani, S.2    Lu, Z.3    Appleyard, R.4    Zreiqat, H.5
  • 192
    • 84884975848 scopus 로고    scopus 로고
    • Stiffness improvement of 45S5 bioglass®-based scaffolds through natural and synthetic biopolymer coatings: An ultrasonic study
    • Hum, J.,; Luczynski, K.,; Nooeaid, P.,; Newby, P.,; Lahayne, O.,; Hellmich, C.,; Boccaccini, A., “Stiffness improvement of 45S5 bioglass®-based scaffolds through natural and synthetic biopolymer coatings: An ultrasonic study”, Strain 2013, 49, 431–439.
    • (2013) Strain , vol.49 , pp. 431-439
    • Hum, J.1    Luczynski, K.2    Nooeaid, P.3    Newby, P.4    Lahayne, O.5    Hellmich, C.6    Boccaccini, A.7
  • 193
    • 33747588506 scopus 로고    scopus 로고
    • Production and potential of bioactive glass nanofibers as a next-generation biomaterial
    • Kim, H. W.,; Kim, H. E.,; Knowles, J. C., “Production and potential of bioactive glass nanofibers as a next-generation biomaterial”, Advanced Functional Materials 2006, 16, 1529–1535.
    • (2006) Advanced Functional Materials , vol.16 , pp. 1529-1535
    • Kim, H.W.1    Kim, H.E.2    Knowles, J.C.3
  • 194
    • 41549135535 scopus 로고    scopus 로고
    • Bioactivity improvement of poly (ϵ-caprolactone) membrane with the addition of nanofibrous bioactive glass
    • Lee, H.-H.,; Yu, H.-S.,; Jang, J.-H.,; Kim, H.-W., “Bioactivity improvement of poly (ϵ-caprolactone) membrane with the addition of nanofibrous bioactive glass”, Acta Biomaterialia 2008, 4, 622–629.
    • (2008) Acta Biomaterialia , vol.4 , pp. 622-629
    • Lee, H.-H.1    Yu, H.-S.2    Jang, J.-H.3    Kim, H.-W.4
  • 196
    • 84871345342 scopus 로고    scopus 로고
    • Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering
    • Lin, H.-M.,; Lin, Y.-H.,; Hsu, F.-Y., “Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering”, Journal of Materials Science: Materials in Medicine 2012, 23, 2619–2630.
    • (2012) Journal of Materials Science: Materials in Medicine , vol.23 , pp. 2619-2630
    • Lin, H.-M.1    Lin, Y.-H.2    Hsu, F.-Y.3
  • 199
    • 4344622321 scopus 로고    scopus 로고
    • Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly (ε-caprolactone) composite membranes
    • Kim, H. W.,; Knowles, J. C.,; Kim, H. E., “Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly (ε-caprolactone) composite membranes”, Journal of Biomedical Materials Research Part A 2004, 70, 467–479.
    • (2004) Journal of Biomedical Materials Research Part A , vol.70 , pp. 467-479
    • Kim, H.W.1    Knowles, J.C.2    Kim, H.E.3
  • 200
    • 84858279158 scopus 로고    scopus 로고
    • Poly (l-lactide-co-Є caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds
    • Mondal, T.,; Sunny, M.,; Khastgir, D.,; Varma, H.,; Ramesh, P., “Poly (l-lactide-co-Є caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds”, Materials Science and Engineering: C 2012, 32, 697–706.
    • (2012) Materials Science and Engineering: C , vol.32 , pp. 697-706
    • Mondal, T.1    Sunny, M.2    Khastgir, D.3    Varma, H.4    Ramesh, P.5
  • 203
    • 77950458181 scopus 로고    scopus 로고
    • Production of Bioglass® 45S5–Polycaprolactone composite scaffolds via salt-leaching
    • Cannillo, V.,; Chiellini, F.,; Fabbri, P.,; Sola, A., “Production of Bioglass® 45S5–Polycaprolactone composite scaffolds via salt-leaching”, Composite Structures 2010, 92, 1823–1832.
    • (2010) Composite Structures , vol.92 , pp. 1823-1832
    • Cannillo, V.1    Chiellini, F.2    Fabbri, P.3    Sola, A.4
  • 205
    • 36949016248 scopus 로고    scopus 로고
    • A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior
    • Li, X.,; Shi, J.,; Dong, X.,; Zhang, L.,; Zeng, H., “A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior”, Journal of Biomedical Materials Research Part A 2008, 84, 84–91.
    • (2008) Journal of Biomedical Materials Research Part A , vol.84 , pp. 84-91
    • Li, X.1    Shi, J.2    Dong, X.3    Zhang, L.4    Zeng, H.5
  • 206
    • 77953651502 scopus 로고    scopus 로고
    • A review on stereolithography and its applications in biomedical engineering
    • Melchels, F. P.,; Feijen, J.,; Grijpma, D. W., “A review on stereolithography and its applications in biomedical engineering”, Biomaterials 2010, 31, 6121–6130.
    • (2010) Biomaterials , vol.31 , pp. 6121-6130
    • Melchels, F.P.1    Feijen, J.2    Grijpma, D.W.3
  • 207
    • 84870220913 scopus 로고    scopus 로고
    • Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly (ϵ-caprolactone) by stereolithography
    • Elomaa, L.,; Kokkari, A.,; Närhi, T.,; Seppälä, J. V., “Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly (ϵ-caprolactone) by stereolithography”, Composites Science and Technology 2013, 74, 99–106.
    • (2013) Composites Science and Technology , vol.74 , pp. 99-106
    • Elomaa, L.1    Kokkari, A.2    Närhi, T.3    Seppälä, J.V.4
  • 208
    • 77954977695 scopus 로고    scopus 로고
    • Development of robotic dispensed bioactive scaffolds and human adipose–derived stem cell culturing for bone tissue engineering
    • Oh, C.-H.,; Hong, S.-J.,; Jeong, I.,; Yu, H.-S.,; Jegal, S.-H.,; Kim, H.-W., “Development of robotic dispensed bioactive scaffolds and human adipose–derived stem cell culturing for bone tissue engineering”, Tissue Engineering Part C: Methods 2009, 16, 561–571.
    • (2009) Tissue Engineering Part C: Methods , vol.16 , pp. 561-571
    • Oh, C.-H.1    Hong, S.-J.2    Jeong, I.3    Yu, H.-S.4    Jegal, S.-H.5    Kim, H.-W.6
  • 209
    • 78650251420 scopus 로고    scopus 로고
    • Synthesis and electrospinning of ϵ-polycaprolactone-bioactive glass hybrid Biomaterials via a sol-gel process
    • Allo, B. A.,; Rizkalla, A. S.,; Mequanint, K., “Synthesis and electrospinning of ϵ-polycaprolactone-bioactive glass hybrid Biomaterials via a sol-gel process”, Langmuir 2010, 26, 18340–18348.
    • (2010) Langmuir , vol.26 , pp. 18340-18348
    • Allo, B.A.1    Rizkalla, A.S.2    Mequanint, K.3
  • 211
    • 84892372325 scopus 로고    scopus 로고
    • Ectopic bone formation in and soft-tissue response to P (CL/DLLA)/bioactive glass composite scaffolds
    • Meretoja, V. V.,; Tirri, T.,; Malin, M.,; Seppälä, J. V.,; Närhi, T. O., “Ectopic bone formation in and soft-tissue response to P (CL/DLLA)/bioactive glass composite scaffolds”, Clinical Oral Implants Research 2014, 25, 159–164.
    • (2014) Clinical Oral Implants Research , vol.25 , pp. 159-164
    • Meretoja, V.V.1    Tirri, T.2    Malin, M.3    Seppälä, J.V.4    Närhi, T.O.5
  • 212
    • 74949114156 scopus 로고    scopus 로고
    • In vitro and in vivo evaluation of the effects of demineralized bone matrix or calcium sulfate addition to polycaprolactone–bioglass composites
    • Erdemli, O.,; Captug, O.,; Bilgili, H.,; Orhan, D.,; Tezcaner, A.,; Keskin, D., “In vitro and in vivo evaluation of the effects of demineralized bone matrix or calcium sulfate addition to polycaprolactone–bioglass composites”, Journal of Materials Science: Materials in Medicine 2010, 21, 295–308.
    • (2010) Journal of Materials Science: Materials in Medicine , vol.21 , pp. 295-308
    • Erdemli, O.1    Captug, O.2    Bilgili, H.3    Orhan, D.4    Tezcaner, A.5    Keskin, D.6
  • 213
    • 0142042550 scopus 로고    scopus 로고
    • Phosphate based glasses for biomedical applications
    • Knowles, J. C., “Phosphate based glasses for biomedical applications”, Journal of Materials Chemistry 2003, 13, 2395–2401.
    • (2003) Journal of Materials Chemistry , vol.13 , pp. 2395-2401
    • Knowles, J.C.1
  • 214
    • 0142227099 scopus 로고    scopus 로고
    • Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P 2 O 5–CaO–Na 2 O glass system
    • Ahmed, I.,; Lewis, M.,; Olsen, I.,; Knowles, J., “Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P 2 O 5–CaO–Na 2 O glass system”, Biomaterials 2004, 25, 491–499.
    • (2004) Biomaterials , vol.25 , pp. 491-499
    • Ahmed, I.1    Lewis, M.2    Olsen, I.3    Knowles, J.4
  • 216
    • 10044262150 scopus 로고    scopus 로고
    • Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass-polycaprolactone composites
    • Prabhakar, R. L.,; Brocchini, S.,; Knowles, J. C., “Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass-polycaprolactone composites”, Biomaterials 2005, 26, 2209–2218.
    • (2005) Biomaterials , vol.26 , pp. 2209-2218
    • Prabhakar, R.L.1    Brocchini, S.2    Knowles, J.C.3
  • 217
    • 77956625720 scopus 로고    scopus 로고
    • Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations
    • Mohammadi, M. S.,; Ahmed, I.,; Marelli, B.,; Rudd, C.,; Bureau, M. N.,; Nazhat, S. N., “Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations”, Acta Biomaterialia 2010, 6, 3157–3168.
    • (2010) Acta Biomaterialia , vol.6 , pp. 3157-3168
    • Mohammadi, M.S.1    Ahmed, I.2    Marelli, B.3    Rudd, C.4    Bureau, M.N.5    Nazhat, S.N.6
  • 218
    • 84879466520 scopus 로고    scopus 로고
    • Poly (ϵ-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: Preparation, characterization and in vitro drug release for bone regeneration applications
    • Kouhi, M.,; Morshed, M.,; Varshosaz, J.,; Fathi, M. H., “Poly (ϵ-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: Preparation, characterization and in vitro drug release for bone regeneration applications”, Chemical Engineering Journal 2013, 228, 1057–1065.
    • (2013) Chemical Engineering Journal , vol.228 , pp. 1057-1065
    • Kouhi, M.1    Morshed, M.2    Varshosaz, J.3    Fathi, M.H.4
  • 219
    • 48449086835 scopus 로고    scopus 로고
    • Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite
    • Ahmed, I.,; Parsons, A.,; Palmer, G.,; Knowles, J.,; Walker, G.,; Rudd, C., “Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite”, Acta Biomaterialia 2008, 4, 1307–1314.
    • (2008) Acta Biomaterialia , vol.4 , pp. 1307-1314
    • Ahmed, I.1    Parsons, A.2    Palmer, G.3    Knowles, J.4    Walker, G.5    Rudd, C.6
  • 220
    • 0036124324 scopus 로고    scopus 로고
    • In vitro evaluation of poly (ϵ-caprolactone-co-DL-lactide)/bioactive glass composites
    • Rich, J.,; Jaakkola, T.,; Tirri, T.,; Närhi, T.,; Yli-Urpo, A.,; Seppälä, J., “In vitro evaluation of poly (ϵ-caprolactone-co-DL-lactide)/bioactive glass composites”, Biomaterials 2002, 23, 2143–2150.
    • (2002) Biomaterials , vol.23 , pp. 2143-2150
    • Rich, J.1    Jaakkola, T.2    Tirri, T.3    Närhi, T.4    Yli-Urpo, A.5    Seppälä, J.6
  • 221
    • 84907278289 scopus 로고    scopus 로고
    • Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles
    • Larrañaga, A.,; Aldazabal, P.,; Martin, F.,; Sarasua, J., “Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles”, Polymer Degradation and Stability 2014, 110, 121–128.
    • (2014) Polymer Degradation and Stability , vol.110 , pp. 121-128
    • Larrañaga, A.1    Aldazabal, P.2    Martin, F.3    Sarasua, J.4
  • 222
    • 34547686581 scopus 로고    scopus 로고
    • In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers
    • Chouzouri, G.,; Xanthos, M., “In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers”, Acta Biomaterialia 2007, 3, 745–756.
    • (2007) Acta Biomaterialia , vol.3 , pp. 745-756
    • Chouzouri, G.1    Xanthos, M.2
  • 223
  • 224
    • 84873414201 scopus 로고    scopus 로고
    • Sol–gel derived nanoscale bioactive glass (NBG) particles reinforced poly (ϵ-caprolactone) composites for bone tissue engineering
    • Lei, B.,; Shin, K.-H.,; Noh, D.-Y.,; Jo, I.-H.,; Koh, Y.-H.,; Kim, H.-E.,; Kim, S. E., “Sol–gel derived nanoscale bioactive glass (NBG) particles reinforced poly (ϵ-caprolactone) composites for bone tissue engineering”, Materials Science and Engineering: C 2013, 33, 1102–1108.
    • (2013) Materials Science and Engineering: C , vol.33 , pp. 1102-1108
    • Lei, B.1    Shin, K.-H.2    Noh, D.-Y.3    Jo, I.-H.4    Koh, Y.-H.5    Kim, H.-E.6    Kim, S.E.7
  • 225
    • 84862808449 scopus 로고    scopus 로고
    • Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly (ϵ-caprolactone) polymer for bone tissue regeneration
    • Lei, B.,; Shin, K. H.,; Noh, D. Y.,; Koh, Y. H.,; Choi, W. Y.,; Kim, H. E., “Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly (ϵ-caprolactone) polymer for bone tissue regeneration”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2012, 100, 967–975.
    • (2012) Journal of Biomedical Materials Research Part B: Applied Biomaterials , vol.100 , pp. 967-975
    • Lei, B.1    Shin, K.H.2    Noh, D.Y.3    Koh, Y.H.4    Choi, W.Y.5    Kim, H.E.6
  • 227
    • 39149133964 scopus 로고    scopus 로고
    • Preparation of poly (l-lactic acid)/β-tricalcium phosphate scaffold for bone tissue engineering without organic solvent
    • Kang, Y.,; Yin, G.,; Yuan, Q.,; Yao, Y.,; Huang, Z.,; Liao, X.,; Yang, B.,; Liao, L.,; Wang, H., “Preparation of poly (l-lactic acid)/β-tricalcium phosphate scaffold for bone tissue engineering without organic solvent”, Materials Letters 2008, 62, 2029–2032.
    • (2008) Materials Letters , vol.62 , pp. 2029-2032
    • Kang, Y.1    Yin, G.2    Yuan, Q.3    Yao, Y.4    Huang, Z.5    Liao, X.6    Yang, B.7    Liao, L.8    Wang, H.9
  • 228
    • 33646519215 scopus 로고    scopus 로고
    • Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering
    • Mondrinos, M. J.,; Dembzynski, R.,; Lu, L.,; Byrapogu, V. K.,; Wootton, D. M.,; Lelkes, P. I.,; Zhou, J., “Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering”, Biomaterials 2006, 27, 4399–4408.
    • (2006) Biomaterials , vol.27 , pp. 4399-4408
    • Mondrinos, M.J.1    Dembzynski, R.2    Lu, L.3    Byrapogu, V.K.4    Wootton, D.M.5    Lelkes, P.I.6    Zhou, J.7
  • 229
    • 77956915095 scopus 로고    scopus 로고
    • Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration
    • Martínez-Vázquez, F. J.,; Perera, F. H.,; Miranda, P.,; Pajares, A.,; Guiberteau, F., “Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration”, Acta Biomaterialia 2010, 6, 4361–4368.
    • (2010) Acta Biomaterialia , vol.6 , pp. 4361-4368
    • Martínez-Vázquez, F.J.1    Perera, F.H.2    Miranda, P.3    Pajares, A.4    Guiberteau, F.5
  • 230
    • 84893899592 scopus 로고    scopus 로고
    • Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration
    • Kim, M. S.,; Kim, G. H., “Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration”, Materials Letters 2014, 120, 246–250.
    • (2014) Materials Letters , vol.120 , pp. 246-250
    • Kim, M.S.1    Kim, G.H.2
  • 231
    • 53649085260 scopus 로고    scopus 로고
    • The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ϵ-caprolactone-based composite scaffolds
    • Guarino, V.,; Ambrosio, L., “The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ϵ-caprolactone-based composite scaffolds”, Acta Biomaterialia 2008, 4, 1778–1787.
    • (2008) Acta Biomaterialia , vol.4 , pp. 1778-1787
    • Guarino, V.1    Ambrosio, L.2
  • 232
    • 71649090287 scopus 로고    scopus 로고
    • Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering
    • Xue, W.,; Bandyopadhyay, A.,; Bose, S., “Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009, 91, 831–838.
    • (2009) Journal of Biomedical Materials Research Part B: Applied Biomaterials , vol.91 , pp. 831-838
    • Xue, W.1    Bandyopadhyay, A.2    Bose, S.3
  • 233
    • 1042301245 scopus 로고    scopus 로고
    • In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold
    • Shin, M.,; Yoshimoto, H.,; Vacanti, J. P., “In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold”, Tissue Engineering 2004, 10, 33–41.
    • (2004) Tissue Engineering , vol.10 , pp. 33-41
    • Shin, M.1    Yoshimoto, H.2    Vacanti, J.P.3
  • 234
    • 26844561981 scopus 로고    scopus 로고
    • Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates
    • Badami, A. S.,; Kreke, M. R.,; Thompson, M. S.,; Riffle, J. S.,; Goldstein, A. S., “Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates”, Biomaterials 2006, 27, 596–606.
    • (2006) Biomaterials , vol.27 , pp. 596-606
    • Badami, A.S.1    Kreke, M.R.2    Thompson, M.S.3    Riffle, J.S.4    Goldstein, A.S.5
  • 236
    • 0033622838 scopus 로고    scopus 로고
    • Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro
    • Murphy, W. L.,; Kohn, D. H.,; Mooney, D. J., “Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro”, Journal of Biomedical Materials Research 2000, 50, 50–58.
    • (2000) Journal of Biomedical Materials Research , vol.50 , pp. 50-58
    • Murphy, W.L.1    Kohn, D.H.2    Mooney, D.J.3
  • 237
    • 38949188940 scopus 로고    scopus 로고
    • Biomimetic calcium phosphate coating on electrospun poly (ϵ-caprolactone) scaffolds for bone tissue engineering
    • Yang, F.,; Wolke, J.,; Jansen, J., “Biomimetic calcium phosphate coating on electrospun poly (ϵ-caprolactone) scaffolds for bone tissue engineering”, Chemical Engineering Journal 2008, 137, 154–161.
    • (2008) Chemical Engineering Journal , vol.137 , pp. 154-161
    • Yang, F.1    Wolke, J.2    Jansen, J.3
  • 238
    • 84950269927 scopus 로고    scopus 로고
    • In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds
    • Poh, P. S.,; Hutmacher, D. W.,; Holzapfel, B. M.,; Solanki, A. K.,; Stevens, M. M.,; Woodruff, M. A., “In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds”, Acta Biomaterialia 2016, 30, 319–333.
    • (2016) Acta Biomaterialia , vol.30 , pp. 319-333
    • Poh, P.S.1    Hutmacher, D.W.2    Holzapfel, B.M.3    Solanki, A.K.4    Stevens, M.M.5    Woodruff, M.A.6
  • 239
    • 70350497620 scopus 로고    scopus 로고
    • Biomimetic apatite-coated PCL scaffolds: effect of surface nanotopography on cellular functions
    • Beşkardeş, I. G.,; Gümüşderelioğlu, M., “Biomimetic apatite-coated PCL scaffolds: effect of surface nanotopography on cellular functions”, Journal of Bioactive and Compatible Polymers 2009, 24, 507–524.
    • (2009) Journal of Bioactive and Compatible Polymers , vol.24 , pp. 507-524
    • Beşkardeş, I.G.1    Gümüşderelioğlu, M.2
  • 240
    • 70349135833 scopus 로고    scopus 로고
    • Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate
    • Mavis, B.,; Demirtaş, T. T.,; Gümüşderelioğlu, M.,; Gündüz, G.,; Çolak, Ü., “Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate”, Acta Biomaterialia 2009, 5, 3098–3111.
    • (2009) Acta Biomaterialia , vol.5 , pp. 3098-3111
    • Mavis, B.1    Demirtaş, T.T.2    Gümüşderelioğlu, M.3    Gündüz, G.4    Çolak, Ü.5
  • 241
    • 61849152866 scopus 로고    scopus 로고
    • Coating electrospun poly (ϵ-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering
    • Li, X.,; Xie, J.,; Yuan, X.,; Xia, Y., “Coating electrospun poly (ϵ-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering”, Langmuir 2008, 24, 14145–14150.
    • (2008) Langmuir , vol.24 , pp. 14145-14150
    • Li, X.1    Xie, J.2    Yuan, X.3    Xia, Y.4
  • 243
    • 84897046024 scopus 로고    scopus 로고
    • Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering
    • Patlolla, A.,; Arinzeh, T. L., “Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering”, Biotechnology and Bioengineering 2014, 111, 1000–1017.
    • (2014) Biotechnology and Bioengineering , vol.111 , pp. 1000-1017
    • Patlolla, A.1    Arinzeh, T.L.2
  • 244
    • 80053969704 scopus 로고    scopus 로고
    • Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors
    • Polini, A.,; Pisignano, D.,; Parodi, M.,; Quarto, R.,; Scaglione, S., “Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors”, PloS One 2011, 6, e26211.
    • (2011) PloS One , vol.6
    • Polini, A.1    Pisignano, D.2    Parodi, M.3    Quarto, R.4    Scaglione, S.5
  • 245
    • 84906554619 scopus 로고    scopus 로고
    • Electrospun gelatin/poly (ϵ-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering
    • Rajzer, I.,; Menaszek, E.,; Kwiatkowski, R.,; Planell, J. A.,; Castano, O., “Electrospun gelatin/poly (ϵ-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering”, Materials Science and Engineering: C 2014, 44, 183–190.
    • (2014) Materials Science and Engineering: C , vol.44 , pp. 183-190
    • Rajzer, I.1    Menaszek, E.2    Kwiatkowski, R.3    Planell, J.A.4    Castano, O.5
  • 246
    • 27644568924 scopus 로고    scopus 로고
    • 3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
    • Moroni, L.,; De Wijn, J.,; Van Blitterswijk, C., “3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties”, Biomaterials 2006, 27, 974–985.
    • (2006) Biomaterials , vol.27 , pp. 974-985
    • Moroni, L.1    De Wijn, J.2    Van Blitterswijk, C.3
  • 247
    • 0037409864 scopus 로고    scopus 로고
    • Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    • Leong, K.,; Cheah, C.,; Chua, C., “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs”, Biomaterials 2003, 24, 2363–2378.
    • (2003) Biomaterials , vol.24 , pp. 2363-2378
    • Leong, K.1    Cheah, C.2    Chua, C.3
  • 249
    • 3242772951 scopus 로고    scopus 로고
    • Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells
    • Choong, C.,; Triffitt, J.,; Cui, Z., “Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells”, Food and Bioproducts Processing 2004, 82, 117–125.
    • (2004) Food and Bioproducts Processing , vol.82 , pp. 117-125
    • Choong, C.1    Triffitt, J.2    Cui, Z.3
  • 250
    • 33846811209 scopus 로고    scopus 로고
    • In vitro degradation of novel bioactive polycaprolactone—20% tricalcium phosphate composite scaffolds for bone engineering
    • Lei, Y.,; Rai, B.,; Ho, K.,; Teoh, S., “In vitro degradation of novel bioactive polycaprolactone—20% tricalcium phosphate composite scaffolds for bone engineering”, Materials Science and Engineering: C 2007, 27, 293–298.
    • (2007) Materials Science and Engineering: C , vol.27 , pp. 293-298
    • Lei, Y.1    Rai, B.2    Ho, K.3    Teoh, S.4
  • 251
    • 33846962101 scopus 로고    scopus 로고
    • In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites
    • Zhou, Y.,; Hutmacher, D. W.,; Varawan, S. L.,; Lim, T. M., “In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites”, Polymer International 2007, 56, 333–342.
    • (2007) Polymer International , vol.56 , pp. 333-342
    • Zhou, Y.1    Hutmacher, D.W.2    Varawan, S.L.3    Lim, T.M.4
  • 252
    • 25144522739 scopus 로고    scopus 로고
    • Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling
    • Schantz, J.-T.,; Brandwood, A.,; Hutmacher, D. W.,; Khor, H. L.,; Bittner, K., “Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling”, Journal of Materials Science: Materials in Medicine 2005, 16, 807–819.
    • (2005) Journal of Materials Science: Materials in Medicine , vol.16 , pp. 807-819
    • Schantz, J.-T.1    Brandwood, A.2    Hutmacher, D.W.3    Khor, H.L.4    Bittner, K.5
  • 253
    • 77956010965 scopus 로고    scopus 로고
    • Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds
    • Rai, B.,; Lin, J. L.,; Lim, Z. X.,; Guldberg, R. E.,; Hutmacher, D. W.,; Cool, S. M., “Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds”, Biomaterials 2010, 31, 7960–7970.
    • (2010) Biomaterials , vol.31 , pp. 7960-7970
    • Rai, B.1    Lin, J.L.2    Lim, Z.X.3    Guldberg, R.E.4    Hutmacher, D.W.5    Cool, S.M.6
  • 255
    • 0030955064 scopus 로고    scopus 로고
    • X-ray pole figure analysis of apatite crystals and collagen molecules in bone
    • Sasaki, N.,; Sudoh, Y., “X-ray pole figure analysis of apatite crystals and collagen molecules in bone”, Calcified Tissue International 1997, 60, 361–367.
    • (1997) Calcified Tissue International , vol.60 , pp. 361-367
    • Sasaki, N.1    Sudoh, Y.2
  • 256
    • 49449110772 scopus 로고    scopus 로고
    • Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications
    • Erisken, C.,; Kalyon, D. M.,; Wang, H., “Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications”, Biomaterials 2008, 29, 4065–4073.
    • (2008) Biomaterials , vol.29 , pp. 4065-4073
    • Erisken, C.1    Kalyon, D.M.2    Wang, H.3
  • 258
    • 73249127019 scopus 로고    scopus 로고
    • Bone tissue engineering: A review in bone biomimetics and drug delivery strategies
    • Porter, J. R.,; Ruckh, T. T.,; Popat, K. C., “Bone tissue engineering: A review in bone biomimetics and drug delivery strategies”, Biotechnology Progress 2009, 25, 1539–1560.
    • (2009) Biotechnology Progress , vol.25 , pp. 1539-1560
    • Porter, J.R.1    Ruckh, T.T.2    Popat, K.C.3
  • 259
    • 2342499807 scopus 로고    scopus 로고
    • The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds
    • Rai, B.,; Teoh, S.-H.,; Ho, K.,; Hutmacher, D.,; Cao, T.,; Chen, F.,; Yacob, K., “The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds”, Biomaterials 2004, 25, 5499–5506.
    • (2004) Biomaterials , vol.25 , pp. 5499-5506
    • Rai, B.1    Teoh, S.-H.2    Ho, K.3    Hutmacher, D.4    Cao, T.5    Chen, F.6    Yacob, K.7
  • 260
    • 11144279123 scopus 로고    scopus 로고
    • Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2
    • Rai, B.,; Teoh, S.-H.,; Hutmacher, D.,; Cao, T.,; Ho, K., “Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2”, Biomaterials 2005, 26, 3739–3748.
    • (2005) Biomaterials , vol.26 , pp. 3739-3748
    • Rai, B.1    Teoh, S.-H.2    Hutmacher, D.3    Cao, T.4    Ho, K.5
  • 261
    • 35848962289 scopus 로고    scopus 로고
    • Antibiotic-loaded poly-ϵ-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis
    • Miyai, T.,; Ito, A.,; Tamazawa, G.,; Matsuno, T.,; Sogo, Y.,; Nakamura, C.,; Yamazaki, A.,; Satoh, T., “Antibiotic-loaded poly-ϵ-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis”, Biomaterials 2008, 29, 350–358.
    • (2008) Biomaterials , vol.29 , pp. 350-358
    • Miyai, T.1    Ito, A.2    Tamazawa, G.3    Matsuno, T.4    Sogo, Y.5    Nakamura, C.6    Yamazaki, A.7    Satoh, T.8
  • 262
    • 35348915916 scopus 로고    scopus 로고
    • Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: a pilot study
    • Rai, B.,; Ho, K. H.,; Lei, Y.,; Si-Hoe, K.-M.,; Teo, C.-M. J.,; bin Yacob, K.,; Chen, F.,; Ng, F.-C.,; Teoh, S. H., “Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: a pilot study”, Journal of Oral and Maxillofacial Surgery 2007, 65, 2195–2205.
    • (2007) Journal of Oral and Maxillofacial Surgery , vol.65 , pp. 2195-2205
    • Rai, B.1    Ho, K.H.2    Lei, Y.3    Si-Hoe, K.-M.4    Teo, C.M.J.5    bin Yacob, K.6    Chen, F.7    Ng, F.-C.8    Teoh, S.H.9
  • 264
    • 84899934890 scopus 로고    scopus 로고
    • A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model
    • Li, Y.,; Wu, Z.-g.,; Li, X.-k.,; Guo, Z.,; Wu, S.-h.,; Zhang, Y.-q.,; Shi, L.,; Teoh, S.-h.,; Liu, Y.-c.,; Zhang, Z.-y., “A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model”, Biomaterials 2014, 35, 5647–5659.
    • (2014) Biomaterials , vol.35 , pp. 5647-5659
    • Li, Y.1    Wu, Z.-G.2    Li, X.-K.3    Guo, Z.4    Wu, S.-H.5    Zhang, Y.-Q.6    Shi, L.7    Teoh, S.-H.8    Liu, Y.-C.9    Zhang, Z.-Y.10
  • 265
    • 33746792330 scopus 로고    scopus 로고
    • Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model
    • Shao, X.,; Goh, J. C.,; Hutmacher, D. W.,; Lee, E. H.,; Zigang, G., “Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model”, Tissue Engineering 2006, 12, 1539–1551.
    • (2006) Tissue Engineering , vol.12 , pp. 1539-1551
    • Shao, X.1    Goh, J.C.2    Hutmacher, D.W.3    Lee, E.H.4    Zigang, G.5
  • 266
    • 84864411903 scopus 로고    scopus 로고
    • Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds
    • Lohfeld, S.,; Cahill, S.,; Barron, V.,; McHugh, P.,; Dürselen, L.,; Kreja, L.,; Bausewein, C.,; Ignatius, A., “Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds”, Acta Biomaterialia 2012, 8, 3446–3456.
    • (2012) Acta Biomaterialia , vol.8 , pp. 3446-3456
    • Lohfeld, S.1    Cahill, S.2    Barron, V.3    McHugh, P.4    Dürselen, L.5    Kreja, L.6    Bausewein, C.7    Ignatius, A.8
  • 267
    • 84931424245 scopus 로고    scopus 로고
    • Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: An in vivo pilot study in a porcine mandible model
    • Konopnicki, S.,; Sharaf, B.,; Resnick, C.,; Patenaude, A.,; Pogal-Sussman, T.,; Hwang, K.-G.,; Abukawa, H.,; Troulis, M. J., “Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: An in vivo pilot study in a porcine mandible model”, Journal of Oral and Maxillofacial Surgery 2015, 73, 1016. e1–1016. e11.
    • (2015) Journal of Oral and Maxillofacial Surgery , vol.73 , pp. 1-11
    • Konopnicki, S.1    Sharaf, B.2    Resnick, C.3    Patenaude, A.4    Pogal-Sussman, T.5    Hwang, K.-G.6    Abukawa, H.7    Troulis, M.J.8
  • 268
    • 77950792851 scopus 로고    scopus 로고
    • The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model
    • Ho, S. T. B.,; Hutmacher, D. W.,; Ekaputra, A. K.,; Hitendra, D.,; Hui, J. H., “The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model”, Tissue Engineering Part A 2009, 16, 1123–1141.
    • (2009) Tissue Engineering Part A , vol.16 , pp. 1123-1141
    • Ho, S.T.B.1    Hutmacher, D.W.2    Ekaputra, A.K.3    Hitendra, D.4    Hui, J.H.5
  • 270
    • 10044283142 scopus 로고    scopus 로고
    • Simple surface modification of poly (ϵ-caprolactone) for apatite deposition from simulated body fluid
    • Oyane, A.,; Uchida, M.,; Choong, C.,; Triffitt, J.,; Jones, J.,; Ito, A., “Simple surface modification of poly (ϵ-caprolactone) for apatite deposition from simulated body fluid”, Biomaterials 2005, 26, 2407–2413.
    • (2005) Biomaterials , vol.26 , pp. 2407-2413
    • Oyane, A.1    Uchida, M.2    Choong, C.3    Triffitt, J.4    Jones, J.5    Ito, A.6
  • 272
    • 84897917570 scopus 로고    scopus 로고
    • In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ϵ-caprolactone: Effect of bio-functionalization for bone tissue engineering
    • Kwak, K.-A.,; Jyoti, M. A.,; Song, H.-Y., “In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ϵ-caprolactone: Effect of bio-functionalization for bone tissue engineering”, Applied Surface Science 2014, 301, 307–314.
    • (2014) Applied Surface Science , vol.301 , pp. 307-314
    • Kwak, K.-A.1    Jyoti, M.A.2    Song, H.-Y.3
  • 273
    • 84878572721 scopus 로고    scopus 로고
    • Bio-functionalization of polycaprolactone infiltrated BCP scaffold with silicon and fibronectin enhances osteoblast activity in vitro
    • Kwak, K.-A.,; Kim, Y.-H.,; Kim, M.,; Lee, B.-T.,; Song, H.-Y., “Bio-functionalization of polycaprolactone infiltrated BCP scaffold with silicon and fibronectin enhances osteoblast activity in vitro”, Applied Surface Science 2013, 279, 13–22.
    • (2013) Applied Surface Science , vol.279 , pp. 13-22
    • Kwak, K.-A.1    Kim, Y.-H.2    Kim, M.3    Lee, B.-T.4    Song, H.-Y.5
  • 274
    • 70449720618 scopus 로고    scopus 로고
    • Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration
    • Patlolla, A.,; Collins, G.,; Arinzeh, T. L., “Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration”, Acta Biomaterialia 2010, 6, 90–101.
    • (2010) Acta Biomaterialia , vol.6 , pp. 90-101
    • Patlolla, A.1    Collins, G.2    Arinzeh, T.L.3
  • 275
    • 33750500933 scopus 로고    scopus 로고
    • Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts
    • Zhou, Y.,; Chen, F.,; Ho, S. T.,; Woodruff, M. A.,; Lim, T. M.,; Hutmacher, D. W., “Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts”, Biomaterials 2007, 28, 814–824.
    • (2007) Biomaterials , vol.28 , pp. 814-824
    • Zhou, Y.1    Chen, F.2    Ho, S.T.3    Woodruff, M.A.4    Lim, T.M.5    Hutmacher, D.W.6
  • 276
    • 33846614110 scopus 로고    scopus 로고
    • Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates
    • Yefang, Z.,; Hutmacher, D.,; Varawan, S.-L.,; Meng, L. T., “Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates”, International Journal of Oral and Maxillofacial Surgery 2007, 36, 137–145.
    • (2007) International Journal of Oral and Maxillofacial Surgery , vol.36 , pp. 137-145
    • Yefang, Z.1    Hutmacher, D.2    Varawan, S.-L.3    Meng, L.T.4
  • 277
    • 55049126465 scopus 로고    scopus 로고
    • Customizing the degradation and load-bearing profile of 3D polycaprolactone-tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions
    • Yeo, A.,; Sju, E.,; Rai, B.,; Teoh, S. H., “Customizing the degradation and load-bearing profile of 3D polycaprolactone-tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008, 87, 562–569.
    • (2008) Journal of Biomedical Materials Research Part B: Applied Biomaterials , vol.87 , pp. 562-569
    • Yeo, A.1    Sju, E.2    Rai, B.3    Teoh, S.H.4
  • 278
    • 84937524778 scopus 로고    scopus 로고
    • Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials
    • Doyle, H.,; Lohfeld, S.,; McHugh, P., “Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials”, Medical Engineering & Physics 2015, 37, 767–776.
    • (2015) Medical Engineering & Physics , vol.37 , pp. 767-776
    • Doyle, H.1    Lohfeld, S.2    McHugh, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.