-
1
-
-
80054062393
-
Biomimetic nanofibrous scaffolds for bone tissue engineering
-
Holzwarth, J. M.,; Ma, P. X., “Biomimetic nanofibrous scaffolds for bone tissue engineering”, Biomaterials 2011, 32, 9622–9629.
-
(2011)
Biomaterials
, vol.32
, pp. 9622-9629
-
-
Holzwarth, J.M.1
Ma, P.X.2
-
2
-
-
0034672872
-
Scaffolds in tissue engineering bone and cartilage
-
Hutmacher, D. W., “Scaffolds in tissue engineering bone and cartilage”, Biomaterials 2000, 21, 2529–2543.
-
(2000)
Biomaterials
, vol.21
, pp. 2529-2543
-
-
Hutmacher, D.W.1
-
3
-
-
0035089551
-
Biodegradable polymeric scaffolds for musculoskeletal tissue engineering
-
Agrawal, C.,; Ray, R. B., “Biodegradable polymeric scaffolds for musculoskeletal tissue engineering”, Journal of Biomedical Materials Research 2001, 55, 141–150.
-
(2001)
Journal of Biomedical Materials Research
, vol.55
, pp. 141-150
-
-
Agrawal, C.1
Ray, R.B.2
-
4
-
-
84902752371
-
-
Elsevier, Amsterdam
-
Reis, R. L.,; Neves, N. M.,; Mano, J. F.,; Gomes, M. E.,; Marques, A. P.,; Azevedo, H. S., “Natural-Based Polymers for Biomedical Applications”; Elsevier, Amsterdam, 2008.
-
(2008)
Natural-Based Polymers for Biomedical Applications
-
-
Reis, R.L.1
Neves, N.M.2
Mano, J.F.3
Gomes, M.E.4
Marques, A.P.5
Azevedo, H.S.6
-
5
-
-
0028022414
-
Biodegradable polymers for biomedical uses
-
Hayashi, T., “Biodegradable polymers for biomedical uses”, Progress in Polymer Science 1994, 19, 663–702.
-
(1994)
Progress in Polymer Science
, vol.19
, pp. 663-702
-
-
Hayashi, T.1
-
6
-
-
70349319369
-
A review on biodegradable polymeric materials for bone tissue engineering applications
-
Sabir, M. I.,; Xu, X.,; Li, L., “A review on biodegradable polymeric materials for bone tissue engineering applications”, Journal of Materials Science 2009, 44, 5713–5724.
-
(2009)
Journal of Materials Science
, vol.44
, pp. 5713-5724
-
-
Sabir, M.I.1
Xu, X.2
Li, L.3
-
8
-
-
0032029664
-
Mechanical properties and the hierarchical structure of bone
-
Rho, J.-Y.,; Kuhn-Spearing, L.,; Zioupos, P., “Mechanical properties and the hierarchical structure of bone”, Medical Engineering & Physics 1998, 20, 92–102.
-
(1998)
Medical Engineering & Physics
, vol.20
, pp. 92-102
-
-
Rho, J.-Y.1
Kuhn-Spearing, L.2
Zioupos, P.3
-
10
-
-
0034896980
-
Evaluation of ultra-thin poly (ϵ-caprolactone) films for tissue-engineered skin
-
Ng, K. W.,; Hutmacher, D. W.,; Schantz, J.-T.,; Ng, C. S.,; Too, H.-P.,; Lim, T. C.,; Phan, T. T.,; Teoh, S. H., “Evaluation of ultra-thin poly (ϵ-caprolactone) films for tissue-engineered skin”, Tissue Engineering 2001, 7, 441–455.
-
(2001)
Tissue Engineering
, vol.7
, pp. 441-455
-
-
Ng, K.W.1
Hutmacher, D.W.2
Schantz, J.-T.3
Ng, C.S.4
Too, H.-P.5
Lim, T.C.6
Phan, T.T.7
Teoh, S.H.8
-
12
-
-
0037358343
-
Tissue engineering and cell therapy of cartilage and bone
-
Cancedda, R.,; Dozin, B.,; Giannoni, P.,; Quarto, R., “Tissue engineering and cell therapy of cartilage and bone”, Matrix Biology 2003, 22, 81–91.
-
(2003)
Matrix Biology
, vol.22
, pp. 81-91
-
-
Cancedda, R.1
Dozin, B.2
Giannoni, P.3
Quarto, R.4
-
13
-
-
35948986208
-
Biodegradable synthetic polymers for tissue engineering
-
Gunatillake, P. A.,; Adhikari, R., “Biodegradable synthetic polymers for tissue engineering”, Eur Cell Mater. 2003, 5, 1–16.
-
(2003)
Eur Cell Mater
, vol.5
, pp. 1-16
-
-
Gunatillake, P.A.1
Adhikari, R.2
-
14
-
-
70349874778
-
Preparation of poly (ϵ-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning
-
Han, J.,; Branford-White, C. J.,; Zhu, L.-M., “Preparation of poly (ϵ-caprolactone)/poly (trimethylene carbonate) blend nanofibers by electrospinning”, Carbohydrate Polymers 2010, 79, 214–218.
-
(2010)
Carbohydrate Polymers
, vol.79
, pp. 214-218
-
-
Han, J.1
Branford-White, C.J.2
Zhu, L.-M.3
-
16
-
-
77649158306
-
Polymeric materials for bone and cartilage repair
-
Puppi, D.,; Chiellini, F.,; Piras, A.,; Chiellini, E., “Polymeric materials for bone and cartilage repair”, Progress in Polymer Science 2010, 35, 403–440.
-
(2010)
Progress in Polymer Science
, vol.35
, pp. 403-440
-
-
Puppi, D.1
Chiellini, F.2
Piras, A.3
Chiellini, E.4
-
17
-
-
33750207993
-
Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds
-
Kang, X.,; Xie, Y.,; Powell, H. M.,; Lee, L. J.,; Belury, M. A.,; Lannutti, J. J.,; Kniss, D. A., “Adipogenesis of murine embryonic stem cells in a three-dimensional culture system using electrospun polymer scaffolds”, Biomaterials 2007, 28, 450–458.
-
(2007)
Biomaterials
, vol.28
, pp. 450-458
-
-
Kang, X.1
Xie, Y.2
Powell, H.M.3
Lee, L.J.4
Belury, M.A.5
Lannutti, J.J.6
Kniss, D.A.7
-
18
-
-
63049117306
-
Synthetic polymer scaffolds for tissue engineering
-
Place, E. S.,; George, J. H.,; Williams, C. K.,; Stevens, M. M., “Synthetic polymer scaffolds for tissue engineering”, Chemical Society Reviews 2009, 38, 1139–1151.
-
(2009)
Chemical Society Reviews
, vol.38
, pp. 1139-1151
-
-
Place, E.S.1
George, J.H.2
Williams, C.K.3
Stevens, M.M.4
-
19
-
-
30444451154
-
Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: In vitro characterization and human osteoblast response
-
Causa, F.,; Netti, P.,; Ambrosio, L.,; Ciapetti, G.,; Baldini, N.,; Pagani, S.,; Martini, D.,; Giunti, A., “Poly-ε-caprolactone/hydroxyapatite composites for bone regeneration: In vitro characterization and human osteoblast response”, Journal of Biomedical Materials Research Part A 2006, 76, 151–162.
-
(2006)
Journal of Biomedical Materials Research Part A
, vol.76
, pp. 151-162
-
-
Causa, F.1
Netti, P.2
Ambrosio, L.3
Ciapetti, G.4
Baldini, N.5
Pagani, S.6
Martini, D.7
Giunti, A.8
-
20
-
-
0035671158
-
The design of scaffolds for use in tissue engineering. Part I. Traditional factors
-
Yang, S.,; Leong, K.-F.,; Du, Z.,; Chua, C.-K., “The design of scaffolds for use in tissue engineering. Part I. Traditional factors”, Tissue Engineering 2001, 7, 679–689.
-
(2001)
Tissue Engineering
, vol.7
, pp. 679-689
-
-
Yang, S.1
Leong, K.-F.2
Du, Z.3
Chua, C.-K.4
-
21
-
-
0036118385
-
Biocomposites of non-crosslinked natural and synthetic polymers
-
Coombes, A.,; Verderio, E.,; Shaw, B.,; Li, X.,; Griffin, M.,; Downes, S., “Biocomposites of non-crosslinked natural and synthetic polymers”, Biomaterials 2002, 23, 2113–2118.
-
(2002)
Biomaterials
, vol.23
, pp. 2113-2118
-
-
Coombes, A.1
Verderio, E.2
Shaw, B.3
Li, X.4
Griffin, M.5
Downes, S.6
-
22
-
-
52049100789
-
Electrospun poly (ϵ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering
-
Ghasemi-Mobarakeh, L.,; Prabhakaran, M. P.,; Morshed, M.,; Nasr-Esfahani, M.-H.,; Ramakrishna, S., “Electrospun poly (ϵ-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering”, Biomaterials 2008, 29, 4532–4539.
-
(2008)
Biomaterials
, vol.29
, pp. 4532-4539
-
-
Ghasemi-Mobarakeh, L.1
Prabhakaran, M.P.2
Morshed, M.3
Nasr-Esfahani, M.-H.4
Ramakrishna, S.5
-
23
-
-
78650276410
-
The effect of elastin on chondrocyte adhesion and proliferation on poly (ϵ-caprolactone)/elastin composites
-
Annabi, N.,; Fathi, A.,; Mithieux, S. M.,; Martens, P.,; Weiss, A. S.,; Dehghani, F., “The effect of elastin on chondrocyte adhesion and proliferation on poly (ϵ-caprolactone)/elastin composites”, Biomaterials 2011, 32, 1517–1525.
-
(2011)
Biomaterials
, vol.32
, pp. 1517-1525
-
-
Annabi, N.1
Fathi, A.2
Mithieux, S.M.3
Martens, P.4
Weiss, A.S.5
Dehghani, F.6
-
24
-
-
22944455217
-
Blends of poly-(ϵ-caprolactone) and polysaccharides in tissue engineering applications
-
Ciardelli, G.,; Chiono, V.,; Vozzi, G.,; Pracella, M.,; Ahluwalia, A.,; Barbani, N.,; Cristallini, C.,; Giusti, P., “Blends of poly-(ϵ-caprolactone) and polysaccharides in tissue engineering applications”, Biomacromolecules 2005, 6, 1961–1976.
-
(2005)
Biomacromolecules
, vol.6
, pp. 1961-1976
-
-
Ciardelli, G.1
Chiono, V.2
Vozzi, G.3
Pracella, M.4
Ahluwalia, A.5
Barbani, N.6
Cristallini, C.7
Giusti, P.8
-
25
-
-
17844390359
-
Characterization of chitosan–polycaprolactone blends for tissue engineering applications
-
Sarasam, A.,; Madihally, S. V., “Characterization of chitosan–polycaprolactone blends for tissue engineering applications”, Biomaterials 2005, 26, 5500–5508.
-
(2005)
Biomaterials
, vol.26
, pp. 5500-5508
-
-
Sarasam, A.1
Madihally, S.V.2
-
26
-
-
0030081994
-
Biodegradable lactone copolymers. I. Characterization and mechanical behavior of ϵ-caprolactone and lactide copolymers
-
Hiljanen-Vainio, M.,; Karjalainen, T.,; Seppälä, J., “Biodegradable lactone copolymers. I. Characterization and mechanical behavior of ϵ-caprolactone and lactide copolymers”, Journal of Applied Polymer Science 1996, 59, 1281–1288.
-
(1996)
Journal of Applied Polymer Science
, vol.59
, pp. 1281-1288
-
-
Hiljanen-Vainio, M.1
Karjalainen, T.2
Seppälä, J.3
-
27
-
-
84995784019
-
A comprehensive study on the fabrication and properties of biocomposites of poly (lactic acid)/ceramics for bone tissue engineering
-
Tajbakhsh, S.,; Hajiali, F., “A comprehensive study on the fabrication and properties of biocomposites of poly (lactic acid)/ceramics for bone tissue engineering”, Materials Science and Engineering C 2017, 70, 897–912.
-
(2017)
Materials Science and Engineering C
, vol.70
, pp. 897-912
-
-
Tajbakhsh, S.1
Hajiali, F.2
-
28
-
-
0142030654
-
Tissue engineering of human biliary epithelial cells on polyglycolic acid/polycaprolactone scaffolds maintains long-term phenotypic stability
-
Barralet, J. E.,; Wallace, L. L.,; Strain, A. J., “Tissue engineering of human biliary epithelial cells on polyglycolic acid/polycaprolactone scaffolds maintains long-term phenotypic stability”, Tissue Engineering 2003, 9, 1037–1045.
-
(2003)
Tissue Engineering
, vol.9
, pp. 1037-1045
-
-
Barralet, J.E.1
Wallace, L.L.2
Strain, A.J.3
-
29
-
-
32144437418
-
How useful is SBF in predicting in vivo bone bioactivity?
-
Kokubo, T.,; Takadama, H., “How useful is SBF in predicting in vivo bone bioactivity?”, Biomaterials 2006, 27, 2907–2915.
-
(2006)
Biomaterials
, vol.27
, pp. 2907-2915
-
-
Kokubo, T.1
Takadama, H.2
-
30
-
-
1642276047
-
Porous poly (α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation
-
Maquet, V.,; Boccaccini, A. R.,; Pravata, L.,; Notingher, I.,; Jérôme, R., “Porous poly (α-hydroxyacid)/Bioglass® composite scaffolds for bone tissue engineering. I: preparation and in vitro characterisation”, Biomaterials 2004, 25, 4185–4194.
-
(2004)
Biomaterials
, vol.25
, pp. 4185-4194
-
-
Maquet, V.1
Boccaccini, A.R.2
Pravata, L.3
Notingher, I.4
Jérôme, R.5
-
31
-
-
2342428707
-
Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering
-
Wei, G.,; Ma, P. X., “Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering”, Biomaterials 2004, 25, 4749–4757.
-
(2004)
Biomaterials
, vol.25
, pp. 4749-4757
-
-
Wei, G.1
Ma, P.X.2
-
32
-
-
55749100987
-
Nanotechnology and nanomaterials: Promises for improved tissue regeneration
-
Zhang, L.,; Webster, T. J., “Nanotechnology and nanomaterials: Promises for improved tissue regeneration”, Nano Today 2009, 4, 66–80.
-
(2009)
Nano Today
, vol.4
, pp. 66-80
-
-
Zhang, L.1
Webster, T.J.2
-
33
-
-
0017365913
-
Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface
-
Jarcho, M.,; Kay, J. F.,; Gumaer, K. I.,; Doremus, R. H.,; Drobeck, H. P., “Tissue, cellular and subcellular events at a bone-ceramic hydroxylapatite interface”, Journal of Bioengineering 1977, 1, 79–92.
-
(1977)
Journal of Bioengineering
, vol.1
, pp. 79-92
-
-
Jarcho, M.1
Kay, J.F.2
Gumaer, K.I.3
Doremus, R.H.4
Drobeck, H.P.5
-
34
-
-
0019447856
-
Calcium phosphate ceramics as hard tissue prosthetics
-
Jarcho, M., “Calcium phosphate ceramics as hard tissue prosthetics”, Clinical Orthopaedics and Related Research 1981, 157, 259–278.
-
(1981)
Clinical Orthopaedics and Related Research
, vol.157
, pp. 259-278
-
-
Jarcho, M.1
-
35
-
-
0015287179
-
Bonding mechanisms at the interface of ceramic prosthetic materials
-
Hench, L. L.,; Splinter, R. J.,; Allen, W.,; Greenlee, T., “Bonding mechanisms at the interface of ceramic prosthetic materials”, Journal of Biomedical Materials Research 1971, 5, 117–141.
-
(1971)
Journal of Biomedical Materials Research
, vol.5
, pp. 117-141
-
-
Hench, L.L.1
Splinter, R.J.2
Allen, W.3
Greenlee, T.4
-
36
-
-
0025019633
-
Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics
-
Daculsi, G.,; LeGeros, R.,; Heughebaert, M.,; Barbieux, I., “Formation of carbonate-apatite crystals after implantation of calcium phosphate ceramics”, Calcified Tissue International 1990, 46, 20–27.
-
(1990)
Calcified Tissue International
, vol.46
, pp. 20-27
-
-
Daculsi, G.1
LeGeros, R.2
Heughebaert, M.3
Barbieux, I.4
-
37
-
-
85026707459
-
KURENAI: Kyoto University Research Information Repository
-
Kokubo, T.,; Shigematsu, M.,; Nagashima, Y.,; Tashiro, M.,; Nakamura, T.,; Yamamuro, T.,; Higashi, S., “KURENAI: Kyoto University Research Information Repository”, Bull. Inst. Chem. Res., Kyoto Univ 1982, 60.
-
(1982)
Bull. Inst. Chem. Res., Kyoto Univ
, vol.60
-
-
Kokubo, T.1
Shigematsu, M.2
Nagashima, Y.3
Tashiro, M.4
Nakamura, T.5
Yamamuro, T.6
Higashi, S.7
-
39
-
-
0021350477
-
Phosphate minerals in human tissues
-
Springer, Berlin
-
LeGeros, R. Z.,; Legeros, J. P., “Phosphate minerals in human tissues”, In Phosphate Minerals; Springer, Berlin, 1984, pp. 351–385.
-
(1984)
In Phosphate Minerals
, pp. 351-385
-
-
LeGeros, R.Z.1
Legeros, J.P.2
-
40
-
-
70349972135
-
Organic/inorganic bioactive materials Part I: Synthesis, structure and in vitro assessment of collagen/silicocarnotite biocoatings
-
Hristov, V.,; Radev, L.,; Samuneva, B.,; Apostolov, G., “Organic/inorganic bioactive materials Part I: Synthesis, structure and in vitro assessment of collagen/silicocarnotite biocoatings”, Central European Journal of Chemistry 2009, 7, 702–710.
-
(2009)
Central European Journal of Chemistry
, vol.7
, pp. 702-710
-
-
Hristov, V.1
Radev, L.2
Samuneva, B.3
Apostolov, G.4
-
41
-
-
33644934897
-
Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering
-
Rezwan, K.,; Chen, Q.,; Blaker, J.,; Boccaccini, A. R., “Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering”, Biomaterials 2006, 27, 3413–3431.
-
(2006)
Biomaterials
, vol.27
, pp. 3413-3431
-
-
Rezwan, K.1
Chen, Q.2
Blaker, J.3
Boccaccini, A.R.4
-
42
-
-
42149178627
-
Biomaterials for bone tissue engineering
-
Stevens, M. M., “Biomaterials for bone tissue engineering”, Materials Today 2008, 11, 18–25.
-
(2008)
Materials Today
, vol.11
, pp. 18-25
-
-
Stevens, M.M.1
-
43
-
-
84874426867
-
Bone regeneration in osseous defects using hydroxyapatite graft and the extent of ossification in osseous defects treated without grafts: A comparative evaluation
-
Shankar, R.,; Singh, D.,; Shaikh, S.,; Singh, G.,; Yadav, A.,; Jain, R., “Bone regeneration in osseous defects using hydroxyapatite graft and the extent of ossification in osseous defects treated without grafts: A comparative evaluation”, Journal of Maxillofacial and Oral Surgery 2011, 10, 123–126.
-
(2011)
Journal of Maxillofacial and Oral Surgery
, vol.10
, pp. 123-126
-
-
Shankar, R.1
Singh, D.2
Shaikh, S.3
Singh, G.4
Yadav, A.5
Jain, R.6
-
44
-
-
0036533143
-
Structural evolution of sol–gel-derived hydroxyapatite
-
Liu, D.-M.,; Yang, Q.,; Troczynski, T.,; Tseng, W. J., “Structural evolution of sol–gel-derived hydroxyapatite”, Biomaterials 2002, 23, 1679–1687.
-
(2002)
Biomaterials
, vol.23
, pp. 1679-1687
-
-
Liu, D.-M.1
Yang, Q.2
Troczynski, T.3
Tseng, W.J.4
-
45
-
-
3242678855
-
Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder
-
Kim, I.-S.,; Kumta, P. N., “Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder”, Materials Science and Engineering B 2004, 111, 232–236.
-
(2004)
Materials Science and Engineering B
, vol.111
, pp. 232-236
-
-
Kim, I.-S.1
Kumta, P.N.2
-
46
-
-
84883168574
-
Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: A review
-
Zakaria, S. M.,; Sharif Zein, S. H.,; Othman, M. R.,; Yang, F.,; Jansen, J. A., “Nanophase hydroxyapatite as a biomaterial in advanced hard tissue engineering: A review”, Tissue Engineering Part B: Reviews 2013, 19, 431–441.
-
(2013)
Tissue Engineering Part B: Reviews
, vol.19
, pp. 431-441
-
-
Zakaria, S.M.1
Sharif Zein, S.H.2
Othman, M.R.3
Yang, F.4
Jansen, J.A.5
-
47
-
-
69249098359
-
Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route
-
Monmaturapoj, N., “Nano-size hydroxyapatite powders preparation by wet-chemical precipitation route”, Journal of Metals, Materials and Minerals 2008, 18, 15–20.
-
(2008)
Journal of Metals, Materials and Minerals
, vol.18
, pp. 15-20
-
-
Monmaturapoj, N.1
-
48
-
-
0030737002
-
Hydroxyapatite synthesized by a simplified hydrothermal method
-
Liu, H.-S.,; Chin, T. S.,; Lai, L.,; Chiu, S.,; Chung, K.,; Chang, C.,; Lui, M., “Hydroxyapatite synthesized by a simplified hydrothermal method”, Ceramics International 1997, 23, 19–25.
-
(1997)
Ceramics International
, vol.23
, pp. 19-25
-
-
Liu, H.-S.1
Chin, T.S.2
Lai, L.3
Chiu, S.4
Chung, K.5
Chang, C.6
Lui, M.7
-
49
-
-
0028467671
-
Hydrothermal synthesis of biocompatible whiskers
-
Yoshimura, M.,; Suda, H.,; Okamoto, K.,; Ioku, K., “Hydrothermal synthesis of biocompatible whiskers”, Journal of Materials Science 1994, 29, 3399–3402.
-
(1994)
Journal of Materials Science
, vol.29
, pp. 3399-3402
-
-
Yoshimura, M.1
Suda, H.2
Okamoto, K.3
Ioku, K.4
-
50
-
-
0343183035
-
Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids
-
Tas, A. C., “Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids”, Biomaterials 2000, 21, 1429–1438.
-
(2000)
Biomaterials
, vol.21
, pp. 1429-1438
-
-
Tas, A.C.1
-
51
-
-
0003855309
-
-
Springer Science & Business Media, Berlin
-
Ravaglioli, A.,; Krajewski, A., “Bioceramics: Materials, Properties, Applications”; Springer Science & Business Media, Berlin, 2012.
-
(2012)
Bioceramics: Materials, Properties, Applications
-
-
Ravaglioli, A.1
Krajewski, A.2
-
52
-
-
0036166394
-
Properties of osteoconductive biomaterials: Calcium phosphates
-
LeGeros, R. Z., “Properties of osteoconductive biomaterials: Calcium phosphates”, Clinical Orthopaedics and Related Research 2002, 395, 81–98.
-
(2002)
Clinical Orthopaedics and Related Research
, vol.395
, pp. 81-98
-
-
LeGeros, R.Z.1
-
53
-
-
28244454150
-
Hydration characteristics of alpha-tricalcium phosphates: Comparison of preparation routes
-
Camiré, C.,; Jegou, S.-J. S.,; Hansen, S.,; McCarthy, I.,; Lidgren, L., “Hydration characteristics of alpha-tricalcium phosphates: Comparison of preparation routes”, Journal of Applied Biomaterials & Biomechanics 2004, 3, 106–111.
-
(2004)
Journal of Applied Biomaterials & Biomechanics
, vol.3
, pp. 106-111
-
-
Camiré, C.1
Jegou, S.J.S.2
Hansen, S.3
McCarthy, I.4
Lidgren, L.5
-
54
-
-
38549173203
-
Synthesis and settings behavior of α-TCP from calcium deficient hyroxyapatite obtained by hydrothermal method
-
Jokic, B.,; Jankovic-Castvan, I.,; Veljovic, D.,; Bucevac, D.,; Obradovic-Djuricic, K.,; Petrovic, R.,; Janackovic, D., “Synthesis and settings behavior of α-TCP from calcium deficient hyroxyapatite obtained by hydrothermal method”, Journal of Optoelectronics and Advanced Materials 2007, 9, 1904–1910.
-
(2007)
Journal of Optoelectronics and Advanced Materials
, vol.9
, pp. 1904-1910
-
-
Jokic, B.1
Jankovic-Castvan, I.2
Veljovic, D.3
Bucevac, D.4
Obradovic-Djuricic, K.5
Petrovic, R.6
Janackovic, D.7
-
55
-
-
0028752886
-
Preparation of α-and β-tricalcium phosphate ceramics, with and without magnesium addition
-
Famery, R.,; Richard, N.,; Boch, P., “Preparation of α-and β-tricalcium phosphate ceramics, with and without magnesium addition”, Ceramics International 1994, 20, 327–336.
-
(1994)
Ceramics International
, vol.20
, pp. 327-336
-
-
Famery, R.1
Richard, N.2
Boch, P.3
-
56
-
-
58849109962
-
Obtainment of α-tricalcium phosphate by solution combustion synthesis method using urea as combustible
-
Trans Tech Publ
-
Volkmer, T. M.,; Bastos, L.,; Sousa, V.,; Santos, L., “Obtainment of α-tricalcium phosphate by solution combustion synthesis method using urea as combustible”, In Key Engineering Materials; Trans Tech Publ, 2009, pp. 591–594.
-
(2009)
In Key Engineering Materials
, pp. 591-594
-
-
Volkmer, T.M.1
Bastos, L.2
Sousa, V.3
Santos, L.4
-
57
-
-
3242724120
-
Natural and synthetic hydroxyapatite filled PCL: Mechanical properties and biocompatibility analysis
-
Calandrelli, L.,; Immirzi, B.,; Malinconico, M.,; Luessenheide, S.,; Passaro, I.,; Di Pasquale, R.,; Oliva, A., “Natural and synthetic hydroxyapatite filled PCL: Mechanical properties and biocompatibility analysis”, Journal of Bioactive and Compatible Polymers 2004, 19, 301–313.
-
(2004)
Journal of Bioactive and Compatible Polymers
, vol.19
, pp. 301-313
-
-
Calandrelli, L.1
Immirzi, B.2
Malinconico, M.3
Luessenheide, S.4
Passaro, I.5
Di Pasquale, R.6
Oliva, A.7
-
58
-
-
0035499350
-
Stem cells in tissue engineering
-
Bianco, P.,; Robey, P. G., “Stem cells in tissue engineering”, Nature 2001, 414, 118–121.
-
(2001)
Nature
, vol.414
, pp. 118-121
-
-
Bianco, P.1
Robey, P.G.2
-
59
-
-
80053414071
-
Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration
-
Springer, Berlin
-
Pielichowska, K.,; Blazewicz, S., “Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration”, In Biopolymers; Springer, Berlin, 2010, pp. 97–207.
-
(2010)
In Biopolymers
, pp. 97-207
-
-
Pielichowska, K.1
Blazewicz, S.2
-
60
-
-
77953397739
-
Biodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering
-
Huang, M.-N.,; Wang, Y.-L.,; Luo, Y.-F., “Biodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering”, Journal of Biomedical Science and Engineering 2009, 2, 36–40.
-
(2009)
Journal of Biomedical Science and Engineering
, vol.2
, pp. 36-40
-
-
Huang, M.-N.1
Wang, Y.-L.2
Luo, Y.-F.3
-
62
-
-
84862799085
-
Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review
-
Zhou, H.,; Lawrence, J. G.,; Bhaduri, S. B., “Fabrication aspects of PLA-CaP/PLGA-CaP composites for orthopedic applications: a review”, Acta Biomaterialia 2012, 8, 1999–2016.
-
(2012)
Acta Biomaterialia
, vol.8
, pp. 1999-2016
-
-
Zhou, H.1
Lawrence, J.G.2
Bhaduri, S.B.3
-
63
-
-
2342467977
-
Bioactive glasses for in situ tissue regeneration
-
Hench, L. L.,; Xynos, I. D.,; Polak, J. M., “Bioactive glasses for in situ tissue regeneration”, Journal of Biomaterials Science, Polymer Edition 2004, 15, 543–562.
-
(2004)
Journal of Biomaterials Science, Polymer Edition
, vol.15
, pp. 543-562
-
-
Hench, L.L.1
Xynos, I.D.2
Polak, J.M.3
-
64
-
-
0037114250
-
Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods
-
Koutsopoulos, S., “Synthesis and characterization of hydroxyapatite crystals: A review study on the analytical methods”, Journal of Biomedical Materials Research 2002, 62, 600–612.
-
(2002)
Journal of Biomedical Materials Research
, vol.62
, pp. 600-612
-
-
Koutsopoulos, S.1
-
65
-
-
0032785572
-
Bioactive glasses and glass-ceramics
-
Trans Tech Publ
-
Hench, L. L., “Bioactive glasses and glass-ceramics”, In Materials Science Forum; Trans Tech Publ, 1999, pp. 37–64.
-
(1999)
In Materials Science Forum
, pp. 37-64
-
-
Hench, L.L.1
-
66
-
-
80052271893
-
α-Tricalcium phosphate: synthesis, properties and biomedical applications
-
Carrodeguas, R. G.,; De Aza, S., “α-Tricalcium phosphate: synthesis, properties and biomedical applications”, Acta Biomaterialia 2011, 7, 3536–3546.
-
(2011)
Acta Biomaterialia
, vol.7
, pp. 3536-3546
-
-
Carrodeguas, R.G.1
De Aza, S.2
-
67
-
-
77956726321
-
Mechanical properties, electronic structure and bonding of α-and β-tricalcium phosphates with surface characterization
-
Liang, L.,; Rulis, P.,; Ching, W., “Mechanical properties, electronic structure and bonding of α-and β-tricalcium phosphates with surface characterization”, Acta Biomaterialia 2010, 6, 3763–3771.
-
(2010)
Acta Biomaterialia
, vol.6
, pp. 3763-3771
-
-
Liang, L.1
Rulis, P.2
Ching, W.3
-
68
-
-
0342618727
-
Surface modification of calcium hydroxyapatite with hexyl and decyl phosphates
-
Tanaka, H.,; Yasukawa, A.,; Kandori, K.,; Ishikawa, T., “Surface modification of calcium hydroxyapatite with hexyl and decyl phosphates”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 1997, 125, 53–62.
-
(1997)
Colloids and Surfaces A: Physicochemical and Engineering Aspects
, vol.125
, pp. 53-62
-
-
Tanaka, H.1
Yasukawa, A.2
Kandori, K.3
Ishikawa, T.4
-
69
-
-
0030087951
-
Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites
-
Dupraz, A.,; De Wijn, J.,; De Groot, K., “Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites”, Journal of Biomedical Materials Research 1996, 30, 231–238.
-
(1996)
Journal of Biomedical Materials Research
, vol.30
, pp. 231-238
-
-
Dupraz, A.1
De Wijn, J.2
De Groot, K.3
-
70
-
-
38349047838
-
Surface modification of hydroxyapatite by stearic acid: Characterization and in vitro behaviors
-
Li, Y.,; Weng, W., “Surface modification of hydroxyapatite by stearic acid: Characterization and in vitro behaviors”, Journal of Materials Science: Materials in Medicine 2008, 19, 19–25.
-
(2008)
Journal of Materials Science: Materials in Medicine
, vol.19
, pp. 19-25
-
-
Li, Y.1
Weng, W.2
-
71
-
-
0038462112
-
Surface modification of hydroxyapatite. Part I. Dodecyl alcohol
-
Borum-Nicholas, L.,; Wilson, O., “Surface modification of hydroxyapatite. Part I. Dodecyl alcohol”, Biomaterials 2003, 24, 3671–3679.
-
(2003)
Biomaterials
, vol.24
, pp. 3671-3679
-
-
Borum-Nicholas, L.1
Wilson, O.2
-
72
-
-
33750167966
-
Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups
-
Choi, H. W.,; Lee, H. J.,; Kim, K. J.,; Kim, H.-M.,; Lee, S. C., “Surface modification of hydroxyapatite nanocrystals by grafting polymers containing phosphonic acid groups”, Journal of Colloid and Interface Science 2006, 304, 277–281.
-
(2006)
Journal of Colloid and Interface Science
, vol.304
, pp. 277-281
-
-
Choi, H.W.1
Lee, H.J.2
Kim, K.J.3
Kim, H.-M.4
Lee, S.C.5
-
73
-
-
0030248988
-
Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable composite
-
Liu, Q.,; De Wijn, J. R.,; Bakker, D.,; Van Blitterswijk, C. A., “Surface modification of hydroxyapatite to introduce interfacial bonding with polyactiveTM 70/30 in a biodegradable composite”, Journal of Materials Science: Materials in Medicine 1996, 7, 551–557.
-
(1996)
Journal of Materials Science: Materials in Medicine
, vol.7
, pp. 551-557
-
-
Liu, Q.1
De Wijn, J.R.2
Bakker, D.3
Van Blitterswijk, C.A.4
-
74
-
-
0033060760
-
Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite
-
El-Ghannam, A.,; Ducheyne, P.,; Shapiro, I., “Effect of serum proteins on osteoblast adhesion to surface-modified bioactive glass and hydroxyapatite”, Journal of Orthopaedic Research 1999, 17, 340–345.
-
(1999)
Journal of Orthopaedic Research
, vol.17
, pp. 340-345
-
-
El-Ghannam, A.1
Ducheyne, P.2
Shapiro, I.3
-
75
-
-
39749165289
-
Surface modification of nanophase hydroxyapatite with chitosan
-
Wilson, O. C.,; Hull, J. R., “Surface modification of nanophase hydroxyapatite with chitosan”, Materials Science and Engineering: C 2008, 28, 434–437.
-
(2008)
Materials Science and Engineering: C
, vol.28
, pp. 434-437
-
-
Wilson, O.C.1
Hull, J.R.2
-
76
-
-
39749118075
-
Surface modification of nano-hydroxyapatite with silane agent
-
Liao, J.-G.,; Wang, X.-J.,; Zuo, Y., “Surface modification of nano-hydroxyapatite with silane agent”, Journal of Inorganic Materials-Beijing 2008, 23, 145–149.
-
(2008)
Journal of Inorganic Materials-Beijing
, vol.23
, pp. 145-149
-
-
Liao, J.-G.1
Wang, X.-J.2
Zuo, Y.3
-
77
-
-
3142590441
-
Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion
-
Durrieu, M.-C.,; Pallu, S.,; Guillemot, F.,; Bareille, R.,; Amédée, J.,; Baquey, C.,; Labrugère, C.,; Dard, M., “Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion”, Journal of Materials Science: Materials in Medicine 2004, 15, 779–786.
-
(2004)
Journal of Materials Science: Materials in Medicine
, vol.15
, pp. 779-786
-
-
Durrieu, M.-C.1
Pallu, S.2
Guillemot, F.3
Bareille, R.4
Amédée, J.5
Baquey, C.6
Labrugère, C.7
Dard, M.8
-
78
-
-
37449010582
-
Effect of silane KH-550 to polypropylene/brucite composite
-
Ma, Z.,; Wang, J.,; Zhang, X., “Effect of silane KH-550 to polypropylene/brucite composite”, Journal of Applied Polymer Science 2008, 107, 1000–1005.
-
(2008)
Journal of Applied Polymer Science
, vol.107
, pp. 1000-1005
-
-
Ma, Z.1
Wang, J.2
Zhang, X.3
-
79
-
-
33746109976
-
Recent developments in processing and surface modification of hydroxyapatite
-
Norton, J.,; Malik, K.,; Darr, J.,; Rehman, I., “Recent developments in processing and surface modification of hydroxyapatite”, Advances in Applied Ceramics 2006, 105, 113–139.
-
(2006)
Advances in Applied Ceramics
, vol.105
, pp. 113-139
-
-
Norton, J.1
Malik, K.2
Darr, J.3
Rehman, I.4
-
80
-
-
34548796573
-
Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation
-
Kim, H. W., “Biomedical nanocomposites of hydroxyapatite/polycaprolactone obtained by surfactant mediation”, Journal of Biomedical Materials Research Part A 2007, 83, 169–177.
-
(2007)
Journal of Biomedical Materials Research Part A
, vol.83
, pp. 169-177
-
-
Kim, H.W.1
-
81
-
-
75149140395
-
Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization
-
Karlinsey, R. L.,; Mackey, A. C.,; Walker, E. R.,; Frederick, K. E., “Preparation, characterization and in vitro efficacy of an acid-modified β-TCP material for dental hard-tissue remineralization”, Acta Biomaterialia 2010, 6, 969–978.
-
(2010)
Acta Biomaterialia
, vol.6
, pp. 969-978
-
-
Karlinsey, R.L.1
Mackey, A.C.2
Walker, E.R.3
Frederick, K.E.4
-
82
-
-
84892859766
-
Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials
-
Fan, R.,; Deng, X.,; Zhou, L.,; Gao, X.,; Fan, M.,; Wang, Y.,; Guo, G., “Injectable thermosensitive hydrogel composite with surface-functionalized calcium phosphate as raw materials”, International Journal of Nanomedicine 2014, 9, 615–626.
-
(2014)
International Journal of Nanomedicine
, vol.9
, pp. 615-626
-
-
Fan, R.1
Deng, X.2
Zhou, L.3
Gao, X.4
Fan, M.5
Wang, Y.6
Guo, G.7
-
83
-
-
84874039747
-
Functionalizing calcium phosphate biomaterials with antibacterial silver particles
-
Lee, J. S.,; Murphy, W. L., “Functionalizing calcium phosphate biomaterials with antibacterial silver particles”, Advanced Materials 2013, 25, 1173–1179.
-
(2013)
Advanced Materials
, vol.25
, pp. 1173-1179
-
-
Lee, J.S.1
Murphy, W.L.2
-
84
-
-
79957679446
-
Nanoscale hydroxyapatite particles for bone tissue engineering
-
Zhou, H.,; Lee, J., “Nanoscale hydroxyapatite particles for bone tissue engineering”, Acta Biomaterialia 2011, 7, 2769–2781.
-
(2011)
Acta Biomaterialia
, vol.7
, pp. 2769-2781
-
-
Zhou, H.1
Lee, J.2
-
85
-
-
1542358682
-
Hydroxyapatite particles as a controlled release carrier of protein
-
Matsumoto, T.,; Okazaki, M.,; Inoue, M.,; Yamaguchi, S.,; Kusunose, T.,; Toyonaga, T.,; Hamada, Y.,; Takahashi, J., “Hydroxyapatite particles as a controlled release carrier of protein”, Biomaterials 2004, 25, 3807–3812.
-
(2004)
Biomaterials
, vol.25
, pp. 3807-3812
-
-
Matsumoto, T.1
Okazaki, M.2
Inoue, M.3
Yamaguchi, S.4
Kusunose, T.5
Toyonaga, T.6
Hamada, Y.7
Takahashi, J.8
-
86
-
-
84922580497
-
The effect of nano-hydroxyapatite toothpaste on enamel surface remineralization. An in vitro study
-
Mielczarek, A.,; Michalik, J., “The effect of nano-hydroxyapatite toothpaste on enamel surface remineralization. An in vitro study”, American Journal of Dentistry 2014, 27, 287–290.
-
(2014)
American Journal of Dentistry
, vol.27
, pp. 287-290
-
-
Mielczarek, A.1
Michalik, J.2
-
87
-
-
0034489967
-
Hydroxyapatite and their use as coatings in dental implants: A review
-
Ong, J. L.,; Chan, D. C., “Hydroxyapatite and their use as coatings in dental implants: A review”, Critical Reviews™ in Biomedical Engineering 2000, 28, 667–707.
-
(2000)
Critical Reviews™ in Biomedical Engineering
, vol.28
, pp. 667-707
-
-
Ong, J.L.1
Chan, D.C.2
-
88
-
-
0035009578
-
Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: A comparative study 3 and 8 weeks after implantation in rabbit bone
-
Gauthier, O.,; Goyenvalle, E.,; Bouler, J.-M.,; Guicheux, J.,; Pilet, P.,; Weiss, P.,; Daculsi, G., “Macroporous biphasic calcium phosphate ceramics versus injectable bone substitute: A comparative study 3 and 8 weeks after implantation in rabbit bone”, Journal of Materials Science: Materials in Medicine 2001, 12, 385–390.
-
(2001)
Journal of Materials Science: Materials in Medicine
, vol.12
, pp. 385-390
-
-
Gauthier, O.1
Goyenvalle, E.2
Bouler, J.-M.3
Guicheux, J.4
Pilet, P.5
Weiss, P.6
Daculsi, G.7
-
89
-
-
84859213766
-
Interfacial study between high temperature SiO 2–B 2 O 3–AO–La 2 O 3 (A = Sr, Ba) glass seals and Crofer 22APU for solid oxide fuel cell applications
-
Kaur, G.,; Pandey, O.,; Singh, K., “Interfacial study between high temperature SiO 2–B 2 O 3–AO–La 2 O 3 (A = Sr, Ba) glass seals and Crofer 22APU for solid oxide fuel cell applications”, International Journal of Hydrogen Energy 2012, 37, 6862–6874.
-
(2012)
International Journal of Hydrogen Energy
, vol.37
, pp. 6862-6874
-
-
Kaur, G.1
Pandey, O.2
Singh, K.3
-
90
-
-
84888642572
-
A review of bioactive glasses: Their structure, properties, fabrication and apatite formation
-
Kaur, G.,; Pandey, O. P.,; Singh, K.,; Homa, D.,; Scott, B.,; Pickrell, G., “A review of bioactive glasses: Their structure, properties, fabrication and apatite formation”, Journal of Biomedical Materials Research Part A 2014, 102, 254–274.
-
(2014)
Journal of Biomedical Materials Research Part A
, vol.102
, pp. 254-274
-
-
Kaur, G.1
Pandey, O.P.2
Singh, K.3
Homa, D.4
Scott, B.5
Pickrell, G.6
-
91
-
-
0026298148
-
An investigation of bioactive glass powders by sol-gel processing
-
Li, R.,; Clark, A.,; Hench, L., “An investigation of bioactive glass powders by sol-gel processing”, Journal of Applied Biomaterials 1991, 2, 231–239.
-
(1991)
Journal of Applied Biomaterials
, vol.2
, pp. 231-239
-
-
Li, R.1
Clark, A.2
Hench, L.3
-
92
-
-
84965000258
-
Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications
-
Vichery, C.,; Nedelec, J.-M., “Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications”, Materials 2016, 9, 1–17.
-
(2016)
Materials
, vol.9
, pp. 1-17
-
-
Vichery, C.1
Nedelec, J.-M.2
-
93
-
-
79955589951
-
Bioactive glass in tissue engineering
-
Rahaman, M. N.,; Day, D. E.,; Bal, B. S.,; Fu, Q.,; Jung, S. B.,; Bonewald, L. F.,; Tomsia, A. P., “Bioactive glass in tissue engineering”, Acta Biomaterialia 2011, 7, 2355–2373.
-
(2011)
Acta Biomaterialia
, vol.7
, pp. 2355-2373
-
-
Rahaman, M.N.1
Day, D.E.2
Bal, B.S.3
Fu, Q.4
Jung, S.B.5
Bonewald, L.F.6
Tomsia, A.P.7
-
94
-
-
0030380048
-
In-vitro protein interactions with a bioactive gel-glass
-
Lobel, K.,; Hench, L., “In-vitro protein interactions with a bioactive gel-glass”, Journal of Sol-Gel Science and Technology 1996, 7, 69–76.
-
(1996)
Journal of Sol-Gel Science and Technology
, vol.7
, pp. 69-76
-
-
Lobel, K.1
Hench, L.2
-
95
-
-
0030298063
-
Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics
-
Ohgushi, H.,; Dohi, Y.,; Yoshikawa, T.,; Tamai, S.,; Tabata, S.,; Okunaga, K.,; Shibuya, T., “Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics”, Journal of Biomedical Materials Research 1996, 32, 341–348.
-
(1996)
Journal of Biomedical Materials Research
, vol.32
, pp. 341-348
-
-
Ohgushi, H.1
Dohi, Y.2
Yoshikawa, T.3
Tamai, S.4
Tabata, S.5
Okunaga, K.6
Shibuya, T.7
-
96
-
-
0032143779
-
Biomaterials: A forecast for the future
-
Hench, L. L., “Biomaterials: A forecast for the future”, Biomaterials 1998, 19, 1419–1423.
-
(1998)
Biomaterials
, vol.19
, pp. 1419-1423
-
-
Hench, L.L.1
-
97
-
-
0031149185
-
Evaluation of particulate Bioglass® in a rabbit radius ostectomy model
-
Wheeler, D.,; Stokes, K.,; Park, H.,; Hollinger, J., “Evaluation of particulate Bioglass® in a rabbit radius ostectomy model”, Journal of Biomedical Materials Research 1997, 35, 249–254.
-
(1997)
Journal of Biomedical Materials Research
, vol.35
, pp. 249-254
-
-
Wheeler, D.1
Stokes, K.2
Park, H.3
Hollinger, J.4
-
98
-
-
0032531297
-
Effect of bioactive glass particle size on osseous regeneration of cancellous defects
-
Wheeler, D.,; Stokes, K.,; Hoellrich, R.,; Chamberland, D.,; McLoughlin, S., “Effect of bioactive glass particle size on osseous regeneration of cancellous defects”, Journal of Biomedical Materials Research 1998, 41, 527–533.
-
(1998)
Journal of Biomedical Materials Research
, vol.41
, pp. 527-533
-
-
Wheeler, D.1
Stokes, K.2
Hoellrich, R.3
Chamberland, D.4
McLoughlin, S.5
-
99
-
-
0034307345
-
Development of soluble glasses for biomedical use Part II: The biological response of human osteoblast cell lines to phosphate-based soluble glasses
-
Salih, V.,; Franks, K.,; James, M.,; Hastings, G.,; Knowles, J.,; Olsen, I., “Development of soluble glasses for biomedical use Part II: The biological response of human osteoblast cell lines to phosphate-based soluble glasses”, Journal of Materials Science: Materials in Medicine 2000, 11, 615–620.
-
(2000)
Journal of Materials Science: Materials in Medicine
, vol.11
, pp. 615-620
-
-
Salih, V.1
Franks, K.2
James, M.3
Hastings, G.4
Knowles, J.5
Olsen, I.6
-
100
-
-
0032403767
-
Properties and cytotoxicity of water soluble Na 2 O–CaO–P 2 O 5 glasses
-
Uo, M.,; Mizuno, M.,; Kuboki, Y.,; Makishima, A.,; Watari, F., “Properties and cytotoxicity of water soluble Na 2 O–CaO–P 2 O 5 glasses”, Biomaterials 1998, 19, 2277–2284.
-
(1998)
Biomaterials
, vol.19
, pp. 2277-2284
-
-
Uo, M.1
Mizuno, M.2
Kuboki, Y.3
Makishima, A.4
Watari, F.5
-
101
-
-
0142165118
-
Phosphate glasses for tissue engineering: part 2. Processing and characterisation of a ternary-based P 2 O 5–CaO–Na 2 O glass fibre system
-
Ahmed, I.,; Lewis, M.,; Olsen, I.,; Knowles, J., “Phosphate glasses for tissue engineering: part 2. Processing and characterisation of a ternary-based P 2 O 5–CaO–Na 2 O glass fibre system”, Biomaterials 2004, 25, 501–507.
-
(2004)
Biomaterials
, vol.25
, pp. 501-507
-
-
Ahmed, I.1
Lewis, M.2
Olsen, I.3
Knowles, J.4
-
102
-
-
84885627837
-
Characterization and in vivo biological performance of biosilicate
-
Renno, A. C. M.,; Bossini, P. S.,; Crovace, M. C.,; Rodrigues, A. C. M.,; Zanotto, E. D.,; Parizotto, N. A., “Characterization and in vivo biological performance of biosilicate”, BioMed Research International 2013, 1–7
-
(2013)
BioMed Research International
, pp. 1-7
-
-
Renno, A.C.M.1
Bossini, P.S.2
Crovace, M.C.3
Rodrigues, A.C.M.4
Zanotto, E.D.5
Parizotto, N.A.6
-
103
-
-
44549087564
-
Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly (L-lactide) composites
-
Liu, A.,; Hong, Z.,; Zhuang, X.,; Chen, X.,; Cui, Y.,; Liu, Y.,; Jing, X., “Surface modification of bioactive glass nanoparticles and the mechanical and biological properties of poly (L-lactide) composites”, Acta Biomaterialia 2008, 4, 1005–1015.
-
(2008)
Acta Biomaterialia
, vol.4
, pp. 1005-1015
-
-
Liu, A.1
Hong, Z.2
Zhuang, X.3
Chen, X.4
Cui, Y.5
Liu, Y.6
Jing, X.7
-
104
-
-
20144385811
-
Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide
-
Qiu, X.,; Hong, Z.,; Hu, J.,; Chen, L.,; Chen, X.,; Jing, X., “Hydroxyapatite surface modified by L-lactic acid and its subsequent grafting polymerization of L-lactide”, Biomacromolecules 2005, 6, 1193–1199.
-
(2005)
Biomacromolecules
, vol.6
, pp. 1193-1199
-
-
Qiu, X.1
Hong, Z.2
Hu, J.3
Chen, L.4
Chen, X.5
Jing, X.6
-
105
-
-
70149110845
-
Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films
-
Gao, Y.,; Chang, J., “Surface modification of bioactive glasses and preparation of PDLLA/bioactive glass composite films”, Journal of Biomaterials Applications 2008, 119–138.
-
(2008)
Journal of Biomaterials Applications
, pp. 119-138
-
-
Gao, Y.1
Chang, J.2
-
106
-
-
0031081151
-
Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix
-
El-Ghannam, A.,; Ducheyne, P.,; Shapiro, I., “Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix”, Biomaterials 1997, 18, 295–303.
-
(1997)
Biomaterials
, vol.18
, pp. 295-303
-
-
El-Ghannam, A.1
Ducheyne, P.2
Shapiro, I.3
-
107
-
-
33751526939
-
The surface functionalization of 45S5 Bioglass®-based glass-ceramic scaffolds and its impact on bioactivity
-
Chen, Q.,; Rezwan, K.,; Armitage, D.,; Nazhat, S.,; Boccaccini, A., “The surface functionalization of 45S5 Bioglass®-based glass-ceramic scaffolds and its impact on bioactivity”, Journal of Materials Science: Materials in Medicine 2006, 17, 979–987.
-
(2006)
Journal of Materials Science: Materials in Medicine
, vol.17
, pp. 979-987
-
-
Chen, Q.1
Rezwan, K.2
Armitage, D.3
Nazhat, S.4
Boccaccini, A.5
-
108
-
-
68249142793
-
Surface functionalization of bioactive glasses
-
Verné, E.,; Vitale-Brovarone, C.,; Bui, E.,; Bianchi, C.,; Boccaccini, A., “Surface functionalization of bioactive glasses”, Journal of Biomedical Materials Research Part A 2009, 90, 981–992.
-
(2009)
Journal of Biomedical Materials Research Part A
, vol.90
, pp. 981-992
-
-
Verné, E.1
Vitale-Brovarone, C.2
Bui, E.3
Bianchi, C.4
Boccaccini, A.5
-
109
-
-
70349467718
-
Calcium phosphate surface treatment of bioactive glass causes a delay in early osteogenic differentiation of adipose stem cells
-
Haimi, S.,; Moimas, L.,; Pirhonen, E.,; Lindroos, B.,; Huhtala, H.,; Räty, S.,; Kuokkanen, H.,; Sándor, G. K.,; Miettinen, S.,; Suuronen, R., “Calcium phosphate surface treatment of bioactive glass causes a delay in early osteogenic differentiation of adipose stem cells”, Journal of Biomedical Materials Research Part A 2009, 91, 540–547.
-
(2009)
Journal of Biomedical Materials Research Part A
, vol.91
, pp. 540-547
-
-
Haimi, S.1
Moimas, L.2
Pirhonen, E.3
Lindroos, B.4
Huhtala, H.5
Räty, S.6
Kuokkanen, H.7
Sándor, G.K.8
Miettinen, S.9
Suuronen, R.10
-
110
-
-
33845296893
-
Bioactive glasses for nonbearing applications in total joint replacement
-
Elsevier, Amsterdam
-
Rahaman, M. N.,; Brown, R. F.,; Bal, B. S.,; Day, D. E., “Bioactive glasses for nonbearing applications in total joint replacement”, In Seminars in Arthroplasty; Elsevier, Amsterdam, 2006, pp. 102–112.
-
(2006)
In Seminars in Arthroplasty
, pp. 102-112
-
-
Rahaman, M.N.1
Brown, R.F.2
Bal, B.S.3
Day, D.E.4
-
111
-
-
0021690284
-
Surface-active Biomaterials
-
Hench, L. L.,; Wilson, J., “Surface-active Biomaterials”, Science 1984, 226, 630–636.
-
(1984)
Science
, vol.226
, pp. 630-636
-
-
Hench, L.L.1
Wilson, J.2
-
112
-
-
84870253740
-
Review of bioactive glass: from Hench to hybrids
-
Jones, J. R., “Review of bioactive glass: from Hench to hybrids”, Acta Biomaterialia 2013, 9, 4457–4486.
-
(2013)
Acta Biomaterialia
, vol.9
, pp. 4457-4486
-
-
Jones, J.R.1
-
113
-
-
0033690502
-
Novel bioactive functionally graded coatings on Ti6Al4V
-
Gomez-Vega, J. M.,; Saiz, E.,; Tomsia, A. P.,; Oku, T.,; Suganuma, K.,; Marshall, G. W.,; Marshall, S. J., “Novel bioactive functionally graded coatings on Ti6Al4V”, Advanced Materials 2000, 12, 894–898.
-
(2000)
Advanced Materials
, vol.12
, pp. 894-898
-
-
Gomez-Vega, J.M.1
Saiz, E.2
Tomsia, A.P.3
Oku, T.4
Suganuma, K.5
Marshall, G.W.6
Marshall, S.J.7
-
114
-
-
79952777829
-
Bioactive composites for bone tissue engineering
-
Tanner, K., “Bioactive composites for bone tissue engineering”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 2010, 224, 1359–1372.
-
(2010)
Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine
, vol.224
, pp. 1359-1372
-
-
Tanner, K.1
-
115
-
-
33745771164
-
Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering
-
Thomas, V.,; Jagani, S.,; Johnson, K.,; Jose, M. V.,; Dean, D. R.,; Vohra, Y. K.,; Nyairo, E., “Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering”, Journal of Nanoscience and Nanotechnology 2006, 6, 487–493.
-
(2006)
Journal of Nanoscience and Nanotechnology
, vol.6
, pp. 487-493
-
-
Thomas, V.1
Jagani, S.2
Johnson, K.3
Jose, M.V.4
Dean, D.R.5
Vohra, Y.K.6
Nyairo, E.7
-
116
-
-
2642580599
-
Direct fabrication of composite and ceramic hollow nanofibers by electrospinning
-
Li, D.,; Xia, Y., “Direct fabrication of composite and ceramic hollow nanofibers by electrospinning”, Nano Letters 2004, 4, 933–938.
-
(2004)
Nano Letters
, vol.4
, pp. 933-938
-
-
Li, D.1
Xia, Y.2
-
117
-
-
70349994292
-
Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application
-
Yang, F.,; Both, S. K.,; Yang, X.,; Walboomers, X. F.,; Jansen, J. A., “Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application”, Acta Biomaterialia 2009, 5, 3295–3304.
-
(2009)
Acta Biomaterialia
, vol.5
, pp. 3295-3304
-
-
Yang, F.1
Both, S.K.2
Yang, X.3
Walboomers, X.F.4
Jansen, J.A.5
-
118
-
-
2442419695
-
Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite
-
Liao, S.,; Cui, F.,; Zhang, W.,; Feng, Q., “Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2004, 69, 158–165.
-
(2004)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.69
, pp. 158-165
-
-
Liao, S.1
Cui, F.2
Zhang, W.3
Feng, Q.4
-
119
-
-
3042782581
-
Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems
-
Hutmacher, D. W.,; Sittinger, M.,; Risbud, M. V., “Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems”, Trends in Biotechnology 2004, 22, 354–362.
-
(2004)
Trends in Biotechnology
, vol.22
, pp. 354-362
-
-
Hutmacher, D.W.1
Sittinger, M.2
Risbud, M.V.3
-
120
-
-
37549037519
-
Development of a 95/5 poly (L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering
-
Simpson, R. L.,; Wiria, F. E.,; Amis, A. A.,; Chua, C. K.,; Leong, K. F.,; Hansen, U. N.,; Chandrasekaran, M.,; Lee, M. W., “Development of a 95/5 poly (L-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008, 84, 17–25.
-
(2008)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.84
, pp. 17-25
-
-
Simpson, R.L.1
Wiria, F.E.2
Amis, A.A.3
Chua, C.K.4
Leong, K.F.5
Hansen, U.N.6
Chandrasekaran, M.7
Lee, M.W.8
-
121
-
-
0036191695
-
The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques
-
Yang, S.,; Leong, K.-F.,; Du, Z.,; Chua, C.-K., “The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques”, Tissue Engineering 2002, 8, 1–11.
-
(2002)
Tissue Engineering
, vol.8
, pp. 1-11
-
-
Yang, S.1
Leong, K.-F.2
Du, Z.3
Chua, C.-K.4
-
122
-
-
21444443609
-
Selective laser sintering of biocompatible polymers for applications in tissue engineering
-
Tan, K.,; Chua, C.,; Leong, K.,; Cheah, C.,; Gui, W.,; Tan, W.,; Wiria, F., “Selective laser sintering of biocompatible polymers for applications in tissue engineering”, Biomedical Materials and Engineering 2005, 15, 113–124.
-
(2005)
Biomedical Materials and Engineering
, vol.15
, pp. 113-124
-
-
Tan, K.1
Chua, C.2
Leong, K.3
Cheah, C.4
Gui, W.5
Tan, W.6
Wiria, F.7
-
123
-
-
0032212853
-
Hydroxyapatite fiber reinforced poly (α-hydroxy ester) foams for bone regeneration
-
Thomson, R. C.,; Yaszemski, M. J.,; Powers, J. M.,; Mikos, A. G., “Hydroxyapatite fiber reinforced poly (α-hydroxy ester) foams for bone regeneration”, Biomaterials 1998, 19, 1935–1943.
-
(1998)
Biomaterials
, vol.19
, pp. 1935-1943
-
-
Thomson, R.C.1
Yaszemski, M.J.2
Powers, J.M.3
Mikos, A.G.4
-
124
-
-
12444344779
-
Osteoblast growth and function in porous poly ϵ-caprolactone matrices for bone repair: A preliminary study
-
Ciapetti, G.,; Ambrosio, L.,; Savarino, L.,; Granchi, D.,; Cenni, E.,; Baldini, N.,; Pagani, S.,; Guizzardi, S.,; Causa, F.,; Giunti, A., “Osteoblast growth and function in porous poly ϵ-caprolactone matrices for bone repair: A preliminary study”, Biomaterials 2003, 24, 3815–3824.
-
(2003)
Biomaterials
, vol.24
, pp. 3815-3824
-
-
Ciapetti, G.1
Ambrosio, L.2
Savarino, L.3
Granchi, D.4
Cenni, E.5
Baldini, N.6
Pagani, S.7
Guizzardi, S.8
Causa, F.9
Giunti, A.10
-
125
-
-
78651563594
-
Preparation of polyoxymethylene/hydroxyapatite nanocomposites by melt processing
-
Pielichowska, K., “Preparation of polyoxymethylene/hydroxyapatite nanocomposites by melt processing”, International Journal of Material Forming 2008, 1, 941–944.
-
(2008)
International Journal of Material Forming
, vol.1
, pp. 941-944
-
-
Pielichowska, K.1
-
126
-
-
0029253379
-
A novel method to fabricate bioabsorbable scaffolds
-
Whang, K.,; Thomas, C.,; Healy, K.,; Nuber, G., “A novel method to fabricate bioabsorbable scaffolds”, Polymer 1995, 36, 837–842.
-
(1995)
Polymer
, vol.36
, pp. 837-842
-
-
Whang, K.1
Thomas, C.2
Healy, K.3
Nuber, G.4
-
127
-
-
0032488267
-
Open pore biodegradable matrices formed with gas foaming
-
Harris, L. D.,; Kim, B.-S.,; Mooney, D. J., “Open pore biodegradable matrices formed with gas foaming”, Journal of Biomedical Materials Research 1998, 42, 396–402.
-
(1998)
Journal of Biomedical Materials Research
, vol.42
, pp. 396-402
-
-
Harris, L.D.1
Kim, B.-S.2
Mooney, D.J.3
-
128
-
-
0002969423
-
Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation
-
Nam, Y. S.,; Park, T. G., “Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation”, Journal of Biomedical Materials Research 1999, 47, 8–17.
-
(1999)
Journal of Biomedical Materials Research
, vol.47
, pp. 8-17
-
-
Nam, Y.S.1
Park, T.G.2
-
129
-
-
34249030278
-
An electrospun triphasic nanofibrous scaffold for bone tissue engineering
-
Catledge, S.,; Clem, W.,; Shrikishen, N.,; Chowdhury, S.,; Stanishevsky, A.,; Koopman, M.,; Vohra, Y., “An electrospun triphasic nanofibrous scaffold for bone tissue engineering”, Biomedical Materials 2007, 2, 142–150.
-
(2007)
Biomedical Materials
, vol.2
, pp. 142-150
-
-
Catledge, S.1
Clem, W.2
Shrikishen, N.3
Chowdhury, S.4
Stanishevsky, A.5
Koopman, M.6
Vohra, Y.7
-
130
-
-
84875212234
-
Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite
-
Jaiswal, A.,; Chhabra, H.,; Soni, V.,; Bellare, J., “Enhanced mechanical strength and biocompatibility of electrospun polycaprolactone-gelatin scaffold with surface deposited nano-hydroxyapatite”, Materials Science and Engineering: C 2013, 33, 2376–2385.
-
(2013)
Materials Science and Engineering: C
, vol.33
, pp. 2376-2385
-
-
Jaiswal, A.1
Chhabra, H.2
Soni, V.3
Bellare, J.4
-
131
-
-
77952728005
-
Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells
-
Chuenjitkuntaworn, B.,; Inrung, W.,; Damrongsri, D.,; Mekaapiruk, K.,; Supaphol, P.,; Pavasant, P., “Polycaprolactone/hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cells”, Journal of Biomedical Materials Research Part A 2010, 94, 241–251.
-
(2010)
Journal of Biomedical Materials Research Part A
, vol.94
, pp. 241-251
-
-
Chuenjitkuntaworn, B.1
Inrung, W.2
Damrongsri, D.3
Mekaapiruk, K.4
Supaphol, P.5
Pavasant, P.6
-
132
-
-
80053970001
-
The effect of fluorine content on the mechanical properties of poly (ϵ-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone-tissue engineering
-
Johari, N.,; Fathi, M. H.,; Golozar, M. A., “The effect of fluorine content on the mechanical properties of poly (ϵ-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone-tissue engineering”, Ceramics International 2011, 37, 3247–3251.
-
(2011)
Ceramics International
, vol.37
, pp. 3247-3251
-
-
Johari, N.1
Fathi, M.H.2
Golozar, M.A.3
-
133
-
-
33645923398
-
Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy
-
Verma, D.,; Katti, K.,; Katti, D., “Experimental investigation of interfaces in hydroxyapatite/polyacrylic acid/polycaprolactone composites using photoacoustic FTIR spectroscopy”, Journal of Biomedical Materials Research Part A 2006, 77, 59–66.
-
(2006)
Journal of Biomedical Materials Research Part A
, vol.77
, pp. 59-66
-
-
Verma, D.1
Katti, K.2
Katti, D.3
-
134
-
-
0034332587
-
A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings
-
Huang, L.-Y.,; Xu, K.-W.,; Lu, J., “A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings”, Journal of Materials Science: Materials in Medicine 2000, 11, 667–673.
-
(2000)
Journal of Materials Science: Materials in Medicine
, vol.11
, pp. 667-673
-
-
Huang, L.-Y.1
Xu, K.-W.2
Lu, J.3
-
135
-
-
75049085000
-
Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering
-
Fabbri, P.,; Bondioli, F.,; Messori, M.,; Bartoli, C.,; Dinucci, D.,; Chiellini, F., “Porous scaffolds of polycaprolactone reinforced with in situ generated hydroxyapatite for bone tissue engineering”, Journal of Materials Science: Materials in Medicine 2010, 21, 343–351.
-
(2010)
Journal of Materials Science: Materials in Medicine
, vol.21
, pp. 343-351
-
-
Fabbri, P.1
Bondioli, F.2
Messori, M.3
Bartoli, C.4
Dinucci, D.5
Chiellini, F.6
-
136
-
-
84869094330
-
In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol–gel process
-
Rezaei, A.,; Mohammadi, M., “In vitro study of hydroxyapatite/polycaprolactone (HA/PCL) nanocomposite synthesized by an in situ sol–gel process”, Materials Science and Engineering: C 2013, 33, 390–396.
-
(2013)
Materials Science and Engineering: C
, vol.33
, pp. 390-396
-
-
Rezaei, A.1
Mohammadi, M.2
-
137
-
-
84881462970
-
Polycaprolactone scaffolds and hydroxyapatite/polycaprolactone composite scaffolds for bone tissue engineering
-
Sultana, N.,; Hayat Khan, T., “Polycaprolactone scaffolds and hydroxyapatite/polycaprolactone composite scaffolds for bone tissue engineering”, Journal of Bionanoscience 2013, 7, 169–173.
-
(2013)
Journal of Bionanoscience
, vol.7
, pp. 169-173
-
-
Sultana, N.1
Hayat Khan, T.2
-
138
-
-
47949116309
-
Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching
-
Yang, Y.,; Zhao, J.,; Zhao, Y.,; Wen, L.,; Yuan, X.,; Fan, Y., “Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching”, Journal of Applied Polymer Science 2008, 109, 1232–1241.
-
(2008)
Journal of Applied Polymer Science
, vol.109
, pp. 1232-1241
-
-
Yang, Y.1
Zhao, J.2
Zhao, Y.3
Wen, L.4
Yuan, X.5
Fan, Y.6
-
139
-
-
34447325926
-
Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix
-
Nichols, H. L.,; Zhang, N.,; Zhang, J.,; Shi, D.,; Bhaduri, S.,; Wen, X., “Coating nanothickness degradable films on nanocrystalline hydroxyapatite particles to improve the bonding strength between nanohydroxyapatite and degradable polymer matrix”, Journal of Biomedical Materials Research Part A 2007, 82, 373–382.
-
(2007)
Journal of Biomedical Materials Research Part A
, vol.82
, pp. 373-382
-
-
Nichols, H.L.1
Zhang, N.2
Zhang, J.3
Shi, D.4
Bhaduri, S.5
Wen, X.6
-
140
-
-
8544281701
-
Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene
-
Gong, X.-H.,; Tang, C.-Y.,; Hu, H.-C.,; Zhou, X.-P.,; Xie, X.-L., “Improved mechanical properties of HIPS/hydroxyapatite composites by surface modification of hydroxyapatite via in-situ polymerization of styrene”, Journal of Materials Science: Materials in Medicine 2004, 15, 1141–1146.
-
(2004)
Journal of Materials Science: Materials in Medicine
, vol.15
, pp. 1141-1146
-
-
Gong, X.-H.1
Tang, C.-Y.2
Hu, H.-C.3
Zhou, X.-P.4
Xie, X.-L.5
-
141
-
-
13844280349
-
Structure of synthetic calcium hydroxyapatite particles modified with pyrophosphoric acid
-
Tanaka, H.,; Futaoka, M.,; Hino, R.,; Kandori, K.,; Ishikawa, T., “Structure of synthetic calcium hydroxyapatite particles modified with pyrophosphoric acid”, Journal of Colloid and Interface Science 2005, 283, 609–612.
-
(2005)
Journal of Colloid and Interface Science
, vol.283
, pp. 609-612
-
-
Tanaka, H.1
Futaoka, M.2
Hino, R.3
Kandori, K.4
Ishikawa, T.5
-
142
-
-
77953325379
-
Improved mechanical properties of hydroxyapatite/poly (ϵ-caprolactone) scaffolds by surface modification of hydroxyapatite
-
Wang, Y.,; Dai, J.,; Zhang, Q.,; Xiao, Y.,; Lang, M., “Improved mechanical properties of hydroxyapatite/poly (ϵ-caprolactone) scaffolds by surface modification of hydroxyapatite”, Applied Surface Science 2010, 256, 6107–6112.
-
(2010)
Applied Surface Science
, vol.256
, pp. 6107-6112
-
-
Wang, Y.1
Dai, J.2
Zhang, Q.3
Xiao, Y.4
Lang, M.5
-
143
-
-
0037299655
-
Development and properties of polycaprolactone/hydroxyapatite composite biomaterials
-
Azevedo, M.,; Reis, R.,; Claase, M.,; Grijpma, D.,; Feijen, J., “Development and properties of polycaprolactone/hydroxyapatite composite biomaterials”, Journal of Materials Science: Materials in Medicine 2003, 14, 103–107.
-
(2003)
Journal of Materials Science: Materials in Medicine
, vol.14
, pp. 103-107
-
-
Azevedo, M.1
Reis, R.2
Claase, M.3
Grijpma, D.4
Feijen, J.5
-
144
-
-
33750504655
-
Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites
-
Lee, H. J.,; Choi, H. W.,; Kim, K. J.,; Lee, S. C., “Modification of hydroxyapatite nanosurfaces for enhanced colloidal stability and improved interfacial adhesion in nanocomposites”, Chemistry of Materials 2006, 18, 5111–5118.
-
(2006)
Chemistry of Materials
, vol.18
, pp. 5111-5118
-
-
Lee, H.J.1
Choi, H.W.2
Kim, K.J.3
Lee, S.C.4
-
145
-
-
34247508561
-
The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly (ϵ-caprolactone)/hydroxyapatite nanocomposites
-
Lee, H. J.,; Kim, S. E.,; Choi, H. W.,; Kim, C. W.,; Kim, K. J.,; Lee, S. C., “The effect of surface-modified nano-hydroxyapatite on biocompatibility of poly (ϵ-caprolactone)/hydroxyapatite nanocomposites”, European Polymer Journal 2007, 43, 1602–1608.
-
(2007)
European Polymer Journal
, vol.43
, pp. 1602-1608
-
-
Lee, H.J.1
Kim, S.E.2
Choi, H.W.3
Kim, C.W.4
Kim, K.J.5
Lee, S.C.6
-
146
-
-
84941944801
-
Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro
-
Shor, L.,; Güçeri, S.,; Wen, X.,; Gandhi, M.,; Sun, W., “Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro”, Biomaterials 2007, 28, 5291–5297.
-
(2007)
Biomaterials
, vol.28
, pp. 5291-5297
-
-
Shor, L.1
Güçeri, S.2
Wen, X.3
Gandhi, M.4
Sun, W.5
-
147
-
-
66249089054
-
In vitro and animal study of novel nano-hydroxyapatite/poly (ϵ-caprolactone) composite scaffolds fabricated by layer manufacturing process
-
Heo, S.-J.,; Kim, S.-E.,; Wei, J.,; Kim, D. H.,; Hyun, Y.-T.,; Yun, H.-S.,; Kim, H. K.,; Yoon, T. R.,; Kim, S.-H.,; Park, S.-A., “In vitro and animal study of novel nano-hydroxyapatite/poly (ϵ-caprolactone) composite scaffolds fabricated by layer manufacturing process”, Tissue Engineering Part A 2008, 15, 977–989.
-
(2008)
Tissue Engineering Part A
, vol.15
, pp. 977-989
-
-
Heo, S.-J.1
Kim, S.-E.2
Wei, J.3
Kim, D.H.4
Hyun, Y.-T.5
Yun, H.-S.6
Kim, H.K.7
Yoon, T.R.8
Kim, S.-H.9
Park, S.-A.10
-
148
-
-
62249156226
-
Fabrication and characterization of novel nano-and micro-HA/PCL composite scaffolds using a modified rapid prototyping process
-
Heo, S. J.,; Kim, S. E.,; Wei, J.,; Hyun, Y. T.,; Yun, H. S.,; Kim, D. H.,; Shin, J. W.,; Shin, J. W., “Fabrication and characterization of novel nano-and micro-HA/PCL composite scaffolds using a modified rapid prototyping process”, Journal of Biomedical Materials Research Part A 2009, 89, 108–116.
-
(2009)
Journal of Biomedical Materials Research Part A
, vol.89
, pp. 108-116
-
-
Heo, S.J.1
Kim, S.E.2
Wei, J.3
Hyun, Y.T.4
Yun, H.S.5
Kim, D.H.6
Shin, J.W.7
Shin, J.W.8
-
149
-
-
0345256537
-
Hydroxyapatite/poly (ϵ-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery
-
Kim, H.-W.,; Knowles, J. C.,; Kim, H.-E., “Hydroxyapatite/poly (ϵ-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery”, Biomaterials 2004, 25, 1279–1287.
-
(2004)
Biomaterials
, vol.25
, pp. 1279-1287
-
-
Kim, H.-W.1
Knowles, J.C.2
Kim, H.-E.3
-
150
-
-
77950595308
-
The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds
-
Zhao, J.,; Duan, K.,; Zhang, J.,; Lu, X.,; Weng, J., “The influence of polymer concentrations on the structure and mechanical properties of porous polycaprolactone-coated hydroxyapatite scaffolds”, Applied Surface Science 2010, 256, 4586–4590.
-
(2010)
Applied Surface Science
, vol.256
, pp. 4586-4590
-
-
Zhao, J.1
Duan, K.2
Zhang, J.3
Lu, X.4
Weng, J.5
-
151
-
-
30544447793
-
Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles
-
Wutticharoenmongkol, P.,; Sanchavanakit, N.,; Pavasant, P.,; Supaphol, P., “Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles”, Macromolecular Bioscience 2006, 6, 70–77.
-
(2006)
Macromolecular Bioscience
, vol.6
, pp. 70-77
-
-
Wutticharoenmongkol, P.1
Sanchavanakit, N.2
Pavasant, P.3
Supaphol, P.4
-
152
-
-
33745789898
-
Novel bone scaffolds of electrospun polycaprolactone fibers filled with nanoparticles
-
Wutticharoenmongkol, P.,; Sanchavanakit, N.,; Pavasant, P.,; Supaphol, P., “Novel bone scaffolds of electrospun polycaprolactone fibers filled with nanoparticles”, Journal of Nanoscience and Nanotechnology 2006, 6, 514–522.
-
(2006)
Journal of Nanoscience and Nanotechnology
, vol.6
, pp. 514-522
-
-
Wutticharoenmongkol, P.1
Sanchavanakit, N.2
Pavasant, P.3
Supaphol, P.4
-
153
-
-
34548257397
-
Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles
-
Wutticharoenmongkol, P.,; Pavasant, P.,; Supaphol, P., “Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles”, Biomacromolecules 2007, 8, 2602–2610.
-
(2007)
Biomacromolecules
, vol.8
, pp. 2602-2610
-
-
Wutticharoenmongkol, P.1
Pavasant, P.2
Supaphol, P.3
-
154
-
-
33947526994
-
Biocomposite nanofibres and osteoblasts for bone tissue engineering
-
Venugopal, J.,; Vadgama, P.,; Kumar, T. S.,; Ramakrishna, S., “Biocomposite nanofibres and osteoblasts for bone tissue engineering”, Nanotechnology 2007, 18, 055101.
-
(2007)
Nanotechnology
, vol.18
, pp. 55101
-
-
Venugopal, J.1
Vadgama, P.2
Kumar, T.S.3
Ramakrishna, S.4
-
155
-
-
11144350558
-
Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds
-
Zhang, Y.,; Ouyang, H.,; Lim, C. T.,; Ramakrishna, S.,; Huang, Z. M., “Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005, 72, 156–165.
-
(2005)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.72
, pp. 156-165
-
-
Zhang, Y.1
Ouyang, H.2
Lim, C.T.3
Ramakrishna, S.4
Huang, Z.M.5
-
156
-
-
74749101498
-
A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent
-
Ashokan, A.,; Menon, D.,; Nair, S.,; Koyakutty, M., “A molecular receptor targeted, hydroxyapatite nanocrystal based multi-modal contrast agent”, Biomaterials 2010, 31, 2606–2616.
-
(2010)
Biomaterials
, vol.31
, pp. 2606-2616
-
-
Ashokan, A.1
Menon, D.2
Nair, S.3
Koyakutty, M.4
-
157
-
-
84911915610
-
MR functional nano-hydroxyapatite incorporated PCL composite scaffolds for in situ monitoring of bone tissue regeneration by MRI
-
Ganesh, N.,; Ashokan, A.,; Rajeshkannan, R.,; Chennazhi, K.,; Koyakutty, M.,; Nair, S., “MR functional nano-hydroxyapatite incorporated PCL composite scaffolds for in situ monitoring of bone tissue regeneration by MRI”, Tissue Eng Part A 2014, 20, 2783–2794.
-
(2014)
Tissue Eng Part A
, vol.20
, pp. 2783-2794
-
-
Ganesh, N.1
Ashokan, A.2
Rajeshkannan, R.3
Chennazhi, K.4
Koyakutty, M.5
Nair, S.6
-
158
-
-
41049099146
-
Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique
-
Lebourg, M.,; Serra, R. S.,; Estellés, J. M.,; Sánchez, F. H.,; Ribelles, J. G.,; Antón, J. S., “Biodegradable polycaprolactone scaffold with controlled porosity obtained by modified particle-leaching technique”, Journal of Materials Science: Materials in Medicine 2008, 19, 2047–2053.
-
(2008)
Journal of Materials Science: Materials in Medicine
, vol.19
, pp. 2047-2053
-
-
Lebourg, M.1
Serra, R.S.2
Estellés, J.M.3
Sánchez, F.H.4
Ribelles, J.G.5
Antón, J.S.6
-
159
-
-
0033527926
-
In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering
-
Marra, K. G.,; Szem, J. W.,; Kumta, P. N.,; DiMilla, P. A.,; Weiss, L. E., “In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering”, Journal of Biomedical Materials Research 1999, 47, 324–335.
-
(1999)
Journal of Biomedical Materials Research
, vol.47
, pp. 324-335
-
-
Marra, K.G.1
Szem, J.W.2
Kumta, P.N.3
DiMilla, P.A.4
Weiss, L.E.5
-
160
-
-
77956909529
-
Hybrid composite scaffolds prepared by sol–gel method for bone regeneration
-
Raucci, M. G.,; Guarino, V.,; Ambrosio, L., “Hybrid composite scaffolds prepared by sol–gel method for bone regeneration”, Composites Science and Technology 2010, 70, 1861–1868.
-
(2010)
Composites Science and Technology
, vol.70
, pp. 1861-1868
-
-
Raucci, M.G.1
Guarino, V.2
Ambrosio, L.3
-
161
-
-
47949128969
-
The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration
-
Guarino, V.,; Causa, F.,; Netti, P. A.,; Ciapetti, G.,; Pagani, S.,; Martini, D.,; Baldini, N.,; Ambrosio, L., “The role of hydroxyapatite as solid signal on performance of PCL porous scaffolds for bone tissue regeneration”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008, 86, 548–557.
-
(2008)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.86
, pp. 548-557
-
-
Guarino, V.1
Causa, F.2
Netti, P.A.3
Ciapetti, G.4
Pagani, S.5
Martini, D.6
Baldini, N.7
Ambrosio, L.8
-
162
-
-
42149141374
-
Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells
-
Venugopal, J.,; Low, S.,; Choon, A. T.,; Kumar, A. B.,; Ramakrishna, S., “Electrospun-modified nanofibrous scaffolds for the mineralization of osteoblast cells”, Journal of Biomedical Materials Research Part A 2008, 85, 408–417.
-
(2008)
Journal of Biomedical Materials Research Part A
, vol.85
, pp. 408-417
-
-
Venugopal, J.1
Low, S.2
Choon, A.T.3
Kumar, A.B.4
Ramakrishna, S.5
-
163
-
-
13444311912
-
Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity
-
Kim, H.-W.,; Lee, E.-J.,; Kim, H.-E.,; Salih, V.,; Knowles, J. C., “Effect of fluoridation of hydroxyapatite in hydroxyapatite-polycaprolactone composites on osteoblast activity”, Biomaterials 2005, 26, 4395–4404.
-
(2005)
Biomaterials
, vol.26
, pp. 4395-4404
-
-
Kim, H.-W.1
Lee, E.-J.2
Kim, H.-E.3
Salih, V.4
Knowles, J.C.5
-
164
-
-
33750618845
-
Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering
-
Choong, C. S.,; Hutmacher, D. W.,; Triffitt, J. T., “Co-culture of bone marrow fibroblasts and endothelial cells on modified polycaprolactone substrates for enhanced potentials in bone tissue engineering”, Tissue Engineering 2006, 12, 2521–2531.
-
(2006)
Tissue Engineering
, vol.12
, pp. 2521-2531
-
-
Choong, C.S.1
Hutmacher, D.W.2
Triffitt, J.T.3
-
165
-
-
8144227180
-
Rapid prototyping in tissue engineering: challenges and potential
-
Yeong, W.-Y.,; Chua, C.-K.,; Leong, K.-F.,; Chandrasekaran, M., “Rapid prototyping in tissue engineering: challenges and potential”, Trends in Biotechnology 2004, 22, 643–652.
-
(2004)
Trends in Biotechnology
, vol.22
, pp. 643-652
-
-
Yeong, W.-Y.1
Chua, C.-K.2
Leong, K.-F.3
Chandrasekaran, M.4
-
166
-
-
3242700527
-
Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds
-
Sachlos, E.,; Czernuszka, J., “Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds”, Eur Cell Mater 2003, 5, 39–40.
-
(2003)
Eur Cell Mater
, vol.5
, pp. 39-40
-
-
Sachlos, E.1
Czernuszka, J.2
-
167
-
-
33751346057
-
Poly-ϵ-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering
-
Wiria, F.,; Leong, K.,; Chua, C.,; Liu, Y., “Poly-ϵ-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering”, Acta Biomaterialia 2007, 3, 1–12.
-
(2007)
Acta Biomaterialia
, vol.3
, pp. 1-12
-
-
Wiria, F.1
Leong, K.2
Chua, C.3
Liu, Y.4
-
168
-
-
77955868224
-
Selective laser sintering of hydroxyapatite/poly-ϵ-caprolactone scaffolds
-
Eosoly, S.,; Brabazon, D.,; Lohfeld, S.,; Looney, L., “Selective laser sintering of hydroxyapatite/poly-ϵ-caprolactone scaffolds”, Acta Biomaterialia 2010, 6, 2511–2517.
-
(2010)
Acta Biomaterialia
, vol.6
, pp. 2511-2517
-
-
Eosoly, S.1
Brabazon, D.2
Lohfeld, S.3
Looney, L.4
-
169
-
-
84866007931
-
Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS)
-
Eosoly, S.,; Vrana, N. E.,; Lohfeld, S.,; Hindie, M.,; Looney, L., “Interaction of cell culture with composition effects on the mechanical properties of polycaprolactone-hydroxyapatite scaffolds fabricated via selective laser sintering (SLS)”, Materials Science and Engineering: C 2012, 32, 2250–2257.
-
(2012)
Materials Science and Engineering: C
, vol.32
, pp. 2250-2257
-
-
Eosoly, S.1
Vrana, N.E.2
Lohfeld, S.3
Hindie, M.4
Looney, L.5
-
170
-
-
68849132372
-
Robotic dispensing of composite scaffolds and in vitro responses of bone marrow stromal cells
-
Hong, S.-J.,; Jeong, I.,; Noh, K.-T.,; Yu, H.-S.,; Lee, G.-S.,; Kim, H.-W., “Robotic dispensing of composite scaffolds and in vitro responses of bone marrow stromal cells”, Journal of Materials Science: Materials in Medicine 2009, 20, 1955–1962.
-
(2009)
Journal of Materials Science: Materials in Medicine
, vol.20
, pp. 1955-1962
-
-
Hong, S.-J.1
Jeong, I.2
Noh, K.-T.3
Yu, H.-S.4
Lee, G.-S.5
Kim, H.-W.6
-
171
-
-
15244354813
-
Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release
-
Kim, H.-W.,; Knowles, J. C.,; Kim, H.-E., “Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release”, Journal of Materials Science: Materials in Medicine 2005, 16, 189–195.
-
(2005)
Journal of Materials Science: Materials in Medicine
, vol.16
, pp. 189-195
-
-
Kim, H.-W.1
Knowles, J.C.2
Kim, H.-E.3
-
172
-
-
73449086624
-
Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro
-
Wang, Y.,; Liu, L.,; Guo, S., “Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitro”, Polymer Degradation and Stability 2010, 95, 207–213.
-
(2010)
Polymer Degradation and Stability
, vol.95
, pp. 207-213
-
-
Wang, Y.1
Liu, L.2
Guo, S.3
-
173
-
-
84858158840
-
Fabrication, characterization and evaluation of the mechanical properties of poly (ϵ-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone tissue engineering
-
Johari, N.,; Fathi, M.,; Golozar, M., “Fabrication, characterization and evaluation of the mechanical properties of poly (ϵ-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone tissue engineering”, Composites Part B: Engineering 2012, 43, 1671–1675.
-
(2012)
Composites Part B: Engineering
, vol.43
, pp. 1671-1675
-
-
Johari, N.1
Fathi, M.2
Golozar, M.3
-
174
-
-
23044440198
-
Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering
-
Pereira, M. M.,; Jones, J. R.,; Hench, L. L., “Bioactive glass and hybrid scaffolds prepared by sol–gel method for bone tissue engineering”, Advances in Applied Ceramics 2013, 104, 35–42.
-
(2013)
Advances in Applied Ceramics
, vol.104
, pp. 35-42
-
-
Pereira, M.M.1
Jones, J.R.2
Hench, L.L.3
-
175
-
-
85019341067
-
Evaluate of different bioactive glass on mechanical properties of nanocomposites prepared using electrospinning method
-
Otadi, M.,; Mohebbi-Kalhori, D., “Evaluate of different bioactive glass on mechanical properties of nanocomposites prepared using electrospinning method”, Procedia Materials Science 2015, 11, 196–201.
-
(2015)
Procedia Materials Science
, vol.11
, pp. 196-201
-
-
Otadi, M.1
Mohebbi-Kalhori, D.2
-
176
-
-
80052129827
-
Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites
-
Tamjid, E.,; Bagheri, R.,; Vossoughi, M.,; Simchi, A., “Effect of particle size on the in vitro bioactivity, hydrophilicity and mechanical properties of bioactive glass-reinforced polycaprolactone composites”, Materials Science and Engineering: C 2011, 31, 1526–1533.
-
(2011)
Materials Science and Engineering: C
, vol.31
, pp. 1526-1533
-
-
Tamjid, E.1
Bagheri, R.2
Vossoughi, M.3
Simchi, A.4
-
177
-
-
33749072236
-
Crosslinked poly (ε-caprolactone/D, L-lactide)/bioactive glass composite scaffolds for bone tissue engineering
-
Meretoja, V.,; Helminen, A.,; Korventausta, J.,; Haapa-aho, V.,; Seppälä, J.,; Närhi, T., “Crosslinked poly (ε-caprolactone/D, L-lactide)/bioactive glass composite scaffolds for bone tissue engineering”, Journal of Biomedical Materials Research Part A 2006, 77, 261–268.
-
(2006)
Journal of Biomedical Materials Research Part A
, vol.77
, pp. 261-268
-
-
Meretoja, V.1
Helminen, A.2
Korventausta, J.3
Haapa-aho, V.4
Seppälä, J.5
Närhi, T.6
-
178
-
-
84907856085
-
In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites
-
Ji, L.,; Wang, W.,; Jin, D.,; Zhou, S.,; Song, X., “In vitro bioactivity and mechanical properties of bioactive glass nanoparticles/polycaprolactone composites”, Materials Science and Engineering: C 2015, 46, 1–9.
-
(2015)
Materials Science and Engineering: C
, vol.46
, pp. 1-9
-
-
Ji, L.1
Wang, W.2
Jin, D.3
Zhou, S.4
Song, X.5
-
179
-
-
0030419193
-
Interfacial bond hydrolytic stability of calcium phosphate fibers with polycaprolactone polymer
-
Foy, K.,; Riddle, D.,; Schutte, H.,; Latour Jr, R. A., “Interfacial bond hydrolytic stability of calcium phosphate fibers with polycaprolactone polymer”, Soc for Biomaterials 1996, 930–940.
-
(1996)
Soc for Biomaterials
, pp. 930-940
-
-
Foy, K.1
Riddle, D.2
Schutte, H.3
Latour, R.A.4
-
180
-
-
0032706447
-
Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers
-
Rinehart, J. D.,; Taylor, T.,; Tian, Y.,; Latour, R., “Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers”, Journal of Biomedical Materials Research 1999, 48, 833–840.
-
(1999)
Journal of Biomedical Materials Research
, vol.48
, pp. 833-840
-
-
Rinehart, J.D.1
Taylor, T.2
Tian, Y.3
Latour, R.4
-
181
-
-
10044224733
-
Preparation of poly (ϵ-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant
-
Jiang, G.,; Evans, M.,; Jones, I.,; Rudd, C.,; Scotchford, C.,; Walker, G., “Preparation of poly (ϵ-caprolactone)/continuous bioglass fibre composite using monomer transfer moulding for bone implant”, Biomaterials 2005, 26, 2281–2288.
-
(2005)
Biomaterials
, vol.26
, pp. 2281-2288
-
-
Jiang, G.1
Evans, M.2
Jones, I.3
Rudd, C.4
Scotchford, C.5
Walker, G.6
-
182
-
-
7444224176
-
Soft elastomers for fused deposition modeling
-
Elkins, K.,; Nordby, H.,; Janak, C.,; Gray IV, R.,; Bohn, H.,; Baird, D., “Soft elastomers for fused deposition modeling”, In Proc., 8th. Solid Freeform Fabrication Symposium, 1997, pp. 441–448.
-
(1997)
Proc., 8th. Solid Freeform Fabrication Symposium
, pp. 441-448
-
-
Elkins, K.1
Nordby, H.2
Janak, C.3
Gray, R.4
Bohn, H.5
Baird, D.6
-
183
-
-
84879607223
-
Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling
-
Korpela, J.,; Kokkari, A.,; Korhonen, H.,; Malin, M.,; Närhi, T.,; Seppälä, J., “Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2013, 101, 610–619.
-
(2013)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.101
, pp. 610-619
-
-
Korpela, J.1
Kokkari, A.2
Korhonen, H.3
Malin, M.4
Närhi, T.5
Seppälä, J.6
-
184
-
-
84889027231
-
Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration
-
Poh, P. S.,; Hutmacher, D. W.,; Stevens, M. M.,; Woodruff, M. A., “Fabrication and in vitro characterization of bioactive glass composite scaffolds for bone regeneration”, Biofabrication 2013, 5, 045005.
-
(2013)
Biofabrication
, vol.5
, pp. 45005
-
-
Poh, P.S.1
Hutmacher, D.W.2
Stevens, M.M.3
Woodruff, M.A.4
-
185
-
-
78650683876
-
Bioactive glass–poly (ϵ-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks
-
Yun, H.-S.,; Kim, S.-E.,; Park, E. K., “Bioactive glass–poly (ϵ-caprolactone) composite scaffolds with 3 dimensionally hierarchical pore networks”, Materials Science and Engineering: C 2011, 31, 198–205.
-
(2011)
Materials Science and Engineering: C
, vol.31
, pp. 198-205
-
-
Yun, H.-S.1
Kim, S.-E.2
Park, E.K.3
-
186
-
-
34548481304
-
Porous hydroxyapatite scaffolds coated with bioactive apatite–wollastonite glass–ceramics
-
Jun, I. K.,; Song, J. H.,; Choi, W. Y.,; Koh, Y. H.,; Kim, H. E.,; Kim, H. W., “Porous hydroxyapatite scaffolds coated with bioactive apatite–wollastonite glass–ceramics”, Journal of the American Ceramic Society 2007, 90, 2703–2708.
-
(2007)
Journal of the American Ceramic Society
, vol.90
, pp. 2703-2708
-
-
Jun, I.K.1
Song, J.H.2
Choi, W.Y.3
Koh, Y.H.4
Kim, H.E.5
Kim, H.W.6
-
187
-
-
43949102376
-
Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement
-
Esfahani, S. R.,; Tavangarian, F.,; Emadi, R., “Nanostructured bioactive glass coating on porous hydroxyapatite scaffold for strength enhancement”, Materials Letters 2008, 62, 3428–3430.
-
(2008)
Materials Letters
, vol.62
, pp. 3428-3430
-
-
Esfahani, S.R.1
Tavangarian, F.2
Emadi, R.3
-
188
-
-
38949201618
-
Improvement of mechanical and biological properties of porous CaSiO 3 scaffolds by poly (d, l-lactic acid) modification
-
Wu, C.,; Ramaswamy, Y.,; Boughton, P.,; Zreiqat, H., “Improvement of mechanical and biological properties of porous CaSiO 3 scaffolds by poly (d, l-lactic acid) modification”, Acta Biomaterialia 2008, 4, 343–353.
-
(2008)
Acta Biomaterialia
, vol.4
, pp. 343-353
-
-
Wu, C.1
Ramaswamy, Y.2
Boughton, P.3
Zreiqat, H.4
-
189
-
-
41549155901
-
Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid)
-
Miao, X.,; Tan, D. M.,; Li, J.,; Xiao, Y.,; Crawford, R., “Mechanical and biological properties of hydroxyapatite/tricalcium phosphate scaffolds coated with poly (lactic-co-glycolic acid)”, Acta Biomaterialia 2008, 4, 638–645.
-
(2008)
Acta Biomaterialia
, vol.4
, pp. 638-645
-
-
Miao, X.1
Tan, D.M.2
Li, J.3
Xiao, Y.4
Crawford, R.5
-
190
-
-
77953028358
-
The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites
-
Roohani-Esfahani, S.-I.,; Nouri-Khorasani, S.,; Lu, Z.,; Appleyard, R.,; Zreiqat, H., “The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites”, Biomaterials 2010, 31, 5498–5509.
-
(2010)
Biomaterials
, vol.31
, pp. 5498-5509
-
-
Roohani-Esfahani, S.-I.1
Nouri-Khorasani, S.2
Lu, Z.3
Appleyard, R.4
Zreiqat, H.5
-
191
-
-
79251644177
-
Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds
-
Roohani-Esfahani, S.,; Nouri-Khorasani, S.,; Lu, Z.,; Appleyard, R.,; Zreiqat, H., “Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds”, Acta Biomaterialia 2011, 7, 1307–1318.
-
(2011)
Acta Biomaterialia
, vol.7
, pp. 1307-1318
-
-
Roohani-Esfahani, S.1
Nouri-Khorasani, S.2
Lu, Z.3
Appleyard, R.4
Zreiqat, H.5
-
192
-
-
84884975848
-
Stiffness improvement of 45S5 bioglass®-based scaffolds through natural and synthetic biopolymer coatings: An ultrasonic study
-
Hum, J.,; Luczynski, K.,; Nooeaid, P.,; Newby, P.,; Lahayne, O.,; Hellmich, C.,; Boccaccini, A., “Stiffness improvement of 45S5 bioglass®-based scaffolds through natural and synthetic biopolymer coatings: An ultrasonic study”, Strain 2013, 49, 431–439.
-
(2013)
Strain
, vol.49
, pp. 431-439
-
-
Hum, J.1
Luczynski, K.2
Nooeaid, P.3
Newby, P.4
Lahayne, O.5
Hellmich, C.6
Boccaccini, A.7
-
193
-
-
33747588506
-
Production and potential of bioactive glass nanofibers as a next-generation biomaterial
-
Kim, H. W.,; Kim, H. E.,; Knowles, J. C., “Production and potential of bioactive glass nanofibers as a next-generation biomaterial”, Advanced Functional Materials 2006, 16, 1529–1535.
-
(2006)
Advanced Functional Materials
, vol.16
, pp. 1529-1535
-
-
Kim, H.W.1
Kim, H.E.2
Knowles, J.C.3
-
194
-
-
41549135535
-
Bioactivity improvement of poly (ϵ-caprolactone) membrane with the addition of nanofibrous bioactive glass
-
Lee, H.-H.,; Yu, H.-S.,; Jang, J.-H.,; Kim, H.-W., “Bioactivity improvement of poly (ϵ-caprolactone) membrane with the addition of nanofibrous bioactive glass”, Acta Biomaterialia 2008, 4, 622–629.
-
(2008)
Acta Biomaterialia
, vol.4
, pp. 622-629
-
-
Lee, H.-H.1
Yu, H.-S.2
Jang, J.-H.3
Kim, H.-W.4
-
195
-
-
84901660128
-
Poly (ϵ-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology
-
Silva, C.,; Luz, G.,; Gamboa-martÍnez, T. C.,; Mano, J. F.,; Gómez Ribelles, J. L.,; Gómez-tejedor, J. A., “Poly (ϵ-caprolactone) electrospun scaffolds filled with nanoparticles. Production and optimization according to Taguchi's methodology”, Journal of Macromolecular Science, Part B 2014, 53, 781–799.
-
(2014)
Journal of Macromolecular Science, Part B
, vol.53
, pp. 781-799
-
-
Silva, C.1
Luz, G.2
Gamboa-martÍnez, T.C.3
Mano, J.F.4
Gómez Ribelles, J.L.5
Gómez-tejedor, J.A.6
-
196
-
-
84871345342
-
Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering
-
Lin, H.-M.,; Lin, Y.-H.,; Hsu, F.-Y., “Preparation and characterization of mesoporous bioactive glass/polycaprolactone nanofibrous matrix for bone tissues engineering”, Journal of Materials Science: Materials in Medicine 2012, 23, 2619–2630.
-
(2012)
Journal of Materials Science: Materials in Medicine
, vol.23
, pp. 2619-2630
-
-
Lin, H.-M.1
Lin, Y.-H.2
Hsu, F.-Y.3
-
197
-
-
84904793968
-
Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration
-
Ren, J.,; Blackwood, K. A.,; Doustgani, A.,; Poh, P. P.,; Steck, R.,; Stevens, M. M.,; Woodruff, M. A., “Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration”, Journal of Biomedical Materials Research Part A 2014, 102, 3140–3153.
-
(2014)
Journal of Biomedical Materials Research Part A
, vol.102
, pp. 3140-3153
-
-
Ren, J.1
Blackwood, K.A.2
Doustgani, A.3
Poh, P.P.4
Steck, R.5
Stevens, M.M.6
Woodruff, M.A.7
-
198
-
-
84884561213
-
Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering
-
Mouriño, V.,; Cattalini, J. P.,; Roether, J. A.,; Dubey, P.,; Roy, I.,; Boccaccini, A. R., “Composite polymer-bioceramic scaffolds with drug delivery capability for bone tissue engineering”, Expert Opinion on Drug Delivery 2013, 10, 1353–1365.
-
(2013)
Expert Opinion on Drug Delivery
, vol.10
, pp. 1353-1365
-
-
Mouriño, V.1
Cattalini, J.P.2
Roether, J.A.3
Dubey, P.4
Roy, I.5
Boccaccini, A.R.6
-
199
-
-
4344622321
-
Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly (ε-caprolactone) composite membranes
-
Kim, H. W.,; Knowles, J. C.,; Kim, H. E., “Effect of biphasic calcium phosphates on drug release and biological and mechanical properties of poly (ε-caprolactone) composite membranes”, Journal of Biomedical Materials Research Part A 2004, 70, 467–479.
-
(2004)
Journal of Biomedical Materials Research Part A
, vol.70
, pp. 467-479
-
-
Kim, H.W.1
Knowles, J.C.2
Kim, H.E.3
-
200
-
-
84858279158
-
Poly (l-lactide-co-Є caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds
-
Mondal, T.,; Sunny, M.,; Khastgir, D.,; Varma, H.,; Ramesh, P., “Poly (l-lactide-co-Є caprolactone) microspheres laden with bioactive glass-ceramic and alendronate sodium as bone regenerative scaffolds”, Materials Science and Engineering: C 2012, 32, 697–706.
-
(2012)
Materials Science and Engineering: C
, vol.32
, pp. 697-706
-
-
Mondal, T.1
Sunny, M.2
Khastgir, D.3
Varma, H.4
Ramesh, P.5
-
201
-
-
25844462358
-
Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration
-
Kim, H. W.,; Lee, E. J.,; Jun, I. K.,; Kim, H. E.,; Knowles, J. C., “Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard-tissue regeneration”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2005, 75, 34–41.
-
(2005)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.75
, pp. 34-41
-
-
Kim, H.W.1
Lee, E.J.2
Jun, I.K.3
Kim, H.E.4
Knowles, J.C.5
-
203
-
-
77950458181
-
Production of Bioglass® 45S5–Polycaprolactone composite scaffolds via salt-leaching
-
Cannillo, V.,; Chiellini, F.,; Fabbri, P.,; Sola, A., “Production of Bioglass® 45S5–Polycaprolactone composite scaffolds via salt-leaching”, Composite Structures 2010, 92, 1823–1832.
-
(2010)
Composite Structures
, vol.92
, pp. 1823-1832
-
-
Cannillo, V.1
Chiellini, F.2
Fabbri, P.3
Sola, A.4
-
204
-
-
84891650290
-
Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering
-
Ródenas-Rochina, J.,; Ribelles, J. L. G.,; Lebourg, M., “Comparative study of PCL-HAp and PCL-bioglass composite scaffolds for bone tissue engineering”, Journal of Materials Science: Materials in Medicine 2013, 24, 1293–1308.
-
(2013)
Journal of Materials Science: Materials in Medicine
, vol.24
, pp. 1293-1308
-
-
Ródenas-Rochina, J.1
Ribelles, J.L.G.2
Lebourg, M.3
-
205
-
-
36949016248
-
A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior
-
Li, X.,; Shi, J.,; Dong, X.,; Zhang, L.,; Zeng, H., “A mesoporous bioactive glass/polycaprolactone composite scaffold and its bioactivity behavior”, Journal of Biomedical Materials Research Part A 2008, 84, 84–91.
-
(2008)
Journal of Biomedical Materials Research Part A
, vol.84
, pp. 84-91
-
-
Li, X.1
Shi, J.2
Dong, X.3
Zhang, L.4
Zeng, H.5
-
206
-
-
77953651502
-
A review on stereolithography and its applications in biomedical engineering
-
Melchels, F. P.,; Feijen, J.,; Grijpma, D. W., “A review on stereolithography and its applications in biomedical engineering”, Biomaterials 2010, 31, 6121–6130.
-
(2010)
Biomaterials
, vol.31
, pp. 6121-6130
-
-
Melchels, F.P.1
Feijen, J.2
Grijpma, D.W.3
-
207
-
-
84870220913
-
Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly (ϵ-caprolactone) by stereolithography
-
Elomaa, L.,; Kokkari, A.,; Närhi, T.,; Seppälä, J. V., “Porous 3D modeled scaffolds of bioactive glass and photocrosslinkable poly (ϵ-caprolactone) by stereolithography”, Composites Science and Technology 2013, 74, 99–106.
-
(2013)
Composites Science and Technology
, vol.74
, pp. 99-106
-
-
Elomaa, L.1
Kokkari, A.2
Närhi, T.3
Seppälä, J.V.4
-
208
-
-
77954977695
-
Development of robotic dispensed bioactive scaffolds and human adipose–derived stem cell culturing for bone tissue engineering
-
Oh, C.-H.,; Hong, S.-J.,; Jeong, I.,; Yu, H.-S.,; Jegal, S.-H.,; Kim, H.-W., “Development of robotic dispensed bioactive scaffolds and human adipose–derived stem cell culturing for bone tissue engineering”, Tissue Engineering Part C: Methods 2009, 16, 561–571.
-
(2009)
Tissue Engineering Part C: Methods
, vol.16
, pp. 561-571
-
-
Oh, C.-H.1
Hong, S.-J.2
Jeong, I.3
Yu, H.-S.4
Jegal, S.-H.5
Kim, H.-W.6
-
209
-
-
78650251420
-
Synthesis and electrospinning of ϵ-polycaprolactone-bioactive glass hybrid Biomaterials via a sol-gel process
-
Allo, B. A.,; Rizkalla, A. S.,; Mequanint, K., “Synthesis and electrospinning of ϵ-polycaprolactone-bioactive glass hybrid Biomaterials via a sol-gel process”, Langmuir 2010, 26, 18340–18348.
-
(2010)
Langmuir
, vol.26
, pp. 18340-18348
-
-
Allo, B.A.1
Rizkalla, A.S.2
Mequanint, K.3
-
210
-
-
70049110810
-
In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly (ϵ-caprolactone) composite materials
-
Jo, J. H.,; Lee, E. J.,; Shin, D. S.,; Kim, H. E.,; Kim, H. W.,; Koh, Y. H.,; Jang, J. H., “In vitro/in vivo biocompatibility and mechanical properties of bioactive glass nanofiber and poly (ϵ-caprolactone) composite materials”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009, 91, 213–220.
-
(2009)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.91
, pp. 213-220
-
-
Jo, J.H.1
Lee, E.J.2
Shin, D.S.3
Kim, H.E.4
Kim, H.W.5
Koh, Y.H.6
Jang, J.H.7
-
211
-
-
84892372325
-
Ectopic bone formation in and soft-tissue response to P (CL/DLLA)/bioactive glass composite scaffolds
-
Meretoja, V. V.,; Tirri, T.,; Malin, M.,; Seppälä, J. V.,; Närhi, T. O., “Ectopic bone formation in and soft-tissue response to P (CL/DLLA)/bioactive glass composite scaffolds”, Clinical Oral Implants Research 2014, 25, 159–164.
-
(2014)
Clinical Oral Implants Research
, vol.25
, pp. 159-164
-
-
Meretoja, V.V.1
Tirri, T.2
Malin, M.3
Seppälä, J.V.4
Närhi, T.O.5
-
212
-
-
74949114156
-
In vitro and in vivo evaluation of the effects of demineralized bone matrix or calcium sulfate addition to polycaprolactone–bioglass composites
-
Erdemli, O.,; Captug, O.,; Bilgili, H.,; Orhan, D.,; Tezcaner, A.,; Keskin, D., “In vitro and in vivo evaluation of the effects of demineralized bone matrix or calcium sulfate addition to polycaprolactone–bioglass composites”, Journal of Materials Science: Materials in Medicine 2010, 21, 295–308.
-
(2010)
Journal of Materials Science: Materials in Medicine
, vol.21
, pp. 295-308
-
-
Erdemli, O.1
Captug, O.2
Bilgili, H.3
Orhan, D.4
Tezcaner, A.5
Keskin, D.6
-
213
-
-
0142042550
-
Phosphate based glasses for biomedical applications
-
Knowles, J. C., “Phosphate based glasses for biomedical applications”, Journal of Materials Chemistry 2003, 13, 2395–2401.
-
(2003)
Journal of Materials Chemistry
, vol.13
, pp. 2395-2401
-
-
Knowles, J.C.1
-
214
-
-
0142227099
-
Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P 2 O 5–CaO–Na 2 O glass system
-
Ahmed, I.,; Lewis, M.,; Olsen, I.,; Knowles, J., “Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P 2 O 5–CaO–Na 2 O glass system”, Biomaterials 2004, 25, 491–499.
-
(2004)
Biomaterials
, vol.25
, pp. 491-499
-
-
Ahmed, I.1
Lewis, M.2
Olsen, I.3
Knowles, J.4
-
215
-
-
58849165230
-
Bioactive functional materials: A perspective on phosphate-based glasses
-
Neel, E. A. A.,; Pickup, D. M.,; Valappil, S. P.,; Newport, R. J.,; Knowles, J. C., “Bioactive functional materials: A perspective on phosphate-based glasses”, Journal of Materials Chemistry 2009, 19, 690–701.
-
(2009)
Journal of Materials Chemistry
, vol.19
, pp. 690-701
-
-
Neel, E.A.A.1
Pickup, D.M.2
Valappil, S.P.3
Newport, R.J.4
Knowles, J.C.5
-
216
-
-
10044262150
-
Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass-polycaprolactone composites
-
Prabhakar, R. L.,; Brocchini, S.,; Knowles, J. C., “Effect of glass composition on the degradation properties and ion release characteristics of phosphate glass-polycaprolactone composites”, Biomaterials 2005, 26, 2209–2218.
-
(2005)
Biomaterials
, vol.26
, pp. 2209-2218
-
-
Prabhakar, R.L.1
Brocchini, S.2
Knowles, J.C.3
-
217
-
-
77956625720
-
Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations
-
Mohammadi, M. S.,; Ahmed, I.,; Marelli, B.,; Rudd, C.,; Bureau, M. N.,; Nazhat, S. N., “Modulation of polycaprolactone composite properties through incorporation of mixed phosphate glass formulations”, Acta Biomaterialia 2010, 6, 3157–3168.
-
(2010)
Acta Biomaterialia
, vol.6
, pp. 3157-3168
-
-
Mohammadi, M.S.1
Ahmed, I.2
Marelli, B.3
Rudd, C.4
Bureau, M.N.5
Nazhat, S.N.6
-
218
-
-
84879466520
-
Poly (ϵ-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: Preparation, characterization and in vitro drug release for bone regeneration applications
-
Kouhi, M.,; Morshed, M.,; Varshosaz, J.,; Fathi, M. H., “Poly (ϵ-caprolactone) incorporated bioactive glass nanoparticles and simvastatin nanocomposite nanofibers: Preparation, characterization and in vitro drug release for bone regeneration applications”, Chemical Engineering Journal 2013, 228, 1057–1065.
-
(2013)
Chemical Engineering Journal
, vol.228
, pp. 1057-1065
-
-
Kouhi, M.1
Morshed, M.2
Varshosaz, J.3
Fathi, M.H.4
-
219
-
-
48449086835
-
Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite
-
Ahmed, I.,; Parsons, A.,; Palmer, G.,; Knowles, J.,; Walker, G.,; Rudd, C., “Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite”, Acta Biomaterialia 2008, 4, 1307–1314.
-
(2008)
Acta Biomaterialia
, vol.4
, pp. 1307-1314
-
-
Ahmed, I.1
Parsons, A.2
Palmer, G.3
Knowles, J.4
Walker, G.5
Rudd, C.6
-
220
-
-
0036124324
-
In vitro evaluation of poly (ϵ-caprolactone-co-DL-lactide)/bioactive glass composites
-
Rich, J.,; Jaakkola, T.,; Tirri, T.,; Närhi, T.,; Yli-Urpo, A.,; Seppälä, J., “In vitro evaluation of poly (ϵ-caprolactone-co-DL-lactide)/bioactive glass composites”, Biomaterials 2002, 23, 2143–2150.
-
(2002)
Biomaterials
, vol.23
, pp. 2143-2150
-
-
Rich, J.1
Jaakkola, T.2
Tirri, T.3
Närhi, T.4
Yli-Urpo, A.5
Seppälä, J.6
-
221
-
-
84907278289
-
Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles
-
Larrañaga, A.,; Aldazabal, P.,; Martin, F.,; Sarasua, J., “Hydrolytic degradation and bioactivity of lactide and caprolactone based sponge-like scaffolds loaded with bioactive glass particles”, Polymer Degradation and Stability 2014, 110, 121–128.
-
(2014)
Polymer Degradation and Stability
, vol.110
, pp. 121-128
-
-
Larrañaga, A.1
Aldazabal, P.2
Martin, F.3
Sarasua, J.4
-
222
-
-
34547686581
-
In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers
-
Chouzouri, G.,; Xanthos, M., “In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers”, Acta Biomaterialia 2007, 3, 745–756.
-
(2007)
Acta Biomaterialia
, vol.3
, pp. 745-756
-
-
Chouzouri, G.1
Xanthos, M.2
-
223
-
-
77956938313
-
Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering
-
Fabbri, P.,; Cannillo, V.,; Sola, A.,; Dorigato, A.,; Chiellini, F., “Highly porous polycaprolactone-45S5 Bioglass® scaffolds for bone tissue engineering”, Composites Science and Technology 2010, 70, 1869–1878.
-
(2010)
Composites Science and Technology
, vol.70
, pp. 1869-1878
-
-
Fabbri, P.1
Cannillo, V.2
Sola, A.3
Dorigato, A.4
Chiellini, F.5
-
224
-
-
84873414201
-
Sol–gel derived nanoscale bioactive glass (NBG) particles reinforced poly (ϵ-caprolactone) composites for bone tissue engineering
-
Lei, B.,; Shin, K.-H.,; Noh, D.-Y.,; Jo, I.-H.,; Koh, Y.-H.,; Kim, H.-E.,; Kim, S. E., “Sol–gel derived nanoscale bioactive glass (NBG) particles reinforced poly (ϵ-caprolactone) composites for bone tissue engineering”, Materials Science and Engineering: C 2013, 33, 1102–1108.
-
(2013)
Materials Science and Engineering: C
, vol.33
, pp. 1102-1108
-
-
Lei, B.1
Shin, K.-H.2
Noh, D.-Y.3
Jo, I.-H.4
Koh, Y.-H.5
Kim, H.-E.6
Kim, S.E.7
-
225
-
-
84862808449
-
Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly (ϵ-caprolactone) polymer for bone tissue regeneration
-
Lei, B.,; Shin, K. H.,; Noh, D. Y.,; Koh, Y. H.,; Choi, W. Y.,; Kim, H. E., “Bioactive glass microspheres as reinforcement for improving the mechanical properties and biological performance of poly (ϵ-caprolactone) polymer for bone tissue regeneration”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2012, 100, 967–975.
-
(2012)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.100
, pp. 967-975
-
-
Lei, B.1
Shin, K.H.2
Noh, D.Y.3
Koh, Y.H.4
Choi, W.Y.5
Kim, H.E.6
-
226
-
-
84902764336
-
A study of the mechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles
-
Larrañaga, A.,; Diamanti, E.,; Rubio, E.,; Palomares, T.,; Alonso-Varona, A.,; Aldazabal, P.,; Martin, F.,; Sarasua, J., “A study of the mechanical properties and cytocompatibility of lactide and caprolactone based scaffolds filled with inorganic bioactive particles”, Materials Science and Engineering: C 2014, 42, 451–460.
-
(2014)
Materials Science and Engineering: C
, vol.42
, pp. 451-460
-
-
Larrañaga, A.1
Diamanti, E.2
Rubio, E.3
Palomares, T.4
Alonso-Varona, A.5
Aldazabal, P.6
Martin, F.7
Sarasua, J.8
-
227
-
-
39149133964
-
Preparation of poly (l-lactic acid)/β-tricalcium phosphate scaffold for bone tissue engineering without organic solvent
-
Kang, Y.,; Yin, G.,; Yuan, Q.,; Yao, Y.,; Huang, Z.,; Liao, X.,; Yang, B.,; Liao, L.,; Wang, H., “Preparation of poly (l-lactic acid)/β-tricalcium phosphate scaffold for bone tissue engineering without organic solvent”, Materials Letters 2008, 62, 2029–2032.
-
(2008)
Materials Letters
, vol.62
, pp. 2029-2032
-
-
Kang, Y.1
Yin, G.2
Yuan, Q.3
Yao, Y.4
Huang, Z.5
Liao, X.6
Yang, B.7
Liao, L.8
Wang, H.9
-
228
-
-
33646519215
-
Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering
-
Mondrinos, M. J.,; Dembzynski, R.,; Lu, L.,; Byrapogu, V. K.,; Wootton, D. M.,; Lelkes, P. I.,; Zhou, J., “Porogen-based solid freeform fabrication of polycaprolactone–calcium phosphate scaffolds for tissue engineering”, Biomaterials 2006, 27, 4399–4408.
-
(2006)
Biomaterials
, vol.27
, pp. 4399-4408
-
-
Mondrinos, M.J.1
Dembzynski, R.2
Lu, L.3
Byrapogu, V.K.4
Wootton, D.M.5
Lelkes, P.I.6
Zhou, J.7
-
229
-
-
77956915095
-
Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration
-
Martínez-Vázquez, F. J.,; Perera, F. H.,; Miranda, P.,; Pajares, A.,; Guiberteau, F., “Improving the compressive strength of bioceramic robocast scaffolds by polymer infiltration”, Acta Biomaterialia 2010, 6, 4361–4368.
-
(2010)
Acta Biomaterialia
, vol.6
, pp. 4361-4368
-
-
Martínez-Vázquez, F.J.1
Perera, F.H.2
Miranda, P.3
Pajares, A.4
Guiberteau, F.5
-
230
-
-
84893899592
-
Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration
-
Kim, M. S.,; Kim, G. H., “Highly porous electrospun 3D polycaprolactone/β-TCP biocomposites for tissue regeneration”, Materials Letters 2014, 120, 246–250.
-
(2014)
Materials Letters
, vol.120
, pp. 246-250
-
-
Kim, M.S.1
Kim, G.H.2
-
231
-
-
53649085260
-
The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ϵ-caprolactone-based composite scaffolds
-
Guarino, V.,; Ambrosio, L., “The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ϵ-caprolactone-based composite scaffolds”, Acta Biomaterialia 2008, 4, 1778–1787.
-
(2008)
Acta Biomaterialia
, vol.4
, pp. 1778-1787
-
-
Guarino, V.1
Ambrosio, L.2
-
232
-
-
71649090287
-
Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering
-
Xue, W.,; Bandyopadhyay, A.,; Bose, S., “Polycaprolactone coated porous tricalcium phosphate scaffolds for controlled release of protein for tissue engineering”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2009, 91, 831–838.
-
(2009)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.91
, pp. 831-838
-
-
Xue, W.1
Bandyopadhyay, A.2
Bose, S.3
-
233
-
-
1042301245
-
In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold
-
Shin, M.,; Yoshimoto, H.,; Vacanti, J. P., “In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold”, Tissue Engineering 2004, 10, 33–41.
-
(2004)
Tissue Engineering
, vol.10
, pp. 33-41
-
-
Shin, M.1
Yoshimoto, H.2
Vacanti, J.P.3
-
234
-
-
26844561981
-
Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates
-
Badami, A. S.,; Kreke, M. R.,; Thompson, M. S.,; Riffle, J. S.,; Goldstein, A. S., “Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly (lactic acid) substrates”, Biomaterials 2006, 27, 596–606.
-
(2006)
Biomaterials
, vol.27
, pp. 596-606
-
-
Badami, A.S.1
Kreke, M.R.2
Thompson, M.S.3
Riffle, J.S.4
Goldstein, A.S.5
-
235
-
-
0141688094
-
Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid
-
Takeuchi, A.,; Ohtsuki, C.,; Miyazaki, T.,; Tanaka, H.,; Yamazaki, M.,; Tanihara, M., “Deposition of bone-like apatite on silk fiber in a solution that mimics extracellular fluid”, Journal of Biomedical Materials Research Part A 2003, 65, 283–289.
-
(2003)
Journal of Biomedical Materials Research Part A
, vol.65
, pp. 283-289
-
-
Takeuchi, A.1
Ohtsuki, C.2
Miyazaki, T.3
Tanaka, H.4
Yamazaki, M.5
Tanihara, M.6
-
236
-
-
0033622838
-
Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro
-
Murphy, W. L.,; Kohn, D. H.,; Mooney, D. J., “Growth of continuous bonelike mineral within porous poly (lactide-co-glycolide) scaffolds in vitro”, Journal of Biomedical Materials Research 2000, 50, 50–58.
-
(2000)
Journal of Biomedical Materials Research
, vol.50
, pp. 50-58
-
-
Murphy, W.L.1
Kohn, D.H.2
Mooney, D.J.3
-
237
-
-
38949188940
-
Biomimetic calcium phosphate coating on electrospun poly (ϵ-caprolactone) scaffolds for bone tissue engineering
-
Yang, F.,; Wolke, J.,; Jansen, J., “Biomimetic calcium phosphate coating on electrospun poly (ϵ-caprolactone) scaffolds for bone tissue engineering”, Chemical Engineering Journal 2008, 137, 154–161.
-
(2008)
Chemical Engineering Journal
, vol.137
, pp. 154-161
-
-
Yang, F.1
Wolke, J.2
Jansen, J.3
-
238
-
-
84950269927
-
In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds
-
Poh, P. S.,; Hutmacher, D. W.,; Holzapfel, B. M.,; Solanki, A. K.,; Stevens, M. M.,; Woodruff, M. A., “In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds”, Acta Biomaterialia 2016, 30, 319–333.
-
(2016)
Acta Biomaterialia
, vol.30
, pp. 319-333
-
-
Poh, P.S.1
Hutmacher, D.W.2
Holzapfel, B.M.3
Solanki, A.K.4
Stevens, M.M.5
Woodruff, M.A.6
-
239
-
-
70350497620
-
Biomimetic apatite-coated PCL scaffolds: effect of surface nanotopography on cellular functions
-
Beşkardeş, I. G.,; Gümüşderelioğlu, M., “Biomimetic apatite-coated PCL scaffolds: effect of surface nanotopography on cellular functions”, Journal of Bioactive and Compatible Polymers 2009, 24, 507–524.
-
(2009)
Journal of Bioactive and Compatible Polymers
, vol.24
, pp. 507-524
-
-
Beşkardeş, I.G.1
Gümüşderelioğlu, M.2
-
240
-
-
70349135833
-
Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate
-
Mavis, B.,; Demirtaş, T. T.,; Gümüşderelioğlu, M.,; Gündüz, G.,; Çolak, Ü., “Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate”, Acta Biomaterialia 2009, 5, 3098–3111.
-
(2009)
Acta Biomaterialia
, vol.5
, pp. 3098-3111
-
-
Mavis, B.1
Demirtaş, T.T.2
Gümüşderelioğlu, M.3
Gündüz, G.4
Çolak, Ü.5
-
241
-
-
61849152866
-
Coating electrospun poly (ϵ-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering
-
Li, X.,; Xie, J.,; Yuan, X.,; Xia, Y., “Coating electrospun poly (ϵ-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering”, Langmuir 2008, 24, 14145–14150.
-
(2008)
Langmuir
, vol.24
, pp. 14145-14150
-
-
Li, X.1
Xie, J.2
Yuan, X.3
Xia, Y.4
-
242
-
-
26844541463
-
Long-term evaluation of porous poly (ε-caprolactone-co-L-lactide) as a bone-filling material
-
Holmbom, J.,; Södergård, A.,; Ekholm, E.,; Märtson, M.,; Kuusilehto, A.,; Saukko, P.,; Penttinen, R., “Long-term evaluation of porous poly (ε-caprolactone-co-L-lactide) as a bone-filling material”, Journal of Biomedical Materials Research Part A 2005, 75, 308–315.
-
(2005)
Journal of Biomedical Materials Research Part A
, vol.75
, pp. 308-315
-
-
Holmbom, J.1
Södergård, A.2
Ekholm, E.3
Märtson, M.4
Kuusilehto, A.5
Saukko, P.6
Penttinen, R.7
-
243
-
-
84897046024
-
Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering
-
Patlolla, A.,; Arinzeh, T. L., “Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering”, Biotechnology and Bioengineering 2014, 111, 1000–1017.
-
(2014)
Biotechnology and Bioengineering
, vol.111
, pp. 1000-1017
-
-
Patlolla, A.1
Arinzeh, T.L.2
-
244
-
-
80053969704
-
Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors
-
Polini, A.,; Pisignano, D.,; Parodi, M.,; Quarto, R.,; Scaglione, S., “Osteoinduction of human mesenchymal stem cells by bioactive composite scaffolds without supplemental osteogenic growth factors”, PloS One 2011, 6, e26211.
-
(2011)
PloS One
, vol.6
-
-
Polini, A.1
Pisignano, D.2
Parodi, M.3
Quarto, R.4
Scaglione, S.5
-
245
-
-
84906554619
-
Electrospun gelatin/poly (ϵ-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering
-
Rajzer, I.,; Menaszek, E.,; Kwiatkowski, R.,; Planell, J. A.,; Castano, O., “Electrospun gelatin/poly (ϵ-caprolactone) fibrous scaffold modified with calcium phosphate for bone tissue engineering”, Materials Science and Engineering: C 2014, 44, 183–190.
-
(2014)
Materials Science and Engineering: C
, vol.44
, pp. 183-190
-
-
Rajzer, I.1
Menaszek, E.2
Kwiatkowski, R.3
Planell, J.A.4
Castano, O.5
-
246
-
-
27644568924
-
3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties
-
Moroni, L.,; De Wijn, J.,; Van Blitterswijk, C., “3D fiber-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties”, Biomaterials 2006, 27, 974–985.
-
(2006)
Biomaterials
, vol.27
, pp. 974-985
-
-
Moroni, L.1
De Wijn, J.2
Van Blitterswijk, C.3
-
247
-
-
0037409864
-
Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
-
Leong, K.,; Cheah, C.,; Chua, C., “Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs”, Biomaterials 2003, 24, 2363–2378.
-
(2003)
Biomaterials
, vol.24
, pp. 2363-2378
-
-
Leong, K.1
Cheah, C.2
Chua, C.3
-
248
-
-
84859931713
-
Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: An in vitro study
-
Sharaf, B.,; Faris, C. B.,; Abukawa, H.,; Susarla, S. M.,; Vacanti, J. P.,; Kaban, L. B.,; Troulis, M. J., “Three-dimensionally printed polycaprolactone and β-tricalcium phosphate scaffolds for bone tissue engineering: An in vitro study”, Journal of Oral and Maxillofacial Surgery 2012, 70, 647–656.
-
(2012)
Journal of Oral and Maxillofacial Surgery
, vol.70
, pp. 647-656
-
-
Sharaf, B.1
Faris, C.B.2
Abukawa, H.3
Susarla, S.M.4
Vacanti, J.P.5
Kaban, L.B.6
Troulis, M.J.7
-
249
-
-
3242772951
-
Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells
-
Choong, C.,; Triffitt, J.,; Cui, Z., “Polycaprolactone scaffolds for bone tissue engineering: effects of a calcium phosphate coating layer on osteogenic cells”, Food and Bioproducts Processing 2004, 82, 117–125.
-
(2004)
Food and Bioproducts Processing
, vol.82
, pp. 117-125
-
-
Choong, C.1
Triffitt, J.2
Cui, Z.3
-
250
-
-
33846811209
-
In vitro degradation of novel bioactive polycaprolactone—20% tricalcium phosphate composite scaffolds for bone engineering
-
Lei, Y.,; Rai, B.,; Ho, K.,; Teoh, S., “In vitro degradation of novel bioactive polycaprolactone—20% tricalcium phosphate composite scaffolds for bone engineering”, Materials Science and Engineering: C 2007, 27, 293–298.
-
(2007)
Materials Science and Engineering: C
, vol.27
, pp. 293-298
-
-
Lei, Y.1
Rai, B.2
Ho, K.3
Teoh, S.4
-
251
-
-
33846962101
-
In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites
-
Zhou, Y.,; Hutmacher, D. W.,; Varawan, S. L.,; Lim, T. M., “In vitro bone engineering based on polycaprolactone and polycaprolactone–tricalcium phosphate composites”, Polymer International 2007, 56, 333–342.
-
(2007)
Polymer International
, vol.56
, pp. 333-342
-
-
Zhou, Y.1
Hutmacher, D.W.2
Varawan, S.L.3
Lim, T.M.4
-
252
-
-
25144522739
-
Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling
-
Schantz, J.-T.,; Brandwood, A.,; Hutmacher, D. W.,; Khor, H. L.,; Bittner, K., “Osteogenic differentiation of mesenchymal progenitor cells in computer designed fibrin-polymer-ceramic scaffolds manufactured by fused deposition modeling”, Journal of Materials Science: Materials in Medicine 2005, 16, 807–819.
-
(2005)
Journal of Materials Science: Materials in Medicine
, vol.16
, pp. 807-819
-
-
Schantz, J.-T.1
Brandwood, A.2
Hutmacher, D.W.3
Khor, H.L.4
Bittner, K.5
-
253
-
-
77956010965
-
Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds
-
Rai, B.,; Lin, J. L.,; Lim, Z. X.,; Guldberg, R. E.,; Hutmacher, D. W.,; Cool, S. M., “Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL–TCP scaffolds”, Biomaterials 2010, 31, 7960–7970.
-
(2010)
Biomaterials
, vol.31
, pp. 7960-7970
-
-
Rai, B.1
Lin, J.L.2
Lim, Z.X.3
Guldberg, R.E.4
Hutmacher, D.W.5
Cool, S.M.6
-
254
-
-
0037341841
-
Characteristics of mineral particles in the human bone/cartilage interface
-
Zizak, I.,; Roschger, P.,; Paris, O.,; Misof, B.,; Berzlanovich, A.,; Bernstorff, S.,; Amenitsch, H.,; Klaushofer, K.,; Fratzl, P., “Characteristics of mineral particles in the human bone/cartilage interface”, Journal of Structural Biology 2003, 141, 208–217.
-
(2003)
Journal of Structural Biology
, vol.141
, pp. 208-217
-
-
Zizak, I.1
Roschger, P.2
Paris, O.3
Misof, B.4
Berzlanovich, A.5
Bernstorff, S.6
Amenitsch, H.7
Klaushofer, K.8
Fratzl, P.9
-
255
-
-
0030955064
-
X-ray pole figure analysis of apatite crystals and collagen molecules in bone
-
Sasaki, N.,; Sudoh, Y., “X-ray pole figure analysis of apatite crystals and collagen molecules in bone”, Calcified Tissue International 1997, 60, 361–367.
-
(1997)
Calcified Tissue International
, vol.60
, pp. 361-367
-
-
Sasaki, N.1
Sudoh, Y.2
-
256
-
-
49449110772
-
Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications
-
Erisken, C.,; Kalyon, D. M.,; Wang, H., “Functionally graded electrospun polycaprolactone and β-tricalcium phosphate nanocomposites for tissue engineering applications”, Biomaterials 2008, 29, 4065–4073.
-
(2008)
Biomaterials
, vol.29
, pp. 4065-4073
-
-
Erisken, C.1
Kalyon, D.M.2
Wang, H.3
-
257
-
-
84877614898
-
A facile method for preparation of polycaprolactone/tricalcium phosphate fibrous matrix with a gradient mineral content
-
Paik, D.-H.,; Jeong, K.-Y.,; Moon, S.-K.,; Oh, M.-J.,; Ryu, T.-K.,; Kim, S.-E.,; Kim, J.-H.,; Park, J.-H.,; Choi, S.-W., “A facile method for preparation of polycaprolactone/tricalcium phosphate fibrous matrix with a gradient mineral content”, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2013, 429, 134–141.
-
(2013)
Colloids and Surfaces A: Physicochemical and Engineering Aspects
, vol.429
, pp. 134-141
-
-
Paik, D.-H.1
Jeong, K.-Y.2
Moon, S.-K.3
Oh, M.-J.4
Ryu, T.-K.5
Kim, S.-E.6
Kim, J.-H.7
Park, J.-H.8
Choi, S.-W.9
-
258
-
-
73249127019
-
Bone tissue engineering: A review in bone biomimetics and drug delivery strategies
-
Porter, J. R.,; Ruckh, T. T.,; Popat, K. C., “Bone tissue engineering: A review in bone biomimetics and drug delivery strategies”, Biotechnology Progress 2009, 25, 1539–1560.
-
(2009)
Biotechnology Progress
, vol.25
, pp. 1539-1560
-
-
Porter, J.R.1
Ruckh, T.T.2
Popat, K.C.3
-
259
-
-
2342499807
-
The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds
-
Rai, B.,; Teoh, S.-H.,; Ho, K.,; Hutmacher, D.,; Cao, T.,; Chen, F.,; Yacob, K., “The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds”, Biomaterials 2004, 25, 5499–5506.
-
(2004)
Biomaterials
, vol.25
, pp. 5499-5506
-
-
Rai, B.1
Teoh, S.-H.2
Ho, K.3
Hutmacher, D.4
Cao, T.5
Chen, F.6
Yacob, K.7
-
260
-
-
11144279123
-
Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2
-
Rai, B.,; Teoh, S.-H.,; Hutmacher, D.,; Cao, T.,; Ho, K., “Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2”, Biomaterials 2005, 26, 3739–3748.
-
(2005)
Biomaterials
, vol.26
, pp. 3739-3748
-
-
Rai, B.1
Teoh, S.-H.2
Hutmacher, D.3
Cao, T.4
Ho, K.5
-
261
-
-
35848962289
-
Antibiotic-loaded poly-ϵ-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis
-
Miyai, T.,; Ito, A.,; Tamazawa, G.,; Matsuno, T.,; Sogo, Y.,; Nakamura, C.,; Yamazaki, A.,; Satoh, T., “Antibiotic-loaded poly-ϵ-caprolactone and porous β-tricalcium phosphate composite for treating osteomyelitis”, Biomaterials 2008, 29, 350–358.
-
(2008)
Biomaterials
, vol.29
, pp. 350-358
-
-
Miyai, T.1
Ito, A.2
Tamazawa, G.3
Matsuno, T.4
Sogo, Y.5
Nakamura, C.6
Yamazaki, A.7
Satoh, T.8
-
262
-
-
35348915916
-
Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: a pilot study
-
Rai, B.,; Ho, K. H.,; Lei, Y.,; Si-Hoe, K.-M.,; Teo, C.-M. J.,; bin Yacob, K.,; Chen, F.,; Ng, F.-C.,; Teoh, S. H., “Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: a pilot study”, Journal of Oral and Maxillofacial Surgery 2007, 65, 2195–2205.
-
(2007)
Journal of Oral and Maxillofacial Surgery
, vol.65
, pp. 2195-2205
-
-
Rai, B.1
Ho, K.H.2
Lei, Y.3
Si-Hoe, K.-M.4
Teo, C.M.J.5
bin Yacob, K.6
Chen, F.7
Ng, F.-C.8
Teoh, S.H.9
-
263
-
-
84878857226
-
The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: A preliminary report
-
Khojasteh, A.,; Behnia, H.,; Hosseini, F. S.,; Dehghan, M. M.,; Abbasnia, P.,; Abbas, F. M., “The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: A preliminary report”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2013, 101, 848–854.
-
(2013)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.101
, pp. 848-854
-
-
Khojasteh, A.1
Behnia, H.2
Hosseini, F.S.3
Dehghan, M.M.4
Abbasnia, P.5
Abbas, F.M.6
-
264
-
-
84899934890
-
A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model
-
Li, Y.,; Wu, Z.-g.,; Li, X.-k.,; Guo, Z.,; Wu, S.-h.,; Zhang, Y.-q.,; Shi, L.,; Teoh, S.-h.,; Liu, Y.-c.,; Zhang, Z.-y., “A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model”, Biomaterials 2014, 35, 5647–5659.
-
(2014)
Biomaterials
, vol.35
, pp. 5647-5659
-
-
Li, Y.1
Wu, Z.-G.2
Li, X.-K.3
Guo, Z.4
Wu, S.-H.5
Zhang, Y.-Q.6
Shi, L.7
Teoh, S.-H.8
Liu, Y.-C.9
Zhang, Z.-Y.10
-
265
-
-
33746792330
-
Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model
-
Shao, X.,; Goh, J. C.,; Hutmacher, D. W.,; Lee, E. H.,; Zigang, G., “Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model”, Tissue Engineering 2006, 12, 1539–1551.
-
(2006)
Tissue Engineering
, vol.12
, pp. 1539-1551
-
-
Shao, X.1
Goh, J.C.2
Hutmacher, D.W.3
Lee, E.H.4
Zigang, G.5
-
266
-
-
84864411903
-
Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds
-
Lohfeld, S.,; Cahill, S.,; Barron, V.,; McHugh, P.,; Dürselen, L.,; Kreja, L.,; Bausewein, C.,; Ignatius, A., “Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds”, Acta Biomaterialia 2012, 8, 3446–3456.
-
(2012)
Acta Biomaterialia
, vol.8
, pp. 3446-3456
-
-
Lohfeld, S.1
Cahill, S.2
Barron, V.3
McHugh, P.4
Dürselen, L.5
Kreja, L.6
Bausewein, C.7
Ignatius, A.8
-
267
-
-
84931424245
-
Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: An in vivo pilot study in a porcine mandible model
-
Konopnicki, S.,; Sharaf, B.,; Resnick, C.,; Patenaude, A.,; Pogal-Sussman, T.,; Hwang, K.-G.,; Abukawa, H.,; Troulis, M. J., “Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: An in vivo pilot study in a porcine mandible model”, Journal of Oral and Maxillofacial Surgery 2015, 73, 1016. e1–1016. e11.
-
(2015)
Journal of Oral and Maxillofacial Surgery
, vol.73
, pp. 1-11
-
-
Konopnicki, S.1
Sharaf, B.2
Resnick, C.3
Patenaude, A.4
Pogal-Sussman, T.5
Hwang, K.-G.6
Abukawa, H.7
Troulis, M.J.8
-
268
-
-
77950792851
-
The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model
-
Ho, S. T. B.,; Hutmacher, D. W.,; Ekaputra, A. K.,; Hitendra, D.,; Hui, J. H., “The evaluation of a biphasic osteochondral implant coupled with an electrospun membrane in a large animal model”, Tissue Engineering Part A 2009, 16, 1123–1141.
-
(2009)
Tissue Engineering Part A
, vol.16
, pp. 1123-1141
-
-
Ho, S.T.B.1
Hutmacher, D.W.2
Ekaputra, A.K.3
Hitendra, D.4
Hui, J.H.5
-
269
-
-
24944559028
-
Simple surface modification of poly (ε-caprolactone) to induce its apatite-forming ability
-
Oyane, A.,; Uchida, M.,; Yokoyama, Y.,; Choong, C.,; Triffitt, J.,; Ito, A., “Simple surface modification of poly (ε-caprolactone) to induce its apatite-forming ability”, Journal of Biomedical Materials Research Part A 2005, 75, 138–145.
-
(2005)
Journal of Biomedical Materials Research Part A
, vol.75
, pp. 138-145
-
-
Oyane, A.1
Uchida, M.2
Yokoyama, Y.3
Choong, C.4
Triffitt, J.5
Ito, A.6
-
270
-
-
10044283142
-
Simple surface modification of poly (ϵ-caprolactone) for apatite deposition from simulated body fluid
-
Oyane, A.,; Uchida, M.,; Choong, C.,; Triffitt, J.,; Jones, J.,; Ito, A., “Simple surface modification of poly (ϵ-caprolactone) for apatite deposition from simulated body fluid”, Biomaterials 2005, 26, 2407–2413.
-
(2005)
Biomaterials
, vol.26
, pp. 2407-2413
-
-
Oyane, A.1
Uchida, M.2
Choong, C.3
Triffitt, J.4
Jones, J.5
Ito, A.6
-
271
-
-
0036004915
-
Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film
-
Fu, Y.,; Xu, H.,; Bai, S.,; Qiu, D.,; Sun, J.,; Wang, Z.,; Zhang, X., “Fabrication of a stable polyelectrolyte/Au nanoparticles multilayer film”, Macromolecular Rapid Communications 2002, 23, 256–259.
-
(2002)
Macromolecular Rapid Communications
, vol.23
, pp. 256-259
-
-
Fu, Y.1
Xu, H.2
Bai, S.3
Qiu, D.4
Sun, J.5
Wang, Z.6
Zhang, X.7
-
272
-
-
84897917570
-
In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ϵ-caprolactone: Effect of bio-functionalization for bone tissue engineering
-
Kwak, K.-A.,; Jyoti, M. A.,; Song, H.-Y., “In vitro and in vivo studies of three dimensional porous composites of biphasic calcium phosphate/poly ϵ-caprolactone: Effect of bio-functionalization for bone tissue engineering”, Applied Surface Science 2014, 301, 307–314.
-
(2014)
Applied Surface Science
, vol.301
, pp. 307-314
-
-
Kwak, K.-A.1
Jyoti, M.A.2
Song, H.-Y.3
-
273
-
-
84878572721
-
Bio-functionalization of polycaprolactone infiltrated BCP scaffold with silicon and fibronectin enhances osteoblast activity in vitro
-
Kwak, K.-A.,; Kim, Y.-H.,; Kim, M.,; Lee, B.-T.,; Song, H.-Y., “Bio-functionalization of polycaprolactone infiltrated BCP scaffold with silicon and fibronectin enhances osteoblast activity in vitro”, Applied Surface Science 2013, 279, 13–22.
-
(2013)
Applied Surface Science
, vol.279
, pp. 13-22
-
-
Kwak, K.-A.1
Kim, Y.-H.2
Kim, M.3
Lee, B.-T.4
Song, H.-Y.5
-
274
-
-
70449720618
-
Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration
-
Patlolla, A.,; Collins, G.,; Arinzeh, T. L., “Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration”, Acta Biomaterialia 2010, 6, 90–101.
-
(2010)
Acta Biomaterialia
, vol.6
, pp. 90-101
-
-
Patlolla, A.1
Collins, G.2
Arinzeh, T.L.3
-
275
-
-
33750500933
-
Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts
-
Zhou, Y.,; Chen, F.,; Ho, S. T.,; Woodruff, M. A.,; Lim, T. M.,; Hutmacher, D. W., “Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts”, Biomaterials 2007, 28, 814–824.
-
(2007)
Biomaterials
, vol.28
, pp. 814-824
-
-
Zhou, Y.1
Chen, F.2
Ho, S.T.3
Woodruff, M.A.4
Lim, T.M.5
Hutmacher, D.W.6
-
276
-
-
33846614110
-
Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates
-
Yefang, Z.,; Hutmacher, D.,; Varawan, S.-L.,; Meng, L. T., “Comparison of human alveolar osteoblasts cultured on polymer-ceramic composite scaffolds and tissue culture plates”, International Journal of Oral and Maxillofacial Surgery 2007, 36, 137–145.
-
(2007)
International Journal of Oral and Maxillofacial Surgery
, vol.36
, pp. 137-145
-
-
Yefang, Z.1
Hutmacher, D.2
Varawan, S.-L.3
Meng, L.T.4
-
277
-
-
55049126465
-
Customizing the degradation and load-bearing profile of 3D polycaprolactone-tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions
-
Yeo, A.,; Sju, E.,; Rai, B.,; Teoh, S. H., “Customizing the degradation and load-bearing profile of 3D polycaprolactone-tricalcium phosphate scaffolds under enzymatic and hydrolytic conditions”, Journal of Biomedical Materials Research Part B: Applied Biomaterials 2008, 87, 562–569.
-
(2008)
Journal of Biomedical Materials Research Part B: Applied Biomaterials
, vol.87
, pp. 562-569
-
-
Yeo, A.1
Sju, E.2
Rai, B.3
Teoh, S.H.4
-
278
-
-
84937524778
-
Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials
-
Doyle, H.,; Lohfeld, S.,; McHugh, P., “Evaluating the effect of increasing ceramic content on the mechanical properties, material microstructure and degradation of selective laser sintered polycaprolactone/β-tricalcium phosphate materials”, Medical Engineering & Physics 2015, 37, 767–776.
-
(2015)
Medical Engineering & Physics
, vol.37
, pp. 767-776
-
-
Doyle, H.1
Lohfeld, S.2
McHugh, P.3
|