메뉴 건너뛰기




Volumn 73, Issue 5, 2015, Pages 1016.e1-1016.e11

Tissue-engineered bone with 3-dimensionally printed β-tricalcium phosphate and polycaprolactone scaffolds and early implantation: An in vivo pilot study in a porcine mandible model

Author keywords

[No Author keywords available]

Indexed keywords

CALCIUM PHOSPHATE; POLYCAPROLACTONE; BETA-TRICALCIUM PHOSPHATE; POLYESTER;

EID: 84931424245     PISSN: 02782391     EISSN: 15315053     Source Type: Journal    
DOI: 10.1016/j.joms.2015.01.021     Document Type: Article
Times cited : (62)

References (31)
  • 1
    • 0030993056 scopus 로고    scopus 로고
    • Advantages and limitations of the fibula free flap in mandibular reconstruction
    • Ferri J, Piot B, Ruhin B, et al: Advantages and limitations of the fibula free flap in mandibular reconstruction. J Oral Maxillofac Surg 55:440, 1997
    • (1997) J Oral Maxillofac Surg , vol.55 , pp. 440
    • Ferri, J.1    Piot, B.2    Ruhin, B.3
  • 2
    • 26844571828 scopus 로고    scopus 로고
    • Autogenous bone grafts and bone substitutes-Tools and techniques: I. A 20, 000-case experience in maxillofacial and craniofacial surgery
    • Tessier P, Kawamoto H, Matthews D, et al: Autogenous bone grafts and bone substitutes-Tools and techniques: I. A 20, 000-case experience in maxillofacial and craniofacial surgery. Plast ReconstrSurg 116:6S, 2005
    • (2005) Plast ReconstrSurg , vol.116 , pp. 6S
    • Tessier, P.1    Kawamoto, H.2    Matthews, D.3
  • 4
    • 84897520575 scopus 로고    scopus 로고
    • Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects
    • Sandor GK, Numminen J, Wolff J, et al: Adipose stem cells used to reconstruct 13 cases with cranio-maxillofacial hard-tissue defects. Stem Cells Transl Med 3:530, 2014
    • (2014) Stem Cells Transl Med , vol.3 , pp. 530
    • Sandor, G.K.1    Numminen, J.2    Wolff, J.3
  • 5
    • 84885576882 scopus 로고    scopus 로고
    • Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications
    • Kinoshita Y, Maeda H: Recent developments of functional scaffolds for craniomaxillofacial bone tissue engineering applications. Sci World J 2013:863157, 2013
    • (2013) Sci World J , vol.2013 , pp. 863157
    • Kinoshita, Y.1    Maeda, H.2
  • 6
    • 0037218614 scopus 로고    scopus 로고
    • Formation of a mandibular condyle in vitro by tissue engineering
    • Abukawa H, Terai H, Hannouche D, et al: Formation of a mandibular condyle in vitro by tissue engineering. J Oral Maxillofac Surg 61:94, 2003
    • (2003) J Oral Maxillofac Surg , vol.61 , pp. 94
    • Abukawa, H.1    Terai, H.2    Hannouche, D.3
  • 7
    • 2142652137 scopus 로고    scopus 로고
    • Reconstruction of mandibular defects with autologous tissue-engineered bone
    • Abukawa H, Shin M, Williams WB, et al: Reconstruction of mandibular defects with autologous tissue-engineered bone. J Oral Maxillofac Surg 62:601, 2004
    • (2004) J Oral Maxillofac Surg , vol.62 , pp. 601
    • Abukawa, H.1    Shin, M.2    Williams, W.B.3
  • 8
    • 0031195238 scopus 로고    scopus 로고
    • Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds
    • Ishaug SL, Crane GM, Miller MJ, et al: Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res 36:17, 1997
    • (1997) J Biomed Mater Res , vol.36 , pp. 17
    • Ishaug, S.L.1    Crane, G.M.2    Miller, M.J.3
  • 9
    • 0033696853 scopus 로고    scopus 로고
    • Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds
    • Shea LD, Wang D, Franceschi RT, et al: Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 6:605, 2000
    • (2000) Tissue Eng , vol.6 , pp. 605
    • Shea, L.D.1    Wang, D.2    Franceschi, R.T.3
  • 10
    • 84859931713 scopus 로고    scopus 로고
    • Three-dimensionally printed polycaprolactone and/3-tricalcium phosphate scaffolds for bone tissue engineering: An in vitro study
    • Sharaf B, Faris CB, Abukawa H, et al: Three-dimensionally printed polycaprolactone and/3-tricalcium phosphate scaffolds for bone tissue engineering: An in vitro study. J Oral Maxillofac Surg 70:647, 2012
    • (2012) J Oral Maxillofac Surg , vol.70 , pp. 647
    • Sharaf, B.1    Faris, C.B.2    Abukawa, H.3
  • 11
    • 0031012411 scopus 로고    scopus 로고
    • Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro
    • Jaiswal N, Haynesworth SE, Caplan AI, et al: Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295, 1997
    • (1997) J Cell Biochem , vol.64 , pp. 295
    • Jaiswal, N.1    Haynesworth, S.E.2    Caplan, A.I.3
  • 12
    • 0033515827 scopus 로고    scopus 로고
    • Multilineage potential of adult human mesenchymal stem cells
    • Pittenger MF: Multilineage potential of adult human mesenchymal stem cells. Science 284:143, 1999
    • (1999) Science , vol.284 , pp. 143
    • Pittenger, M.F.1
  • 13
    • 0037205360 scopus 로고    scopus 로고
    • In vitro engineering of bone using a rotational oxygen-permeable bioreactor system
    • Terai H, Hannouche D, Ochoa E, et al: In vitro engineering of bone using a rotational oxygen-permeable bioreactor system. Mater Sci Eng C 20:3, 2002
    • (2002) Mater Sci Eng C , vol.20 , pp. 3
    • Terai, H.1    Hannouche, D.2    Ochoa, E.3
  • 14
    • 84891628074 scopus 로고    scopus 로고
    • Tissue engineering technology and its possible applications in oral and maxillofacial surgery
    • Payne K F B, Balasundaram I, Deb S, et al: Tissue engineering technology and its possible applications in oral and maxillofacial surgery. Br J Oral Maxillofac Surg 52:7, 2014
    • (2014) Br J Oral Maxillofac Surg , vol.52 , pp. 7
    • Payne, K.F.B.1    Balasundaram, I.2    Deb, S.3
  • 15
    • 84878857226 scopus 로고    scopus 로고
    • The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: A preliminary report
    • Khojasteh A, Behnia H, Hosseini FS, et al: The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: A preliminary report. J Biomed Mater Res B Appl Biomater 101:848, 2013
    • (2013) J Biomed Mater Res B Appl Biomater , vol.101 , pp. 848
    • Khojasteh, A.1    Behnia, H.2    Hosseini, F.S.3
  • 16
    • 35348915916 scopus 로고    scopus 로고
    • Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: A pilot study
    • Rai B, Ho KH, Lei Y, et al: Polycaprolactone-20% tricalcium phosphate scaffolds in combination with platelet-rich plasma for the treatment of critical-sized defects of the mandible: A pilot study. J Oral Maxillofac Surg 65:2195, 2007
    • (2007) J Oral Maxillofac Surg , vol.65 , pp. 2195
    • Rai, B.1    Ho, K.H.2    Lei, Y.3
  • 17
    • 0025066426 scopus 로고
    • Immune responses to alloge-neic and xenogeneic implants of collagen and collagen derivatives
    • De Lustro F, Dasch J, Keefe J, et al: Immune responses to alloge-neic and xenogeneic implants of collagen and collagen derivatives. Clin Orthop Relat Res 260:263, 1990
    • (1990) Clin Orthop Relat Res , vol.260 , pp. 263
    • De Lustro, F.1    Dasch, J.2    Keefe, J.3
  • 18
    • 0037290604 scopus 로고    scopus 로고
    • A novel degradable polycapro-lactone networks for tissue engineering
    • Kweon H, Yoo MK, Park IK, et al: A novel degradable polycapro-lactone networks for tissue engineering. Biomaterials 24:801, 2003
    • (2003) Biomaterials , vol.24 , pp. 801
    • Kweon, H.1    Yoo, M.K.2    Park, I.K.3
  • 19
    • 0035094757 scopus 로고    scopus 로고
    • Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling
    • Hutmacher DW, Schantz T, Zein I, et al: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55:203, 2001
    • (2001) J Biomed Mater Res , vol.55 , pp. 203
    • Hutmacher, D.W.1    Schantz, T.2    Zein, I.3
  • 20
    • 0037400540 scopus 로고    scopus 로고
    • A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
    • Yoshimoto H, Shin YM, Terai H, et al: A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24:2077, 2003
    • (2003) Biomaterials , vol.24 , pp. 2077
    • Yoshimoto, H.1    Shin, Y.M.2    Terai, H.3
  • 21
    • 0020824766 scopus 로고
    • Biodegradation behavior of various calcium phosphate materials in bone tissue
    • Klein CP, Driessen AA, De Groot K, et al: Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res 17:769, 1983
    • (1983) J Biomed Mater Res , vol.17 , pp. 769
    • Klein, C.P.1    Driessen, A.A.2    De Groot, K.3
  • 22
    • 0033813833 scopus 로고    scopus 로고
    • Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell
    • Curodeau A, Sachs E, Caldarise S: Design and fabrication of cast orthopedic implants with freeform surface textures from 3-D printed ceramic shell. J Biomed Mater Res 53:525, 2000
    • (2000) J Biomed Mater Res , vol.53 , pp. 525
    • Curodeau, A.1    Sachs, E.2    Caldarise, S.3
  • 23
    • 84911805552 scopus 로고    scopus 로고
    • Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
    • Temple JP, Hutton DL, Hung BP, et al: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res A 102:4317, 2014
    • (2014) J Biomed Mater Res A , vol.102 , pp. 4317
    • Temple, J.P.1    Hutton, D.L.2    Hung, B.P.3
  • 24
    • 0032900911 scopus 로고    scopus 로고
    • Calcium-regulating hormones, bone mineral content, breaking load and trabecular remodeling are altered in growing pigs fed calcium-deficient diets
    • Eklou-Kalonji E, Zerath E, Colin C, et al: Calcium-regulating hormones, bone mineral content, breaking load and trabecular remodeling are altered in growing pigs fed calcium-deficient diets. J Nutr 129:188, 1999
    • (1999) J Nutr , vol.129 , pp. 188
    • Eklou-Kalonji, E.1    Zerath, E.2    Colin, C.3
  • 25
    • 0031279478 scopus 로고    scopus 로고
    • Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc
    • Kuboki T, Shinoda M, Orsini MG, et al: Viscoelastic properties of the pig temporomandibular joint articular soft tissues of the condyle and disc. J Dent Res 76:1760, 1997
    • (1997) J Dent Res , vol.76 , pp. 1760
    • Kuboki, T.1    Shinoda, M.2    Orsini, M.G.3
  • 26
    • 0034013608 scopus 로고    scopus 로고
    • Effects of latency and rate on bone formation in a porcine mandibular distraction model
    • Troulis MJ, Glowacki J, Perrott DH, et al: Effects of latency and rate on bone formation in a porcine mandibular distraction model. J Oral Maxillofac Surg 58:507, 2000
    • (2000) J Oral Maxillofac Surg , vol.58 , pp. 507
    • Troulis, M.J.1    Glowacki, J.2    Perrott, D.H.3
  • 27
    • 0036208519 scopus 로고    scopus 로고
    • Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages
    • Ringe J, Kaps C, Schmitt B, et al: Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res 307:321, 2002
    • (2002) Cell Tissue Res , vol.307 , pp. 321
    • Ringe, J.1    Kaps, C.2    Schmitt, B.3
  • 28
    • 84870255219 scopus 로고    scopus 로고
    • Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micro-pig model
    • Yeo A, Cheok C, Teoh SH, et al: Lateral ridge augmentation using a PCL-TCP scaffold in a clinically relevant but challenging micro-pig model. Clin Oral Implants Res 23:1322, 2012
    • (2012) Clin Oral Implants Res , vol.23 , pp. 1322
    • Yeo, A.1    Cheok, C.2    Teoh, S.H.3
  • 29
    • 72049103156 scopus 로고    scopus 로고
    • Miniature pigs as an animal model for implant research: Bone regeneration in critical-size defects
    • Ruehe B, Niehues S, Heberer S, et al: Miniature pigs as an animal model for implant research: Bone regeneration in critical-size defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:699, 2009
    • (2009) Oral Surg Oral Med Oral Pathol Oral Radiol Endod , vol.108 , pp. 699
    • Ruehe, B.1    Niehues, S.2    Heberer, S.3
  • 30
    • 73449117878 scopus 로고    scopus 로고
    • Determination of critical size defect of minipig mandible
    • Ma J, Pan J, Tan B, et al: Determination of critical size defect of minipig mandible. J Tissue Eng Regen Med 3:615, 2009
    • (2009) J Tissue Eng Regen Med , vol.3 , pp. 615
    • Ma, J.1    Pan, J.2    Tan, B.3
  • 31
    • 13344271540 scopus 로고    scopus 로고
    • Repair of bone defects by applying biomatrices with and without autologous osteoblasts
    • Henkel KO, Gerber T, Dörfling P, et al: Repair of bone defects by applying biomatrices with and without autologous osteoblasts. J Craniomaxillofac Surg 33:45, 2005
    • (2005) J Craniomaxillofac Surg , vol.33 , pp. 45
    • Henkel, K.O.1    Gerber, T.2    Dörfling, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.