-
1
-
-
84255210700
-
Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012
-
PID: 21760595
-
Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012;19:107–20
-
(2012)
Cell Death Differ
, vol.19
, pp. 107-120
-
-
Galluzzi, L.1
Vitale, I.2
Abrams, J.M.3
Alnemri, E.S.4
Baehrecke, E.H.5
Blagosklonny, M.V.6
-
2
-
-
81055125652
-
Programmed cell death in animal development and disease
-
PID: 22078876
-
Fuchs Y, Steller H. Programmed cell death in animal development and disease. Cell. 2011;147:742–58
-
(2011)
Cell
, vol.147
, pp. 742-758
-
-
Fuchs, Y.1
Steller, H.2
-
3
-
-
0028943734
-
Apoptosis in the pathogenesis and treatment of disease
-
PID: 7878464
-
Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science. 1995;267:1456–62
-
(1995)
Science
, vol.267
, pp. 1456-1462
-
-
Thompson, C.B.1
-
4
-
-
84894550453
-
Regulated necrosis: the expanding network of non-apoptotic cell death pathways
-
PID: 24452471
-
Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15:135–47
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 135-147
-
-
Vanden Berghe, T.1
Linkermann, A.2
Jouan-Lanhouet, S.3
Walczak, H.4
Vandenabeele, P.5
-
5
-
-
84863230093
-
Control of nonapoptotic developmental cell death in Caenorhabditis elegans by a polyglutamine-repeat protein
-
PID: 22363008
-
Blum ES, Abraham MC, Yoshimura S, Lu Y, Shaham S. Control of nonapoptotic developmental cell death in Caenorhabditis elegans by a polyglutamine-repeat protein. Science. 2012;335:970–3
-
(2012)
Science
, vol.335
, pp. 970-973
-
-
Blum, E.S.1
Abraham, M.C.2
Yoshimura, S.3
Lu, Y.4
Shaham, S.5
-
7
-
-
33644840693
-
Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury
-
PID: 16408008
-
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 2005;1:112–9
-
(2005)
Nat Chem Biol
, vol.1
, pp. 112-119
-
-
Degterev, A.1
Huang, Z.2
Boyce, M.3
Li, Y.4
Jagtap, P.5
Mizushima, N.6
-
8
-
-
84861541814
-
Ferroptosis: an iron-dependent form of nonapoptotic cell death
-
PID: 22632970
-
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72
-
(2012)
Cell
, vol.149
, pp. 1060-1072
-
-
Dixon, S.J.1
Lemberg, K.M.2
Lamprecht, M.R.3
Skouta, R.4
Zaitsev, E.M.5
Gleason, C.E.6
-
9
-
-
84892685001
-
Regulation of ferroptotic cancer cell death by GPX4
-
PID: 24439385
-
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, et al. Regulation of ferroptotic cancer cell death by GPX4. Cell. 2014;156:317–31
-
(2014)
Cell
, vol.156
, pp. 317-331
-
-
Yang, W.S.1
SriRamaratnam, R.2
Welsch, M.E.3
Shimada, K.4
Skouta, R.5
Viswanathan, V.S.6
-
10
-
-
84937525519
-
Glutaminolysis and transferrin regulate ferroptosis
-
PID: 26166707
-
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59:298–308
-
(2015)
Mol Cell
, vol.59
, pp. 298-308
-
-
Gao, M.1
Monian, P.2
Quadri, N.3
Ramasamy, R.4
Jiang, X.5
-
11
-
-
0037932865
-
Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells
-
PID: 12676586
-
Dolma S, Lessnick SL, Hahn WC, Stockwell BR. Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell. 2003;3:285–96
-
(2003)
Cancer Cell
, vol.3
, pp. 285-296
-
-
Dolma, S.1
Lessnick, S.L.2
Hahn, W.C.3
Stockwell, B.R.4
-
12
-
-
40849085503
-
Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells
-
PID: 18355723
-
Yang WS, Stockwell BR. Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 2008;15:234–45
-
(2008)
Chem Biol
, vol.15
, pp. 234-245
-
-
Yang, W.S.1
Stockwell, B.R.2
-
13
-
-
34250372956
-
RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels
-
PID: 17568748
-
Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, et al. RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature. 2007;447:864–8
-
(2007)
Nature
, vol.447
, pp. 864-868
-
-
Yagoda, N.1
von Rechenberg, M.2
Zaganjor, E.3
Bauer, A.J.4
Yang, W.S.5
Fridman, D.J.6
-
15
-
-
84958103915
-
Ferroptosis: death by lipid peroxidation
-
PID: 26653790
-
Yang WS, Stockwell BR. Ferroptosis: death by lipid peroxidation. Trends Cell Biol. 2016;26:165–76
-
(2016)
Trends Cell Biol
, vol.26
, pp. 165-176
-
-
Yang, W.S.1
Stockwell, B.R.2
-
16
-
-
85018823202
-
HSPA5 regulates ferroptotic cell death in cancer cells
-
PID: 28130223
-
Zhu S, Zhang Q, Sun X, Zeh HJ, Lotze MT, Kang R, et al. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 2017;77:2064–77
-
(2017)
Cancer Res
, vol.77
, pp. 2064-2077
-
-
Zhu, S.1
Zhang, Q.2
Sun, X.3
Zeh, H.J.4
Lotze, M.T.5
Kang, R.6
-
17
-
-
84995468814
-
ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition
-
PID: 27842070
-
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 2017;13:91–98
-
(2017)
Nat Chem Biol
, vol.13
, pp. 91-98
-
-
Doll, S.1
Proneth, B.2
Tyurina, Y.Y.3
Panzilius, E.4
Kobayashi, S.5
Ingold, I.6
-
18
-
-
84995640115
-
CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation
-
PID: 27510639
-
Yuan H, Li X, Zhang X, Kang R, Tang D. CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 2016;478:838–44
-
(2016)
Biochem Biophys Res Commun
, vol.478
, pp. 838-844
-
-
Yuan, H.1
Li, X.2
Zhang, X.3
Kang, R.4
Tang, D.5
-
19
-
-
84983666736
-
Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis
-
PID: 27506793
-
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR. Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 2016;113:E4966–4975
-
(2016)
Proc Natl Acad Sci USA
, vol.113
, pp. E4966-E4975
-
-
Yang, W.S.1
Kim, K.J.2
Gaschler, M.M.3
Patel, M.4
Shchepinov, M.S.5
Stockwell, B.R.6
-
20
-
-
84962637563
-
Mechanisms of ferroptosis
-
PID: 27048822
-
Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73:2195–209
-
(2016)
Cell Mol Life Sci
, vol.73
, pp. 2195-2209
-
-
Cao, J.Y.1
Dixon, S.J.2
-
21
-
-
84868627011
-
MicroRNA regulation of autophagy
-
PID: 22902544
-
Frankel LB, Lund AH. MicroRNA regulation of autophagy. Carcinogenesis. 2012;33:2018–25
-
(2012)
Carcinogenesis
, vol.33
, pp. 2018-2025
-
-
Frankel, L.B.1
Lund, A.H.2
-
22
-
-
0347444723
-
MicroRNAs: genomics, biogenesis, mechanism, and function
-
PID: 14744438
-
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97
-
(2004)
Cell
, vol.116
, pp. 281-297
-
-
Bartel, D.P.1
-
23
-
-
84857079737
-
The microcosmos of cancer
-
PID: 22337054
-
Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482:347–55
-
(2012)
Nature
, vol.482
, pp. 347-355
-
-
Lujambio, A.1
Lowe, S.W.2
-
24
-
-
77955475969
-
Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation
-
PID: 20554958
-
Carr EL, Kelman A, Wu GS, Gopaul R, Senkevitch E, Aghvanyan A, et al. Glutamine uptake and metabolism are coordinately regulated by ERK/MAPK during T lymphocyte activation. J Immunol. 2010;185:1037–44
-
(2010)
J Immunol
, vol.185
, pp. 1037-1044
-
-
Carr, E.L.1
Kelman, A.2
Wu, G.S.3
Gopaul, R.4
Senkevitch, E.5
Aghvanyan, A.6
-
25
-
-
84255199561
-
Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression
-
PID: 22007000
-
Wang Q, Bailey CG, Ng C, Tiffen J, Thoeng A, Minhas V, et al. Androgen receptor and nutrient signaling pathways coordinate the demand for increased amino acid transport during prostate cancer progression. Cancer Res. 2011;71:7525–36
-
(2011)
Cancer Res
, vol.71
, pp. 7525-7536
-
-
Wang, Q.1
Bailey, C.G.2
Ng, C.3
Tiffen, J.4
Thoeng, A.5
Minhas, V.6
-
26
-
-
84861541814
-
Ferroptosis: an iron-dependent form of nonapoptotic cell death
-
PID: 22632970
-
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149:1060–72
-
(2012)
Cell
, vol.149
, pp. 1060-1072
-
-
Dixon, S.J.1
Lemberg, K.M.2
Lamprecht, M.R.3
Skouta, R.4
Zaitsev, E.M.5
Gleason, C.E.6
-
27
-
-
28444469246
-
Silencing of microRNAs in vivo with ‘antagomirs’
-
PID: 16258535
-
Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005;438:685–9
-
(2005)
Nature
, vol.438
, pp. 685-689
-
-
Krutzfeldt, J.1
Rajewsky, N.2
Braich, R.3
Rajeev, K.G.4
Tuschl, T.5
Manoharan, M.6
-
28
-
-
37449024702
-
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation
-
PID: 18177721
-
DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB. The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab. 2008;7:11–20
-
(2008)
Cell Metab
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
Lum, J.J.2
Hatzivassiliou, G.3
Thompson, C.B.4
-
29
-
-
12844262292
-
Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site
-
PID: 15670919
-
Esslinger CS, Cybulski KA, Rhoderick JF. Ngamma-aryl glutamine analogues as probes of the ASCT2 neutral amino acid transporter binding site. Bioorg Med Chem. 2005;13:1111–8
-
(2005)
Bioorg Med Chem
, vol.13
, pp. 1111-1118
-
-
Esslinger, C.S.1
Cybulski, K.A.2
Rhoderick, J.F.3
-
30
-
-
0029099953
-
Regulation of glutaminase activity and glutamine metabolism
-
PID: 8527215
-
Curthoys NP, Watford M. Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr. 1995;15:133–59
-
(1995)
Annu Rev Nutr
, vol.15
, pp. 133-159
-
-
Curthoys, N.P.1
Watford, M.2
-
31
-
-
84883497454
-
Glutamine and cancer: cell biology, physiology, and clinical opportunities
-
PID: 23999442
-
Hensley CT, Wasti AT, DeBerardinis RJ. Glutamine and cancer: cell biology, physiology, and clinical opportunities. J Clin Invest. 2013;123:3678–84
-
(2013)
J Clin Invest
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
Wasti, A.T.2
DeBerardinis, R.J.3
-
32
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway
-
PID: 23535601
-
Son J, Lyssiotis CA, Ying H, Wang X, Hua S, Ligorio M, et al. Glutamine supports pancreatic cancer growth through a KRAS-regulated metabolic pathway. Nature. 2013;496:101–5
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
Lyssiotis, C.A.2
Ying, H.3
Wang, X.4
Hua, S.5
Ligorio, M.6
-
33
-
-
57749088701
-
Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction
-
PID: 19033189
-
Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA. 2008;105:18782–7
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 18782-18787
-
-
Wise, D.R.1
DeBerardinis, R.J.2
Mancuso, A.3
Sayed, N.4
Zhang, X.Y.5
Pfeiffer, H.K.6
-
34
-
-
84940502214
-
Predicting effective microRNA target sites in mammalian mRNAs
-
Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife. 2015;4:e05005
-
(2015)
Elife
, vol.4
-
-
Agarwal, V.1
Bell, G.W.2
Nam, J.W.3
Bartel, D.P.4
-
35
-
-
14044251458
-
Human microRNA targets
-
PID: 15502875
-
John B, Enright AJ, Aravin A, Tuschl T, Sander C, Marks DS. Human microRNA targets. PLoS Biol. 2004;2:e363
-
(2004)
PLoS Biol
, vol.2
-
-
John, B.1
Enright, A.J.2
Aravin, A.3
Tuschl, T.4
Sander, C.5
Marks, D.S.6
-
36
-
-
38549150275
-
miRBase: tools for microRNA genomics
-
PID: 17991681
-
Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008;36(Database issue):D154–158
-
(2008)
Nucleic Acids Res
, vol.36
, Issue.Database issue
, pp. D154-D158
-
-
Griffiths-Jones, S.1
Saini, H.K.2
van Dongen, S.3
Enright, A.J.4
-
37
-
-
58149252151
-
Stable knockdown of microRNA in vivo by lentiviral vectors
-
PID: 19043411
-
Gentner B, Schira G, Giustacchini A, Amendola M, Brown BD, Ponzoni M, et al. Stable knockdown of microRNA in vivo by lentiviral vectors. Nat Methods. 2009;6:63–66
-
(2009)
Nat Methods
, vol.6
, pp. 63-66
-
-
Gentner, B.1
Schira, G.2
Giustacchini, A.3
Amendola, M.4
Brown, B.D.5
Ponzoni, M.6
-
38
-
-
84898619521
-
MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX
-
PID: 24573672
-
Li W, Zhang X, Zhuang H, Chen HG, Chen Y, Tian W, et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX. J Biol Chem. 2014;289:10691–701
-
(2014)
J Biol Chem
, vol.289
, pp. 10691-10701
-
-
Li, W.1
Zhang, X.2
Zhuang, H.3
Chen, H.G.4
Chen, Y.5
Tian, W.6
-
39
-
-
84996968391
-
microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP
-
PID: 27875524
-
Li X, Chen W, Zeng W, Wan C, Duan S, Jiang S. microRNA-137 promotes apoptosis in ovarian cancer cells via the regulation of XIAP. Br J Cancer. 2017;116:66–76
-
(2017)
Br J Cancer
, vol.116
, pp. 66-76
-
-
Li, X.1
Chen, W.2
Zeng, W.3
Wan, C.4
Duan, S.5
Jiang, S.6
-
40
-
-
85017456553
-
miR-137 inhibits the proliferation of human non-small cell lung cancer cells by targeting SRC3
-
PID: 28521488
-
Chen R, Zhang Y, Zhang C, Wu H, Yang S. miR-137 inhibits the proliferation of human non-small cell lung cancer cells by targeting SRC3. Oncol Lett. 2017;13:3905–11
-
(2017)
Oncol Lett
, vol.13
, pp. 3905-3911
-
-
Chen, R.1
Zhang, Y.2
Zhang, C.3
Wu, H.4
Yang, S.5
-
41
-
-
84875205835
-
The SLC1 high-affinity glutamate and neutral amino acid transporter family
-
Kanai Y, Clemencon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, et al. The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Asp Med. 2013;34:108–20
-
(2013)
Mol Asp Med
, vol.34
, pp. 108-120
-
-
Kanai, Y.1
Clemencon, B.2
Simonin, A.3
Leuenberger, M.4
Lochner, M.5
Weisstanner, M.6
-
42
-
-
84864931233
-
Glutaminolysis activates Rag-mTORC1 signaling
-
PID: 22749528
-
Duran RV, Oppliger W, Robitaille AM, Heiserich L, Skendaj R, Gottlieb E, et al. Glutaminolysis activates Rag-mTORC1 signaling. Mol Cell. 2012;47:349–58
-
(2012)
Mol Cell
, vol.47
, pp. 349-358
-
-
Duran, R.V.1
Oppliger, W.2
Robitaille, A.M.3
Heiserich, L.4
Skendaj, R.5
Gottlieb, E.6
-
43
-
-
85016426003
-
Long non-coding RNA GAS5 inhibits tumorigenesis via miR-137 in melanoma
-
PID: 28386376
-
Bian D, Shi W, Shao Y, Li P, Song G. Long non-coding RNA GAS5 inhibits tumorigenesis via miR-137 in melanoma. Am J Transl Res. 2017;9:1509–20
-
(2017)
Am J Transl Res
, vol.9
, pp. 1509-1520
-
-
Bian, D.1
Shi, W.2
Shao, Y.3
Li, P.4
Song, G.5
-
44
-
-
84954491650
-
Low expression of Mir-137 predicts poor prognosis in cutaneous melanoma patients
-
PID: 26763596
-
Li N. Low expression of Mir-137 predicts poor prognosis in cutaneous melanoma patients. Med Sci Monit. 2016;22:140–4
-
(2016)
Med Sci Monit
, vol.22
, pp. 140-144
-
-
Li, N.1
-
45
-
-
23044464236
-
Extensive modulation of a set of microRNAs in primary glioblastoma
-
PID: 16039986
-
Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005;334:1351–8
-
(2005)
Biochem Biophys Res Commun
, vol.334
, pp. 1351-1358
-
-
Ciafre, S.A.1
Galardi, S.2
Mangiola, A.3
Ferracin, M.4
Liu, C.G.5
Sabatino, G.6
-
46
-
-
77955723545
-
Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis
-
PID: 20682795
-
Balaguer F, Link A, Lozano JJ, Cuatrecasas M, Nagasaka T, Boland CR, et al. Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res. 2010;70:6609–18
-
(2010)
Cancer Res
, vol.70
, pp. 6609-6618
-
-
Balaguer, F.1
Link, A.2
Lozano, J.J.3
Cuatrecasas, M.4
Nagasaka, T.5
Boland, C.R.6
-
47
-
-
84902550841
-
Targeting glutamine transport to suppress melanoma cell growth
-
PID: 24531984
-
Wang Q, Beaumont KA, Otte NJ, Font J, Bailey CG, van Geldermalsen M, et al. Targeting glutamine transport to suppress melanoma cell growth. Int J Cancer. 2014;135:1060–71
-
(2014)
Int J Cancer
, vol.135
, pp. 1060-1071
-
-
Wang, Q.1
Beaumont, K.A.2
Otte, N.J.3
Font, J.4
Bailey, C.G.5
van Geldermalsen, M.6
-
48
-
-
84916638478
-
ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation
-
PID: 25142020
-
Ren P, Yue M, Xiao D, Xiu R, Gan L, Liu H, et al. ATF4 and N-Myc coordinate glutamine metabolism in MYCN-amplified neuroblastoma cells through ASCT2 activation. J Pathol. 2015;235:90–100
-
(2015)
J Pathol
, vol.235
, pp. 90-100
-
-
Ren, P.1
Yue, M.2
Xiao, D.3
Xiu, R.4
Gan, L.5
Liu, H.6
-
49
-
-
84930482603
-
Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development
-
PID: 25693838
-
Wang Q, Hardie RA, Hoy AJ, van Geldermalsen M, Gao D, Fazli L, et al. Targeting ASCT2-mediated glutamine uptake blocks prostate cancer growth and tumour development. J Pathol. 2015;236:278–89
-
(2015)
J Pathol
, vol.236
, pp. 278-289
-
-
Wang, Q.1
Hardie, R.A.2
Hoy, A.J.3
van Geldermalsen, M.4
Gao, D.5
Fazli, L.6
-
50
-
-
85008417840
-
Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma
-
PID: 27857131
-
Qin Y, Zhang S, Deng S, An G, Qin X, Li F, et al. Epigenetic silencing of miR-137 induces drug resistance and chromosomal instability by targeting AURKA in multiple myeloma. Leukemia. 2017;31:1123–35
-
(2017)
Leukemia
, vol.31
, pp. 1123-1135
-
-
Qin, Y.1
Zhang, S.2
Deng, S.3
An, G.4
Qin, X.5
Li, F.6
-
51
-
-
84964770908
-
MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer
-
PID: 26989074
-
Shen H, Wang L, Ge X, Jiang CF, Shi ZM, Li DM, et al. MicroRNA-137 inhibits tumor growth and sensitizes chemosensitivity to paclitaxel and cisplatin in lung cancer. Oncotarget. 2016;7:20728–42
-
(2016)
Oncotarget
, vol.7
, pp. 20728-20742
-
-
Shen, H.1
Wang, L.2
Ge, X.3
Jiang, C.F.4
Shi, Z.M.5
Li, D.M.6
-
52
-
-
85010666348
-
MicroRNA-137 chemosensitizes colon cancer cells to the chemotherapeutic drug oxaliplatin (OXA) by targeting YBX1
-
PID: 28035913
-
Guo Y, Pang Y, Gao X, Zhao M, Zhang X, Zhang H, et al. MicroRNA-137 chemosensitizes colon cancer cells to the chemotherapeutic drug oxaliplatin (OXA) by targeting YBX1. Cancer Biomark. 2017;18:1–9
-
(2017)
Cancer Biomark
, vol.18
, pp. 1-9
-
-
Guo, Y.1
Pang, Y.2
Gao, X.3
Zhao, M.4
Zhang, X.5
Zhang, H.6
-
53
-
-
81255143302
-
microRNA-101 is a potent inhibitor of autophagy
-
PID: 21915098
-
Frankel LB, Wen J, Lees M, Hoyer-Hansen M, Farkas T, Krogh A, et al. microRNA-101 is a potent inhibitor of autophagy. EMBO J. 2011;30:4628–41
-
(2011)
EMBO J
, vol.30
, pp. 4628-4641
-
-
Frankel, L.B.1
Wen, J.2
Lees, M.3
Hoyer-Hansen, M.4
Farkas, T.5
Krogh, A.6
-
54
-
-
59149098054
-
MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity
-
PID: 19155302
-
Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009;69:1135–42
-
(2009)
Cancer Res
, vol.69
, pp. 1135-1142
-
-
Su, H.1
Yang, J.R.2
Xu, T.3
Huang, J.4
Xu, L.5
Yuan, Y.6
|