메뉴 건너뛰기




Volumn 2017-October, Issue , 2017, Pages 4010-4019

Towards Large-Pose Face Frontalization in the Wild

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; DEEP LEARNING; LEARNING ALGORITHMS;

EID: 85039460026     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2017.430     Document Type: Conference Paper
Times cited : (343)

References (46)
  • 1
    • 85028639150 scopus 로고    scopus 로고
    • A morphable model for the synthesize of 3D faces
    • V. Blanz and T. Vetter. A morphable model for the synthesize of 3D faces. SIGGRAPH, 1999.
    • (1999) SIGGRAPH
    • Blanz, V.1    Vetter, T.2
  • 2
    • 85041904170 scopus 로고    scopus 로고
    • Unsupervised pixel-level domain adaptation with generative adversarial networks
    • K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised pixel-level domain adaptation with generative adversarial networks. In CVPR, 2017.
    • (2017) CVPR
    • Bousmalis, K.1    Silberman, N.2    Dohan, D.3    Erhan, D.4    Krishnan, D.5
  • 3
    • 84977639367 scopus 로고    scopus 로고
    • Unconstrained face verification using deep CNN features
    • J.-C. Chen, V. M. Patel, and R. Chellappa. Unconstrained face verification using deep CNN features. In WACV, 2016.
    • (2016) WACV
    • Chen, J.-C.1    Patel, V.M.2    Chellappa, R.3
  • 4
    • 85019228440 scopus 로고    scopus 로고
    • InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
    • X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In NIPS, 2016.
    • (2016) NIPS
    • Chen, X.1    Duan, Y.2    Houthooft, R.3    Schulman, J.4    Sutskever, I.5    Abbeel, P.6
  • 6
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a Laplacian pyramid of adversarial networks
    • E. Denton, S. Chintala, and R. Fergus. Deep generative image models using a Laplacian pyramid of adversarial networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.1    Chintala, S.2    Fergus, R.3
  • 7
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • A. Dosovitskiy, J. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.2    Brox, T.3
  • 8
    • 0001149674 scopus 로고
    • Infants' recognition of invariant features of faces
    • J. Fagan. Infants' recognition of invariant features of faces. Child Development, 1976.
    • (1976) Child Development
    • Fagan, J.1
  • 9
    • 85019101300 scopus 로고    scopus 로고
    • Effective 3D based frontalization for unconstrained face recognition
    • C. Ferrari, G. Lisanti, S. Berretti, and A. Bimbo. Effective 3D based frontalization for unconstrained face recognition. In ICPR, 2016.
    • (2016) ICPR
    • Ferrari, C.1    Lisanti, G.2    Berretti, S.3    Bimbo, A.4
  • 12
    • 84986311190 scopus 로고    scopus 로고
    • Effective face frontalization in unconstrained images
    • T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face frontalization in unconstrained images. In CVPR, 2014.
    • (2014) CVPR
    • Hassner, T.1    Harel, S.2    Paz, E.3    Enbar, R.4
  • 14
    • 84973856188 scopus 로고    scopus 로고
    • Pose-invariant 3D face alignment
    • A. Jourabloo and X. Liu. Pose-invariant 3D face alignment. In ICCV, 2015.
    • (2015) ICCV
    • Jourabloo, A.1    Liu, X.2
  • 15
    • 85018467271 scopus 로고    scopus 로고
    • Pose-invariant face alignment via CNN-based dense 3D model fitting
    • A. Jourabloo and X. Liu. Pose-invariant face alignment via CNN-based dense 3D model fitting. IJCV, 2017.
    • (2017) IJCV
    • Jourabloo, A.1    Liu, X.2
  • 16
    • 84986290338 scopus 로고    scopus 로고
    • Multi-view deep network for cross-view classification
    • M. Kan, S. Shan, and X. Chen. Multi-view deep network for cross-view classification. In CVPR, 2016.
    • (2016) CVPR
    • Kan, M.1    Shan, S.2    Chen, X.3
  • 19
    • 85041911383 scopus 로고    scopus 로고
    • Transformation-grounded image generation network for novel 3d view synthesis
    • E. Park, J. Yang, E. Yumer, D. Ceylan, and A. C. Berg. Transformation-grounded image generation network for novel 3d view synthesis. In CVPR, 2017.
    • (2017) CVPR
    • Park, E.1    Yang, J.2    Yumer, E.3    Ceylan, D.4    Berg, A.C.5
  • 20
    • 85041894422 scopus 로고    scopus 로고
    • Reconstruction-based disentanglement for pose-invariant face recognition
    • X. Peng, X. Yu, K. Sohn, D. N. Metaxas, and M. Chandraker. Reconstruction-based disentanglement for pose-invariant face recognition. In ICCV, 2017.
    • (2017) ICCV
    • Peng, X.1    Yu, X.2    Sohn, K.3    Metaxas, D.N.4    Chandraker, M.5
  • 21
    • 84990048986 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. CoRR, 2015.
    • (2015) CoRR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 22
    • 84959239999 scopus 로고    scopus 로고
    • Unconstrained 3D face reconstruction
    • J. Roth, Y. Tong, and X. Liu. Unconstrained 3D face reconstruction. In CVPR, 2015.
    • (2015) CVPR
    • Roth, J.1    Tong, Y.2    Liu, X.3
  • 23
    • 85046262509 scopus 로고    scopus 로고
    • Adaptive 3D face reconstruction from unconstrained photo collections
    • J. Roth, Y. Tong, and X. Liu. Adaptive 3D face reconstruction from unconstrained photo collections. TPAMI, 2016.
    • (2016) TPAMI
    • Roth, J.1    Tong, Y.2    Liu, X.3
  • 25
    • 84897520980 scopus 로고    scopus 로고
    • 300 faces in-The-wild challenge: The first facial landmark localization challenge
    • C. Sagonas, G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. 300 faces in-The-wild challenge: The first facial landmark localization challenge. In ICCVW, 2013.
    • (2013) ICCVW
    • Sagonas, C.1    Tzimiropoulos, G.2    Zafeiriou, S.3    Pantic, M.4
  • 27
    • 84937852544 scopus 로고    scopus 로고
    • Deep learning face representation by joint identification-verification
    • Y. Sun, Y. Chen, X. Wang, and X. Tang. Deep learning face representation by joint identification-verification. In NIPS, 2014.
    • (2014) NIPS
    • Sun, Y.1    Chen, Y.2    Wang, X.3    Tang, X.4
  • 28
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10,000 classes
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10,000 classes. In CVPR, 2014.
    • (2014) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 29
    • 85088231360 scopus 로고    scopus 로고
    • Unsupervised crossdomain image generation
    • Y. Taigman, A. polyak, and L. Wolf. Unsupervised crossdomain image generation. In ICLR, 2017.
    • (2017) ICLR
    • Taigman, Y.1    Polyak, A.2    Wolf, L.3
  • 30
    • 85041925714 scopus 로고    scopus 로고
    • Disentangled representation learning GAN for pose-invariant face recognition
    • L. Tran, X. Yin, and X. Liu. Disentangled representation learning GAN for pose-invariant face recognition. In CVPR, 2017.
    • (2017) CVPR
    • Tran, L.1    Yin, X.2    Liu, X.3
  • 31
    • 38649130180 scopus 로고    scopus 로고
    • Newborns' face recognition over changes in viewpoint
    • C. Turati, H. Bulf, and F. Simion. Newborns' face recognition over changes in viewpoint. Cognition, 2008.
    • (2008) Cognition
    • Turati, C.1    Bulf, H.2    Simion, F.3
  • 33
    • 85016159876 scopus 로고    scopus 로고
    • Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling
    • J.Wu, C. Zhang, T. Xue,W. T. Freeman, and J. B. Tenenbaum. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In NIPS, 2016.
    • (2016) NIPS
    • Wu, J.1    Zhang, C.2    Xue, T.3    Freeman, W.T.4    Tenenbaum, J.B.5
  • 34
    • 84887383859 scopus 로고    scopus 로고
    • Supervised descent method and its applications to face alignment
    • X. Xiong and F. D. la Torre. Supervised descent method and its applications to face alignment. In CVPR, 2013.
    • (2013) CVPR
    • Xiong, X.1    La Torre, F.D.2
  • 35
    • 84986300463 scopus 로고    scopus 로고
    • Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers
    • F. Yang, W. Choi, and Y. Lin. Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In CVPR, 2016.
    • (2016) CVPR
    • Yang, F.1    Choi, W.2    Lin, Y.3
  • 36
    • 84965161391 scopus 로고    scopus 로고
    • Weakly supervised disentangling with recurrent transformations for 3D view synthesis
    • J. Yang, S. Reed, M.-H. Yang, and H. Lee. Weakly supervised disentangling with recurrent transformations for 3D view synthesis. In NIPS, 2015.
    • (2015) NIPS
    • Yang, J.1    Reed, S.2    Yang, M.-H.3    Lee, H.4
  • 38
    • 84959231848 scopus 로고    scopus 로고
    • Rotating your face using multi-task deep neural network
    • J. Yim, H. Jung, B. Yoo, C. Choi, D. Park, and J. Kim. Rotating your face using multi-task deep neural network. In CVPR, 2015.
    • (2015) CVPR
    • Yim, J.1    Jung, H.2    Yoo, B.3    Choi, C.4    Park, D.5    Kim, J.6
  • 40
    • 85041921842 scopus 로고    scopus 로고
    • Face landmark fitting via optimized part mixtures and cascaded deformable model
    • X. Yu, J. Huang, S. Zhang, and D. N. Metaxas. Face landmark fitting via optimized part mixtures and cascaded deformable model. TPAMI, 2015.
    • (2015) TPAMI
    • Yu, X.1    Huang, J.2    Zhang, S.3    Metaxas, D.N.4
  • 41
    • 84952032697 scopus 로고    scopus 로고
    • Consensus of regression for occlusion-robust facial feature localization
    • X. Yu, Z. Lin, J. Brandt, and D. N. Metaxas. Consensus of regression for occlusion-robust facial feature localization. In ECCV, 2014.
    • (2014) ECCV
    • Yu, X.1    Lin, Z.2    Brandt, J.3    Metaxas, D.N.4
  • 42
    • 85005982173 scopus 로고    scopus 로고
    • Deep deformation network for object landmark localization
    • X. Yu, F. Zhou, and M. Chandraker. Deep deformation network for object landmark localization. In ECCV, 2016.
    • (2016) ECCV
    • Yu, X.1    Zhou, F.2    Chandraker, M.3
  • 43
    • 84986281478 scopus 로고    scopus 로고
    • Face alignment across large poses: A 3D solution
    • X. Zhu, Z. Lei, X. Liu, H. Shi, and S. Z. Li. Face alignment across large poses: A 3D solution. In CVPR, 2016.
    • (2016) CVPR
    • Zhu, X.1    Lei, Z.2    Liu, X.3    Shi, H.4    Li, S.Z.5
  • 44
    • 84949740059 scopus 로고    scopus 로고
    • High-fidelity pose and expression normalization for face recognition in the wild
    • X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-fidelity pose and expression normalization for face recognition in the wild. In CVPR, 2015.
    • (2015) CVPR
    • Zhu, X.1    Lei, Z.2    Yan, J.3    Yi, D.4    Li, S.Z.5
  • 45
    • 84898819011 scopus 로고    scopus 로고
    • Deep learning identitypreserving face space
    • Z. Zhu, P. Luo, X.Wang, and X. Tang. Deep learning identitypreserving face space. In ICCV, 2013.
    • (2013) ICCV
    • Zhu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 46
    • 84937885357 scopus 로고    scopus 로고
    • Multi-view perceptron: A deep model for learning face identity and view representations
    • Z. Zhu, P. Luo, X.Wang, and X. Tang. Multi-view perceptron: a deep model for learning face identity and view representations. In NIPS, 2014.
    • (2014) NIPS
    • Zhu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.