메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 702-711

Transformation-grounded image generation network for novel 3D view synthesis

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; PATTERN RECOGNITION; THREE DIMENSIONAL COMPUTER GRAPHICS;

EID: 85041911383     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.82     Document Type: Conference Paper
Times cited : (333)

References (51)
  • 5
    • 85018862711 scopus 로고    scopus 로고
    • 3dr2n2: A unified approach for single and multi-view 3d object reconstruction
    • 7
    • C. B. Choy, D. Xu, J. Gwak, K. Chen, and S. Savarese. 3dr2n2: A unified approach for single and multi-view 3d object reconstruction. In ECCV, 2016. 7
    • (2016) ECCV
    • Choy, C.B.1    Xu, D.2    Gwak, J.3    Chen, K.4    Savarese, S.5
  • 6
    • 85019269786 scopus 로고    scopus 로고
    • Generating images with perceptual similarity metrics based on deep networks
    • 2, 5
    • A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep networks. In NIPS, 2016. 2, 5
    • (2016) NIPS
    • Dosovitskiy, A.1    Brox, T.2
  • 8
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • 3
    • A. Dosovitskiy, J. T. Springenberg, and T. Brox. Learning to generate chairs with convolutional neural networks. In CVPR, 2015. 3
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 10
    • 85018936904 scopus 로고    scopus 로고
    • Unsupervised learning for physical interaction through video prediction
    • 8
    • C. Finn, I. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through video prediction. In NIPS, 2016. 8
    • (2016) NIPS
    • Finn, C.1    Goodfellow, I.2    Levine, S.3
  • 11
    • 84986252211 scopus 로고    scopus 로고
    • Deepstereo: Learning to predict new views from the world's imagery
    • 2
    • J. Flynn, I. Neulander, J. Philbin, and N. Snavely. Deepstereo: Learning to predict new views from the world's imagery. In CVPR, 2016. 2
    • (2016) CVPR
    • Flynn, J.1    Neulander, I.2    Philbin, J.3    Snavely, N.4
  • 13
    • 85028031069 scopus 로고    scopus 로고
    • Unsupervised cnn for single view depth estimation: Geometry to the rescue
    • 1, 2
    • R. Garg, V. K. BG, G. Carneiro, and I. Reid. Unsupervised cnn for single view depth estimation: Geometry to the rescue. In ECCV, 2016. 1, 2
    • (2016) ECCV
    • Garg, R.1    Bg, V.K.2    Carneiro, G.3    Reid, I.4
  • 15
    • 85019248240 scopus 로고    scopus 로고
    • A powerful generative model using random weights for the deep image representation
    • 5
    • K. He, Y. Wang, and J. Hopcroft. A powerful generative model using random weights for the deep image representation. In NIPS, 2016. 5
    • (2016) NIPS
    • He, K.1    Wang, Y.2    Hopcroft, J.3
  • 20
    • 85019245160 scopus 로고    scopus 로고
    • Perceptual losses for real-time style transfer and super-resolution
    • 1, 2, 3, 5
    • J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution. In ECCV, 2016. 1, 2, 3, 5
    • (2016) ECCV
    • Johnson, J.1    Alahi, A.2    Fei-Fei, L.3
  • 26
    • 84999041243 scopus 로고    scopus 로고
    • Autoencoding beyond pixels using a learned similarity metric
    • 2, 3, 5
    • A. B. L. Larsen, S. K. Snderby, H. Larochelle, and Ole Winther. Autoencoding beyond pixels using a learned similarity metric. In ICML, 2016. 2, 3, 5
    • (2016) ICML
    • Larsen, A.B.L.1    Snderby, S.K.2    Larochelle, H.3    Winther, O.4
  • 28
    • 85083952137 scopus 로고    scopus 로고
    • Deep multi-scale video prediction beyond mean square error
    • 6, 8
    • M. Mathieu, C. Couprie, and Y. LeCun. Deep multi-scale video prediction beyond mean square error. In ICLR, 2016. 6, 8
    • (2016) ICLR
    • Mathieu, M.1    Couprie, C.2    LeCun, Y.3
  • 30
    • 84990062418 scopus 로고    scopus 로고
    • Stacked hourglass networks for human pose estimation
    • 5
    • A. Newell, K. Yang, and J. Deng. Stacked hourglass networks for human pose estimation. In ECCV, 2016. 5
    • (2016) ECCV
    • Newell, A.1    Yang, K.2    Deng, J.3
  • 33
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • 2, 3, 5
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. In ICLR, 2016. 2, 3, 5
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 36
    • 84973860892 scopus 로고    scopus 로고
    • Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views
    • 7
    • H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for cnn: Viewpoint estimation in images using cnns trained with rendered 3d model views. In ICCV, 2015. 7
    • (2015) ICCV
    • Su, H.1    Qi, C.R.2    Li, Y.3    Guibas, L.J.4
  • 37
    • 85041920327 scopus 로고    scopus 로고
    • Multi-view 3d models from single images with a convolutional network
    • 1, 2, 3, 6, 7
    • M. Tatarchenko, A. Dosovitskiy, and T. Brox. Multi-view 3d models from single images with a convolutional network. In ECCV, 2016. 1, 2, 3, 6, 7
    • (2016) ECCV
    • Tatarchenko, M.1    Dosovitskiy, A.2    Brox, T.3
  • 38
    • 84998882079 scopus 로고    scopus 로고
    • Texture networks: Feed-forward synthesis of textures and stylized images
    • 2, 3, 5
    • D. Ulyanov, V. Lebedev, A. Vedaldi, and V. Lempitsky. Texture networks: Feed-forward synthesis of textures and stylized images. In ICML, 2016. 2, 3, 5
    • (2016) ICML
    • Ulyanov, D.1    Lebedev, V.2    Vedaldi, A.3    Lempitsky, V.4
  • 43
    • 85018884809 scopus 로고    scopus 로고
    • An uncertain future: Forecasting from static images using variational autoencoders
    • 8
    • J. Walker, C. Doersch, A. Gupta, and M. Hebert. An uncertain future: Forecasting from static images using variational autoencoders. In ECCV, 2016. 8
    • (2016) ECCV
    • Walker, J.1    Doersch, C.2    Gupta, A.3    Hebert, M.4
  • 46
    • 85016159876 scopus 로고    scopus 로고
    • Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling
    • 7
    • J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum. Learning a probabilistic latent space of object shapes via 3d generative-adversarial modeling. In NIPS, 2016. 7
    • (2016) NIPS
    • Wu, J.1    Zhang, C.2    Xue, T.3    Freeman, W.T.4    Tenenbaum, J.B.5
  • 47
    • 85018923844 scopus 로고    scopus 로고
    • Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks
    • 8
    • T. Xue, J. Wu, K. L. Bouman, and W. T. Freeman. Visual dynamics: Probabilistic future frame synthesis via cross convolutional networks. In NIPS, 2016. 8
    • (2016) NIPS
    • Xue, T.1    Wu, J.2    Bouman, K.L.3    Freeman, W.T.4
  • 48
    • 85018933379 scopus 로고    scopus 로고
    • Attribute2image: Conditional image generation from visual attributes
    • 8
    • X. Yan, J. Y. K. Sohn, and H. Lee. Attribute2image: Conditional image generation from visual attributes. In ECCV, 2016. 8
    • (2016) ECCV
    • Yan, X.1    Sohn, J.Y.K.2    Lee, H.3
  • 49
    • 84965161391 scopus 로고    scopus 로고
    • Weaklysupervised disentangling with recurrent transformations for 3d view synthesis
    • 1, 3
    • J. Yang, S. Reed, M.-H. Yang, and H. Lee. Weaklysupervised disentangling with recurrent transformations for 3d view synthesis. In NIPS, 2015. 1, 3
    • (2015) NIPS
    • Yang, J.1    Reed, S.2    Yang, M.-H.3    Lee, H.4
  • 50
    • 85018892647 scopus 로고    scopus 로고
    • Learning semantic deformation flows with 3d convolutional networks
    • 3
    • M. E. Yumer and N. J. Mitra. Learning semantic deformation flows with 3d convolutional networks. In ECCV, 2016. 3
    • (2016) ECCV
    • Yumer, M.E.1    Mitra, N.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.