메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 1283-1292

Disentangled representation learning GAN for pose-invariant face recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; DECODING; GESTURE RECOGNITION; PATTERN RECOGNITION;

EID: 85041925714     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.141     Document Type: Conference Paper
Times cited : (925)

References (45)
  • 1
    • 84954340787 scopus 로고    scopus 로고
    • Representation learning: A review and new perspectives
    • Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives. TPAMI, 2013.
    • (2013) TPAMI
    • Bengio, Y.1    Courville, A.2    Vincent, P.3
  • 2
    • 84867873827 scopus 로고    scopus 로고
    • Locally linear regression for pose-invariant face recognition
    • X. Chai, S. Shan, X. Chen, and W. Gao. Locally linear regression for pose-invariant face recognition. TIP, 2007.
    • (2007) TIP
    • Chai, X.1    Shan, S.2    Chen, X.3    Gao, W.4
  • 3
    • 84977639367 scopus 로고    scopus 로고
    • Unconstrained face verification using deep CNN features
    • J.-C. Chen, V. M. Patel, and R. Chellappa. Unconstrained face verification using deep CNN features. In WACV, 2016.
    • (2016) WACV
    • Chen, J.-C.1    Patel, V.M.2    Chellappa, R.3
  • 4
    • 85006826984 scopus 로고    scopus 로고
    • Fisher vector encoded deep convolutional features for unconstrained face verification
    • J.-C. Chen, J. Zheng, V. M. Patel, and R. Chellappa. Fisher vector encoded deep convolutional features for unconstrained face verification. In ICIP, 2016.
    • (2016) ICIP
    • Chen, J.-C.1    Zheng, J.2    Patel, V.M.3    Chellappa, R.4
  • 5
    • 85019228440 scopus 로고    scopus 로고
    • InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets
    • X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets. In NIPS, 2016.
    • (2016) NIPS
    • Chen, X.1    Duan, Y.2    Houthooft, R.3    Schulman, J.4    Sutskever, I.5    Abbeel, P.6
  • 6
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a laplacian pyramid of adversarial networks
    • E. L. Denton, S. Chintala, R. Fergus, et al. Deep generative image models using a Laplacian pyramid of adversarial networks. In NIPS, 2015.
    • (2015) NIPS
    • Denton, E.L.1    Chintala, S.2    Fergus, R.3
  • 7
    • 84946716984 scopus 로고    scopus 로고
    • Robust face recognition via multimodal deep face representation
    • C. Ding and D. Tao. Robust face recognition via multimodal deep face representation. TMM, 2015.
    • (2015) TMM
    • Ding, C.1    Tao, D.2
  • 8
    • 84960950090 scopus 로고    scopus 로고
    • A comprehensive survey on poseinvariant face recognition
    • C. Ding and D. Tao. A comprehensive survey on poseinvariant face recognition. TIST, 2016.
    • (2016) TIST
    • Ding, C.1    Tao, D.2
  • 11
    • 84942466590 scopus 로고    scopus 로고
    • Effective face frontalization in unconstrained images
    • T. Hassner, S. Harel, E. Paz, and R. Enbar. Effective face frontalization in unconstrained images. In CVPR, 2015.
    • (2015) CVPR
    • Hassner, T.1    Harel, S.2    Paz, E.3    Enbar, R.4
  • 12
    • 84973856188 scopus 로고    scopus 로고
    • Pose-invariant 3D face alignment
    • A. Jourabloo and X. Liu. Pose-Invariant 3D face alignment. In ICCV, 2015.
    • (2015) ICCV
    • Jourabloo, A.1    Liu, X.2
  • 13
    • 84986301929 scopus 로고    scopus 로고
    • Large-pose face alignment via CNN-based dense 3D model fitting
    • A. Jourabloo and X. Liu. Large-Pose face alignment via CNN-based dense 3D model fitting. In CVPR, 2016.
    • (2016) CVPR
    • Jourabloo, A.1    Liu, X.2
  • 14
    • 84911383347 scopus 로고    scopus 로고
    • Stacked progressive auto-encoders (SPAE) for face recognition across poses
    • M. Kan, S. Shan, H. Chang, and X. Chen. Stacked Progressive Auto-Encoders (SPAE) for face recognition across poses. In CVPR, 2014.
    • (2014) CVPR
    • Kan, M.1    Shan, S.2    Chang, H.3    Chen, X.4
  • 15
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 18
    • 85044263936 scopus 로고    scopus 로고
    • Ways of conditioning generative adversarial networks
    • H. Kwak and B.-T. Zhang. Ways of conditioning generative adversarial networks. In NIPSW, 2016.
    • (2016) NIPSW
    • Kwak, H.1    Zhang, B.-T.2
  • 20
    • 84893972140 scopus 로고    scopus 로고
    • Morphable displacement field based image matching for face recognition across pose
    • S. Li, X. Liu, X. Chai, H. Zhang, S. Lao, and S. Shan. Morphable displacement field based image matching for face recognition across pose. In ECCV, 2012.
    • (2012) ECCV
    • Li, S.1    Liu, X.2    Chai, X.3    Zhang, H.4    Lao, S.5    Shan, S.6
  • 21
    • 24644513926 scopus 로고    scopus 로고
    • Pose-robust face recognition using geometry assisted probabilistic modeling
    • X. Liu and T. Chen. Pose-robust face recognition using geometry assisted probabilistic modeling. In CVPR, 2005.
    • (2005) CVPR
    • Liu, X.1    Chen, T.2
  • 22
    • 33845576460 scopus 로고    scopus 로고
    • Optimal pose for face recognition
    • X. Liu, J. Rittscher, and T. Chen. Optimal pose for face recognition. In CVPR, 2006.
    • (2006) CVPR
    • Liu, X.1    Rittscher, J.2    Chen, T.3
  • 24
    • 34948870900 scopus 로고    scopus 로고
    • Unsupervised learning of invariant feature hierarchies with applications to object recognition
    • R. Marc'Aurelio, F. J. Huang, Y.-L. Boureau, and Y. LeCun. Unsupervised learning of invariant feature hierarchies with applications to object recognition. In CVPR, 2007.
    • (2007) CVPR
    • Marc'Aurelio, R.1    Huang, F.J.2    Boureau, Y.-L.3    LeCun, Y.4
  • 27
    • 70449572184 scopus 로고    scopus 로고
    • Improving face recognition with a quality-based probabilistic framework
    • N. Ozay, Y. Tong, F. W. Wheeler, and X. Liu. Improving face recognition with a quality-based probabilistic framework. In CVPRW, 2009.
    • (2009) CVPRW
    • Ozay, N.1    Tong, Y.2    Wheeler, F.W.3    Liu, X.4
  • 29
    • 85083950271 scopus 로고    scopus 로고
    • Unsupervised representation learning with deep convolutional generative adversarial networks
    • A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. ICLR, 2016.
    • (2016) ICLR
    • Radford, A.1    Metz, L.2    Chintala, S.3
  • 32
    • 85011277658 scopus 로고    scopus 로고
    • Triplet probabilistic embedding for face verification and clustering
    • S. Sankaranarayanan, A. Alavi, C. Castillo, and R. Chellappa. Triplet probabilistic embedding for face verification and clustering. BTAS, 2016.
    • (2016) BTAS
    • Sankaranarayanan, S.1    Alavi, A.2    Castillo, C.3    Chellappa, R.4
  • 33
    • 84946751287 scopus 로고    scopus 로고
    • FaceNet: A unified embedding for face recognition and clustering
    • F. Schroff, D. Kalenichenko, and J. Philbin. FaceNet: A unified embedding for face recognition and clustering. In CVPR, 2015.
    • (2015) CVPR
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 35
    • 85039155903 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised learning with categorical generative adversarial networks
    • J. T. Springenberg. Unsupervised and semi-supervised learning with categorical generative adversarial networks. ICLR, 2016.
    • (2016) ICLR
    • Springenberg, J.T.1
  • 37
    • 80054939982 scopus 로고    scopus 로고
    • Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition
    • Y. Wong, S. Chen, S. Mau, C. Sanderson, and B. C. Lovell. Patch-based probabilistic image quality assessment for face selection and improved video-based face recognition. In CVPRW, 2011.
    • (2011) CVPRW
    • Wong, Y.1    Chen, S.2    Mau, S.3    Sanderson, C.4    Lovell, B.C.5
  • 38
    • 84965161391 scopus 로고    scopus 로고
    • Weakly-supervised disentangling with recurrent transformations for 3D view synthesis
    • J. Yang, S. E. Reed, M.-H. Yang, and H. Lee. Weakly-supervised disentangling with recurrent transformations for 3D view synthesis. In NIPS, 2015.
    • (2015) NIPS
    • Yang, J.1    Reed, S.E.2    Yang, M.-H.3    Lee, H.4
  • 40
    • 84959231848 scopus 로고    scopus 로고
    • Rotating your face using multi-task deep neural network
    • J. Yim, H. Jung, B. Yoo, C. Choi, D. Park, and J. Kim. Rotating your face using multi-task deep neural network. In CVPR, 2015.
    • (2015) CVPR
    • Yim, J.1    Jung, H.2    Yoo, B.3    Choi, C.4    Park, D.5    Kim, J.6
  • 41
    • 85041903513 scopus 로고    scopus 로고
    • Ultra-resolving face images by discriminative generative networks
    • X. Yu and F. Porikli. Ultra-resolving face images by discriminative generative networks. In ECCV, 2016.
    • (2016) ECCV
    • Yu, X.1    Porikli, F.2
  • 42
    • 84898777934 scopus 로고    scopus 로고
    • Random faces guided sparse many-to-one encoder for pose-invariant face recognition
    • Y. Zhang, M. Shao, E. K. Wong, and Y. Fu. Random faces guided sparse many-to-one encoder for pose-invariant face recognition. In ICCV, 2013.
    • (2013) ICCV
    • Zhang, Y.1    Shao, M.2    Wong, E.K.3    Fu, Y.4
  • 43
    • 84949740059 scopus 로고    scopus 로고
    • High-fidelity pose and expression normalization for face recognition in the wild
    • X. Zhu, Z. Lei, J. Yan, D. Yi, and S. Z. Li. High-Fidelity pose and expression normalization for face recognition in the wild. In CVPR, 2015.
    • (2015) CVPR
    • Zhu, X.1    Lei, Z.2    Yan, J.3    Yi, D.4    Li, S.Z.5
  • 44
    • 84898819011 scopus 로고    scopus 로고
    • Deep learning identity-preserving face space
    • Z. Zhu, P. Luo, X. Wang, and X. Tang. Deep learning identity-preserving face space. In ICCV, 2013.
    • (2013) ICCV
    • Zhu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4
  • 45
    • 84937885357 scopus 로고    scopus 로고
    • Multi-view perceptron: A deep model for learning face identity and view representations
    • Z. Zhu, P. Luo, X. Wang, and X. Tang. Multi-View Perceptron: a deep model for learning face identity and view representations. In NIPS, 2014.
    • (2014) NIPS
    • Zhu, Z.1    Luo, P.2    Wang, X.3    Tang, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.