메뉴 건너뛰기




Volumn 2, Issue , 2017, Pages 98-102

Network-based approaches that exploit inferred transcription factor activity to analyze the impact of genetic variation on gene expression

Author keywords

AQTL; CQTL; Gene regulatory networks; QTL mapping; Systems genetics; Transcription factor activity

Indexed keywords

TRANSCRIPTION FACTOR;

EID: 85038103721     PISSN: None     EISSN: 24523100     Source Type: Journal    
DOI: 10.1016/j.coisb.2017.04.002     Document Type: Review
Times cited : (3)

References (49)
  • 1
    • 84923362619 scopus 로고    scopus 로고
    • Integrative analysis of 111 reference human epigenomes
    • Roadmap Epigenomics Consortium Integrative analysis of 111 reference human epigenomes. Nature 2015, 518:317-330.
    • (2015) Nature , vol.518 , pp. 317-330
  • 2
    • 84878682420 scopus 로고    scopus 로고
    • The genotype-tissue expression (GTEx) project
    • GTEx Consortium The genotype-tissue expression (GTEx) project. Nat Genet 2013, 45:580-585.
    • (2013) Nat Genet , vol.45 , pp. 580-585
  • 3
    • 84934922563 scopus 로고    scopus 로고
    • The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge
    • Tomczak K., Czerwinska P., Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn) 2015, 19:A68-A77.
    • (2015) Contemp Oncol (Pozn) , vol.19 , pp. A68-A77
    • Tomczak, K.1    Czerwinska, P.2    Wiznerowicz, M.3
  • 4
    • 0034072450 scopus 로고    scopus 로고
    • DNA binding sites: representation and discovery
    • Stormo G.D. DNA binding sites: representation and discovery. Bioinformatics 2000, 16:16-23.
    • (2000) Bioinformatics , vol.16 , pp. 16-23
    • Stormo, G.D.1
  • 5
    • 33750882505 scopus 로고    scopus 로고
    • Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities
    • Berger M.F., et al. Compact, universal DNA microarrays to comprehensively determine transcription-factor binding site specificities. Nat Biotechnol 2006, 24:1429-1435.
    • (2006) Nat Biotechnol , vol.24 , pp. 1429-1435
    • Berger, M.F.1
  • 6
    • 32244448130 scopus 로고    scopus 로고
    • Defining the sequence-recognition profile of DNA-binding molecules
    • Warren C.L., et al. Defining the sequence-recognition profile of DNA-binding molecules. Proc Natl Acad Sci USA 2006, 103:867-872.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 867-872
    • Warren, C.L.1
  • 7
    • 77958096076 scopus 로고    scopus 로고
    • Determining the specificity of protein-DNA interactions
    • Stormo G.D., Zhao Y. Determining the specificity of protein-DNA interactions. Nat Rev Genet 2010, 11:751-760.
    • (2010) Nat Rev Genet , vol.11 , pp. 751-760
    • Stormo, G.D.1    Zhao, Y.2
  • 8
    • 77953006022 scopus 로고    scopus 로고
    • Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities
    • Jolma A., et al. Multiplexed massively parallel SELEX for characterization of human transcription factor binding specificities. Genome Res 2010, 20:861-873.
    • (2010) Genome Res , vol.20 , pp. 861-873
    • Jolma, A.1
  • 9
    • 83255188878 scopus 로고    scopus 로고
    • Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins
    • Slattery M., et al. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell 2011, 147:1270-1282.
    • (2011) Cell , vol.147 , pp. 1270-1282
    • Slattery, M.1
  • 10
    • 85045330440 scopus 로고    scopus 로고
    • SMiLE-seq identifies binding motifs of single and dimeric transcription factors
    • Isakova A., et al. SMiLE-seq identifies binding motifs of single and dimeric transcription factors. Nat Methods 2017, 351:1450-1454.
    • (2017) Nat Methods , vol.351 , pp. 1450-1454
    • Isakova, A.1
  • 11
    • 84873594686 scopus 로고    scopus 로고
    • Evaluation of methods for modeling transcription factor sequence specificity
    • Weirauch M.T., et al. Evaluation of methods for modeling transcription factor sequence specificity. Nat Biotechnol 2013, 31:126-134.
    • (2013) Nat Biotechnol , vol.31 , pp. 126-134
    • Weirauch, M.T.1
  • 12
    • 34347237542 scopus 로고    scopus 로고
    • Predictive modeling of genome-wide mRNA expression: from modules to molecules
    • Bussemaker H.J., Foat B.C., Ward L.D. Predictive modeling of genome-wide mRNA expression: from modules to molecules. Annu Rev Biophys Biomol Struct 2007, 36:329-347.
    • (2007) Annu Rev Biophys Biomol Struct , vol.36 , pp. 329-347
    • Bussemaker, H.J.1    Foat, B.C.2    Ward, L.D.3
  • 13
    • 23144463134 scopus 로고    scopus 로고
    • T-profiler: scoring the activity of predefined groups of genes using gene expression data
    • Boorsma A., et al. T-profiler: scoring the activity of predefined groups of genes using gene expression data. Nucleic Acids Res 2005, 33(Web Server issue):W592-W595.
    • (2005) Nucleic Acids Res , vol.33 , pp. W592-W595
    • Boorsma, A.1
  • 14
    • 27344435774 scopus 로고    scopus 로고
    • Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles
    • Subramanian A., et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005, 102:15545-15550.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 15545-15550
    • Subramanian, A.1
  • 15
    • 52349095482 scopus 로고    scopus 로고
    • Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression
    • Boorsma A., et al. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression. PLoS One 2008, 3:e3112.
    • (2008) PLoS One , vol.3
    • Boorsma, A.1
  • 16
    • 16844376909 scopus 로고    scopus 로고
    • Reverse engineering of regulatory networks in human B cells
    • Basso K., et al. Reverse engineering of regulatory networks in human B cells. Nat Genet 2005, 37:382-390.
    • (2005) Nat Genet , vol.37 , pp. 382-390
    • Basso, K.1
  • 17
    • 84975246805 scopus 로고    scopus 로고
    • Functional characterization of somatic mutations in cancer using network-based inference of protein activity
    • Alvarez M.J., et al. Functional characterization of somatic mutations in cancer using network-based inference of protein activity. Nat Genet 2016, 48:838-847.
    • (2016) Nat Genet , vol.48 , pp. 838-847
    • Alvarez, M.J.1
  • 18
    • 35348955882 scopus 로고    scopus 로고
    • A universal framework for regulatory element discovery across all genomes and data types
    • Elemento O., Slonim N., Tavazoie S. A universal framework for regulatory element discovery across all genomes and data types. Mol Cell 2007, 28:337-350.
    • (2007) Mol Cell , vol.28 , pp. 337-350
    • Elemento, O.1    Slonim, N.2    Tavazoie, S.3
  • 19
    • 0035135420 scopus 로고    scopus 로고
    • Regulatory element detection using correlation with expression
    • Bussemaker H.J., Li H., Siggia E.D. Regulatory element detection using correlation with expression. Nat Genet 2001, 27:167-171.
    • (2001) Nat Genet , vol.27 , pp. 167-171
    • Bussemaker, H.J.1    Li, H.2    Siggia, E.D.3
  • 20
    • 0037168519 scopus 로고    scopus 로고
    • A systematic approach to reconstructing transcription networks in Saccharomyces cerevisiae
    • Wang W., et al. A systematic approach to reconstructing transcription networks in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 2002, 99:16893-16898.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 16893-16898
    • Wang, W.1
  • 21
    • 33748191291 scopus 로고    scopus 로고
    • Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE
    • Foat B.C., Morozov A.V., Bussemaker H.J. Statistical mechanical modeling of genome-wide transcription factor occupancy data by MatrixREDUCE. Bioinformatics 2006, 22:e141-e149.
    • (2006) Bioinformatics , vol.22
    • Foat, B.C.1    Morozov, A.V.2    Bussemaker, H.J.3
  • 22
    • 46249089455 scopus 로고    scopus 로고
    • Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences
    • Ward L.D., Bussemaker H.J. Predicting functional transcription factor binding through alignment-free and affinity-based analysis of orthologous promoter sequences. Bioinformatics 2008, 24:i165-i171.
    • (2008) Bioinformatics , vol.24
    • Ward, L.D.1    Bussemaker, H.J.2
  • 23
    • 84899806626 scopus 로고    scopus 로고
    • ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs
    • Balwierz P.J., et al. ISMARA: automated modeling of genomic signals as a democracy of regulatory motifs. Genome Res 2014, 24:869-884.
    • (2014) Genome Res , vol.24 , pp. 869-884
    • Balwierz, P.J.1
  • 24
    • 84929456295 scopus 로고    scopus 로고
    • Linking signaling pathways to transcriptional programs in breast cancer
    • Osmanbeyoglu H.U., et al. Linking signaling pathways to transcriptional programs in breast cancer. Genome Res 2014, 24:1869-1880.
    • (2014) Genome Res , vol.24 , pp. 1869-1880
    • Osmanbeyoglu, H.U.1
  • 25
    • 77957273682 scopus 로고    scopus 로고
    • Identifying the genetic determinants of transcription factor activity
    • Lee E., Bussemaker H.J. Identifying the genetic determinants of transcription factor activity. Mol Syst Biol 2010, 6:412.
    • (2010) Mol Syst Biol , vol.6 , pp. 412
    • Lee, E.1    Bussemaker, H.J.2
  • 26
    • 0037177625 scopus 로고    scopus 로고
    • Genetic dissection of transcriptional regulation in budding yeast
    • Brem R.B., et al. Genetic dissection of transcriptional regulation in budding yeast. Science 2002, 296:752-755.
    • (2002) Science , vol.296 , pp. 752-755
    • Brem, R.B.1
  • 27
    • 84898787688 scopus 로고    scopus 로고
    • Identifying regulatory mechanisms underlying tumorigenesis using locus expression signature analysis
    • Lee E., et al. Identifying regulatory mechanisms underlying tumorigenesis using locus expression signature analysis. Proc Natl Acad Sci USA 2014, 111:5747-5752.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 5747-5752
    • Lee, E.1
  • 28
    • 84915815121 scopus 로고    scopus 로고
    • Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks
    • Chen J.C., et al. Identification of causal genetic drivers of human disease through systems-level analysis of regulatory networks. Cell 2014, 159:402-414.
    • (2014) Cell , vol.159 , pp. 402-414
    • Chen, J.C.1
  • 29
    • 34250735674 scopus 로고    scopus 로고
    • RNA regulons: coordination of post-transcriptional events
    • Keene J.D. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 2007, 8:533-543.
    • (2007) Nat Rev Genet , vol.8 , pp. 533-543
    • Keene, J.D.1
  • 30
    • 19344365947 scopus 로고    scopus 로고
    • Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast
    • Gerber A.P., Herschlag D., Brown P.O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2004, 2:E79.
    • (2004) PLoS Biol , vol.2 , pp. E79
    • Gerber, A.P.1    Herschlag, D.2    Brown, P.O.3
  • 31
    • 29144500327 scopus 로고    scopus 로고
    • Profiling condition-specific, genome-wide regulation of mRNA stability in yeast
    • Foat B.C., et al. Profiling condition-specific, genome-wide regulation of mRNA stability in yeast. Proc Natl Acad Sci USA 2005, 102:17675-17680.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 17675-17680
    • Foat, B.C.1
  • 32
    • 84959926512 scopus 로고    scopus 로고
    • Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers
    • Lee E., et al. Inferred miRNA activity identifies miRNA-mediated regulatory networks underlying multiple cancers. Bioinformatics 2016, 32:96-105.
    • (2016) Bioinformatics , vol.32 , pp. 96-105
    • Lee, E.1
  • 33
    • 33749037129 scopus 로고    scopus 로고
    • Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification
    • Lee S.I., et al. Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci USA 2006, 103:14062-14067.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 14062-14067
    • Lee, S.I.1
  • 34
    • 84906222360 scopus 로고    scopus 로고
    • Harnessing natural sequence variation to dissect posttranscriptional regulatory networks in yeast
    • Fazlollahi M., et al. Harnessing natural sequence variation to dissect posttranscriptional regulatory networks in yeast. G3 (Bethesda) 2014, 4:1539-1553.
    • (2014) G3 (Bethesda) , vol.4 , pp. 1539-1553
    • Fazlollahi, M.1
  • 35
    • 34547874585 scopus 로고    scopus 로고
    • Divergence of transcription factor binding sites across related yeast species
    • Borneman A.R., et al. Divergence of transcription factor binding sites across related yeast species. Science 2007, 317:815-819.
    • (2007) Science , vol.317 , pp. 815-819
    • Borneman, A.R.1
  • 36
    • 84979608897 scopus 로고    scopus 로고
    • The genetics of transcription factor DNA binding variation
    • Deplancke B., Alpern D., Gardeux V. The genetics of transcription factor DNA binding variation. Cell 2016, 166:538-554.
    • (2016) Cell , vol.166 , pp. 538-554
    • Deplancke, B.1    Alpern, D.2    Gardeux, V.3
  • 37
    • 84859916280 scopus 로고    scopus 로고
    • Effects of sequence variation on differential allelic transcription factor occupancy and gene expression
    • Reddy T.E., et al. Effects of sequence variation on differential allelic transcription factor occupancy and gene expression. Genome Res 2012, 22:860-869.
    • (2012) Genome Res , vol.22 , pp. 860-869
    • Reddy, T.E.1
  • 38
    • 84976908652 scopus 로고    scopus 로고
    • Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks
    • Kelley D.R., Snoek J., Rinn J.L. Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks. Genome Res 2016, 26:990-999.
    • (2016) Genome Res , vol.26 , pp. 990-999
    • Kelley, D.R.1    Snoek, J.2    Rinn, J.L.3
  • 39
    • 84958257565 scopus 로고    scopus 로고
    • Predicting effects of noncoding variants with deep learning-based sequence model
    • Zhou J., Troyanskaya O.G. Predicting effects of noncoding variants with deep learning-based sequence model. Nat Methods 2015, 12:931-934.
    • (2015) Nat Methods , vol.12 , pp. 931-934
    • Zhou, J.1    Troyanskaya, O.G.2
  • 40
    • 84938276507 scopus 로고    scopus 로고
    • A method to predict the impact of regulatory variants from DNA sequence
    • Lee D., et al. A method to predict the impact of regulatory variants from DNA sequence. Nat Genet 2015, 47:955-961.
    • (2015) Nat Genet , vol.47 , pp. 955-961
    • Lee, D.1
  • 41
    • 85014164610 scopus 로고    scopus 로고
    • Genetic regulatory signatures underlying islet gene expression and type 2 diabetes
    • Varshney A., et al. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc Natl Acad Sci USA 2017, 114:2301-2306.
    • (2017) Proc Natl Acad Sci USA , vol.114 , pp. 2301-2306
    • Varshney, A.1
  • 42
    • 84962217539 scopus 로고    scopus 로고
    • Survey of variation in human transcription factors reveals prevalent DNA binding changes
    • Barrera L.A., et al. Survey of variation in human transcription factors reveals prevalent DNA binding changes. Science 2016, 351:1450-1454.
    • (2016) Science , vol.351 , pp. 1450-1454
    • Barrera, L.A.1
  • 43
    • 85012297184 scopus 로고    scopus 로고
    • Promoter shape varies across populations and affects promoter evolution and expression noise
    • Schor I.E., et al. Promoter shape varies across populations and affects promoter evolution and expression noise. Nat Genet 2017, 49:550-558.
    • (2017) Nat Genet , vol.49 , pp. 550-558
    • Schor, I.E.1
  • 44
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • Ihmels J., et al. Revealing modular organization in the yeast transcriptional network. Nat Genet 2002, 31:370-377.
    • (2002) Nat Genet , vol.31 , pp. 370-377
    • Ihmels, J.1
  • 45
    • 0345824737 scopus 로고    scopus 로고
    • Network component analysis: reconstruction of regulatory signals in biological systems
    • Liao J.C., et al. Network component analysis: reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA 2003, 100:15522-15527.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 15522-15527
    • Liao, J.C.1
  • 46
    • 2942582468 scopus 로고    scopus 로고
    • Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data
    • Gao F., Foat B.C., Bussemaker H.J. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data. BMC Bioinformatics 2004, 5:31.
    • (2004) BMC Bioinformatics , vol.5 , pp. 31
    • Gao, F.1    Foat, B.C.2    Bussemaker, H.J.3
  • 47
    • 84897394513 scopus 로고    scopus 로고
    • The functional consequences of variation in transcription factor binding
    • Cusanovich D.A., et al. The functional consequences of variation in transcription factor binding. PLoS Genet 2014, 10:e1004226.
    • (2014) PLoS Genet , vol.10
    • Cusanovich, D.A.1
  • 48
    • 70249108504 scopus 로고    scopus 로고
    • Genome-wide identification of post-translational modulators of transcription factor activity in human B cells
    • Wang K., et al. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol 2009, 27:829-839.
    • (2009) Nat Biotechnol , vol.27 , pp. 829-839
    • Wang, K.1
  • 49
    • 84962034216 scopus 로고    scopus 로고
    • Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets
    • Fazlollahi M., et al. Identifying genetic modulators of the connectivity between transcription factors and their transcriptional targets. Proc Natl Acad Sci USA 2016, 113:E1835-E1843.
    • (2016) Proc Natl Acad Sci USA , vol.113 , pp. E1835-E1843
    • Fazlollahi, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.