-
1
-
-
84987899447
-
Chapter 1—Introduction and overview of key enabling technologies for smart cities and homes
-
Obaidat, M.S., Nicopolitidis, Eds.; Morgan Kaufmann: Boston, MA, USA
-
Guelzim, T.; Obaidat, M.; Sadoun, B. Chapter 1—Introduction and overview of key enabling technologies for smart cities and homes. In Smart Cities and Homes; Obaidat, M.S., Nicopolitidis, P., Eds.; Morgan Kaufmann: Boston, MA, USA, 2016; pp. 1–16.
-
(2016)
Smart Cities and Homes
, pp. 1-16
-
-
Guelzim, T.1
Obaidat, M.2
Sadoun, B.3
-
2
-
-
85036594381
-
Development of smart cities: Educational perspective
-
Springer: Singapore
-
Liu, D.; Huang, R.; Wosinski, M. Development of Smart Cities: Educational Perspective. In Smart Learning in Smart Cities; Springer: Singapore, 2017; pp. 3–14.
-
(2017)
Smart Learning in Smart Cities
, pp. 3-14
-
-
Liu, D.1
Huang, R.2
Wosinski, M.3
-
3
-
-
80054780094
-
Conceptualizing smart city with dimensions of technology, people, and institutions
-
College Park, MD, USA, 12–15 June 2011; ACM: New York, NY, USA
-
Nam, T.; Pardo, T.A. Conceptualizing smart city with dimensions of technology, people, and institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, College Park, MD, USA, 12–15 June 2011; ACM: New York, NY, USA, 2011; pp. 282–291.
-
(2011)
Proceedings of The 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times
, pp. 282-291
-
-
Nam, T.1
Pardo, T.A.2
-
5
-
-
85044034227
-
The social side of sustainability: Well-being as a driver and an outcome of social relationships and interactions on social networking sites
-
press
-
Munzel, A.; Meyer-Waarden, L.; Galan, J.P. The social side of sustainability: Well-being as a driver and an outcome of social relationships and interactions on social networking sites. Technol. Forecast. Soc. Change 2017, in press.
-
(2017)
Technol. Forecast. Soc. Change
-
-
Munzel, A.1
Meyer-Waarden, L.2
Galan, J.P.3
-
6
-
-
84949651642
-
The smart health initiative in China: The case of Wuhan, Hubei province
-
Fan, M.; Sun, J.; Zhou, B.; Chen, M. The smart health initiative in China: The case of Wuhan, Hubei province. J. Med. Syst. 2016, 40, 62.
-
(2016)
J. Med. Syst.
, vol.40
, pp. 62
-
-
Fan, M.1
Sun, J.2
Zhou, B.3
Chen, M.4
-
7
-
-
85019109106
-
Software defined networking for improved wireless sensor network management: A survey
-
Ndiaye, M.; Hancke, G.P.; Abu-Mahfouz, A.M. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey. Sensors 2017, 17, 1031.
-
(2017)
Sensors
, vol.17
, pp. 1031
-
-
Ndiaye, M.1
Hancke, G.P.2
Abu-Mahfouz, A.M.3
-
8
-
-
85021432726
-
Smart health: Big data enabled health paradigm within smart cities
-
Pramanik, M.I.; Lau, R.Y.; Demirkan, H.; Azad, M.A.K. Smart health: Big data enabled health paradigm within smart cities. Expert Syst. Appl. 2017, 87, 370–383.
-
(2017)
Expert Syst. Appl.
, vol.87
, pp. 370-383
-
-
Pramanik, M.I.1
Lau, R.Y.2
Demirkan, H.3
Azad, M.A.K.4
-
9
-
-
84930640821
-
Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data
-
Nef, T.; Urwyler, P.; B chler, M.; Tarnanas, I.; Stucki, R.; Cazzoli, D.; M ri, R.; Mosimann, U. Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data. Sensors 2015, 15, 11725–11740.
-
(2015)
Sensors
, vol.15
, pp. 11725-11740
-
-
Nef, T.1
Urwyler, P.2
B chler, M.3
Tarnanas, I.4
Stucki, R.5
Cazzoli, D.6
M ri, R.7
Mosimann, U.8
-
10
-
-
85018965825
-
An automatic health monitoring system for patients suffering from voice complications in smart cities
-
Ali, Z.; Muhammad, G.; Alhamid, M.F. An Automatic Health Monitoring System for Patients Suffering from Voice Complications in Smart Cities. IEEE Access 2017, 5, 3900–3908.
-
(2017)
IEEE Access
, vol.5
, pp. 3900-3908
-
-
Ali, Z.1
Muhammad, G.2
Alhamid, M.F.3
-
11
-
-
85021861108
-
Smart healthcare monitoring: A voice pathology detection paradigm for smart cities
-
Hossain, M.S.; Muhammad, G.; Alamri, A. Smart healthcare monitoring: A voice pathology detection paradigm for smart cities. Multimedia Syst. 2017, doi:10.1007/s00530-017-0561-x.
-
(2017)
Multimedia Syst
-
-
Hossain, M.S.1
Muhammad, G.2
Alamri, A.3
-
12
-
-
84973525475
-
Cloud enabled air quality detection, analysis and prediction—A smart city application for smart health
-
Muscat, Oman, 15–16 March
-
Mehta, Y.; Pai, M.M.; Mallissery, S.; Singh, S. Cloud enabled air quality detection, analysis and prediction—A smart city application for smart health. In Proceedings of the 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC), Muscat, Oman, 15–16 March 2016; pp. 1–7.
-
(2016)
Proceedings of The 2016 3rd MEC International Conference on Big Data and Smart City (ICBDSC)
, pp. 1-7
-
-
Mehta, Y.1
Pai, M.M.2
Mallissery, S.3
Singh, S.4
-
13
-
-
85016612257
-
A cardiac early warning system with multi channel scg and ECG monitoring for mobile health
-
Sahoo, P.K.; Thakkar, H.K.; Lee, M.Y. A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health. Sensors 2017, 17, 711.
-
(2017)
Sensors
, vol.17
, pp. 711
-
-
Sahoo, P.K.1
Thakkar, H.K.2
Lee, M.Y.3
-
14
-
-
85036515407
-
Characterizing dynamic walking patterns and detecting falls with wearable sensors using Gaussian process methods
-
Kim, T.; Park, J.; Heo, S.; Sung, K.; Park, J. Characterizing dynamic walking patterns and detecting falls with wearable sensors using Gaussian process methods. Sensors 2017, 17, 1172.
-
(2017)
Sensors
, vol.17
, pp. 1172
-
-
Kim, T.1
Park, J.2
Heo, S.3
Sung, K.4
Park, J.5
-
15
-
-
84893601846
-
Detection of potential drug-drug interactions for outpatients across hospitals
-
Yeh, Y.T.; Hsu, M.H.; Chen, C.Y.; Lo, Y.S.; Liu, C.T. Detection of potential drug-drug interactions for outpatients across hospitals. Int. J. Environ. Res. Public Health 2014, 11, 1369–1383.
-
(2014)
Int. J. Environ. Res. Public Health
, vol.11
, pp. 1369-1383
-
-
Yeh, Y.T.1
Hsu, M.H.2
Chen, C.Y.3
Lo, Y.S.4
Liu, C.T.5
-
16
-
-
85036584684
-
Modular and personalized smart health application design in a smart city environment
-
Venkatesh, J.; Aksanli, B.; Chan, C.S.; Akyurek, A.S.; Rosing, T.S. Modular and Personalized Smart Health Application Design in a Smart City Environment. IEEE Internet Things J. 2017, PP, 1, doi:10.1109/JIOT.2017.2712558.
-
(2017)
IEEE Internet Things J
, pp. 1
-
-
Venkatesh, J.1
Aksanli, B.2
Chan, C.S.3
Akyurek, A.S.4
Rosing, T.S.5
-
17
-
-
84994802391
-
A wireless sensor network simulation framework for structural health monitoring in smart cities
-
Berlin, Germany, 5–7 September
-
Rajaram, M.L.; Kougianos, E.; Mohanty, S.P.; Sundaravadivel, P. A wireless sensor network simulation framework for structural health monitoring in smart cities. In Proceedings of the 2016 IEEE 6th International Conference on Consumer Electronics-Berlin (ICCE-Berlin), Berlin, Germany, 5–7 September 2016; pp. 78–82.
-
(2016)
Proceedings of The 2016 IEEE 6th International Conference on Consumer Electronics-Berlin (ICCE-Berlin)
, pp. 78-82
-
-
Rajaram, M.L.1
Kougianos, E.2
Mohanty, S.P.3
Sundaravadivel, P.4
-
18
-
-
84997483353
-
Machine learning in cardiac health monitoring and decision support
-
Hijazi, S.; Page, A.; Kantarci, B.; Soyata, T. Machine Learning in Cardiac Health Monitoring and Decision Support. IEEE Comput. 2016, 49, 38–48.
-
(2016)
IEEE Comput
, vol.49
, pp. 38-48
-
-
Hijazi, S.1
Page, A.2
Kantarci, B.3
Soyata, T.4
-
19
-
-
85022328612
-
Deep learning for mobile multimedia: A survey
-
Ota, K.; Dao, M.S.; Mezaris, V.; Natale, F.G.B.D. Deep Learning for Mobile Multimedia: A Survey. ACM Trans. Multimedia Comput. Commun. Appl. 2017, 13, 34.
-
(2017)
ACM Trans. Multimedia Comput. Commun. Appl.
, vol.13
, pp. 34
-
-
Ota, K.1
Dao, M.S.2
Mezaris, V.3
Natale, F.G.B.D.4
-
20
-
-
85032782045
-
Deep learning and its applications to signal and information processing [Exploratory DSP]
-
Yu, D.; Deng, L. Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP]. IEEE Signal Process. Mag. 2011, 28, 145–154.
-
(2011)
IEEE Signal Process. Mag.
, vol.28
, pp. 145-154
-
-
Yu, D.1
Deng, L.2
-
21
-
-
56449110012
-
Classification using discriminative restricted Boltzmann machines
-
5–9 July
-
Larochelle, H.; Bengio, Y. Classification using discriminative restricted Boltzmann machines. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 536–543.
-
(2008)
Proceedings of The 25th International Conference on Machine Learning, Helsinki, Finland
, pp. 536-543
-
-
Larochelle, H.1
Bengio, Y.2
-
22
-
-
79551480483
-
Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
-
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.A.5
-
24
-
-
85030258155
-
When kernel methods meet feature learning: Log-covariance network for action recognition from skeletal data
-
Honolulu, HI, USA, 21–26 July
-
Cavazza, J.; Morerio, P.; Murino, V. When Kernel Methods Meet Feature Learning: Log-Covariance Network for Action Recognition From Skeletal Data. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu, HI, USA, 21–26 July 2017; pp. 1251–1258.
-
(2017)
Proceedings of The 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
, pp. 1251-1258
-
-
Cavazza, J.1
Morerio, P.2
Murino, V.3
-
25
-
-
85026303734
-
Action recognition with skeletal volume and deep learning
-
Antalya, Turkey, 15–18 May
-
Keceli, A.S.; Kaya, A.; Can, A.B. Action recognition with skeletal volume and deep learning. In Proceedings of the 2017 25th Signal Processing and Communications Applications Conference (SIU), Antalya, Turkey, 15–18 May 2017; pp. 1–4.
-
(2017)
Proceedings of The 2017 25th Signal Processing and Communications Applications Conference (SIU)
, pp. 1-4
-
-
Keceli, A.S.1
Kaya, A.2
Can, A.B.3
-
26
-
-
84930630277
-
Deep learning
-
LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
27
-
-
84912542262
-
Machine learning in wireless sensor networks: Algorithms, strategies, and applications
-
Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018.
-
(2014)
IEEE Commun. Surv. Tutor.
, vol.16
, pp. 1996-2018
-
-
Alsheikh, M.A.1
Lin, S.2
Niyato, D.3
Tan, H.P.4
-
28
-
-
84877770961
-
-
MIT Press: Cambridge, MA, USA
-
Mohri, M.; Rostamizadeh, A.; Talwalkar, A. Foundations of Machine Learning; MIT Press: Cambridge, MA, USA, 2012.
-
(2012)
Foundations of Machine Learning
-
-
Mohri, M.1
Rostamizadeh, A.2
Talwalkar, A.3
-
29
-
-
84900823945
-
Predictive monitoring of mobile patients by combining clinical observations with data from wearable sensors
-
Clifton, L.; Clifton, D.A.; Pimentel, M.A.F.; Watkinson, P.J.; Tarassenko, L. Predictive Monitoring of Mobile Patients by Combining Clinical Observations with Data from Wearable Sensors. IEEE J. Biomed. Health Inform. 2014, 18, 722–730.
-
(2014)
IEEE J. Biomed. Health Inform.
, vol.18
, pp. 722-730
-
-
Clifton, L.1
Clifton, D.A.2
Pimentel, M.A.F.3
Watkinson, P.J.4
Tarassenko, L.5
-
30
-
-
85036574746
-
PD_Manager: An mHealth platform for Parkinson’s disease patient management
-
Tsiouris, K.M.; Gatsios, D.; Rigas, G.; Miljkovic, D.; Seljak, B.K.; Bohanec, M.; Arredondo, M.T.; Antonini, A.; Konitsiotis, S.; Koutsouris, D.D.; et al. PD_Manager: An mHealth platform for Parkinson’s disease patient management. Healthcare Technol. Lett. 2017, 4, 102–108.
-
(2017)
Healthcare Technol. Lett.
, vol.4
, pp. 102-108
-
-
Tsiouris, K.M.1
Gatsios, D.2
Rigas, G.3
Miljkovic, D.4
Seljak, B.K.5
Bohanec, M.6
Arredondo, M.T.7
Antonini, A.8
Konitsiotis, S.9
Koutsouris, D.D.10
-
31
-
-
85028944139
-
Hazeest: Machine learning based metropolitan air pollution estimation from fixed and mobile sensors
-
Hu, K.; Rahman, A.; Bhrugubanda, H.; Sivaraman, V. HazeEst: Machine Learning Based Metropolitan Air Pollution Estimation from Fixed and Mobile Sensors. IEEE Sens. J. 2017, 17, 3517–3525.
-
(2017)
IEEE Sens. J.
, vol.17
, pp. 3517-3525
-
-
Hu, K.1
Rahman, A.2
Bhrugubanda, H.3
Sivaraman, V.4
-
32
-
-
85022081417
-
Performance of machine learning classifiers for indoor person localization with capacitive sensors
-
Tariq, O.B.; Lazarescu, M.T.; Iqbal, J.; Lavagno, L. Performance of Machine Learning Classifiers for Indoor Person Localization with Capacitive Sensors. IEEE Access 2017, 5, 12913–12926.
-
(2017)
IEEE Access
, vol.5
, pp. 12913-12926
-
-
Tariq, O.B.1
Lazarescu, M.T.2
Iqbal, J.3
Lavagno, L.4
-
33
-
-
84959525056
-
Applying machine learning techniques to transportation mode recognition using mobile phone sensor data
-
Jahangiri, A.; Rakha, H.A. Applying Machine Learning Techniques to Transportation Mode Recognition Using Mobile Phone Sensor Data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2406–2417.
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, pp. 2406-2417
-
-
Jahangiri, A.1
Rakha, H.A.2
-
34
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2014, 61, 85–117.
-
(2014)
Neural Netw
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
35
-
-
84903724014
-
Deep learning: Methods and applications
-
Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2014, 7, 197–387.
-
(2014)
Found. Trends Signal Process
, vol.7
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
36
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.W.3
-
37
-
-
84894543523
-
The places of our lives: Visiting patterns and automatic labeling from longitudinal smartphone data
-
Do, T.M.T.; Gatica-Perez, D. The places of our lives: Visiting patterns and automatic labeling from longitudinal smartphone data. IEEE Trans. Mob. Comput. 2014, 13, 638–648.
-
(2014)
IEEE Trans. Mob. Comput.
, vol.13
, pp. 638-648
-
-
Do, T.M.T.1
Gatica-Perez, D.2
-
38
-
-
84959421866
-
Deep learning approach for active classification of electrocardiogram signals
-
Al Rahhal, M.M.; Bazi, Y.; AlHichri, H.; Alajlan, N.; Melgani, F.; Yager, R.R. Deep learning approach for active classification of electrocardiogram signals. Inform. Sci. 2016, 345, 340–354.
-
(2016)
Inform. Sci.
, vol.345
, pp. 340-354
-
-
Al Rahhal, M.M.1
Bazi, Y.2
AlHichri, H.3
Alajlan, N.4
Melgani, F.5
Yager, R.R.6
-
39
-
-
85020802670
-
Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
-
Acharya, U.R.; Fujita, H.; Lih, O.S.; Adam, M.; Tan, J.H.; Chua, C.K. Automated Detection of Coronary Artery Disease Using Different Durations of ECG Segments with Convolutional Neural Network. Knowl.-Based Syst. 2017, 132, 62–71.
-
(2017)
Knowl.-Based Syst.
, vol.132
, pp. 62-71
-
-
Acharya, U.R.1
Fujita, H.2
Lih, O.S.3
Adam, M.4
Tan, J.H.5
Chua, C.K.6
-
40
-
-
85034450538
-
Deep learning with edge computing for localization of epileptogenicity using multimodal rs-fMRI and EEG big data
-
Columbus, OH, USA, 17–21 July
-
Hosseini, M.P.; Tran, T.X.; Pompili, D.; Elisevich, K.; Soltanian-Zadeh, H. Deep Learning with Edge Computing for Localization of Epileptogenicity Using Multimodal rs-fMRI and EEG Big Data. In Proceedings of the 2017 IEEE International Conference on Autonomic Computing (ICAC), Columbus, OH, USA, 17–21 July 2017; pp. 83–92.
-
(2017)
Proceedings of The 2017 IEEE International Conference on Autonomic Computing (ICAC)
, pp. 83-92
-
-
Hosseini, M.P.1
Tran, T.X.2
Pompili, D.3
Elisevich, K.4
Soltanian-Zadeh, H.5
-
41
-
-
84937485049
-
EEG-based emotion classification using deep belief networks
-
Chengdu, China, 14–18 July
-
Zheng, W.L.; Zhu, J.Y.; Peng, Y.; Lu, B.L. EEG-based emotion classification using deep belief networks. In Proceedings of the 2014 IEEE International Conference on Multimedia and Expo (ICME), Chengdu, China, 14–18 July 2014; pp. 1–6.
-
(2014)
Proceedings of The 2014 IEEE International Conference on Multimedia and Expo (ICME)
, pp. 1-6
-
-
Zheng, W.L.1
Zhu, J.Y.2
Peng, Y.3
Lu, B.L.4
-
42
-
-
85019034197
-
Non-intrusive blood glucose monitor by multi-task deep learning: PhD forum abstract
-
Pittsburgh, PA, USA, 18–20 April 2017; ACM: New York, NY, USA
-
Gu, W. Non-intrusive blood glucose monitor by multi-task deep learning: PhD forum abstract. In Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, Pittsburgh, PA, USA, 18–20 April 2017; ACM: New York, NY, USA, 2017; pp. 249–250.
-
(2017)
Proceedings of The 16th ACM/IEEE International Conference on Information Processing in Sensor Networks
, pp. 249-250
-
-
Gu, W.1
-
43
-
-
85081707800
-
Challenges and opportunities of waste management in iot-enabled smart cities: A survey
-
Anagnostopoulos, T.; Zaslavsky, A.; Kolomvatsos, K.; Medvedev, A.; Amirian, P.; Morley, J.; Hadjieftymiades, S. Challenges and Opportunities of Waste Management in IoT-Enabled Smart Cities: A Survey. IEEE Trans. Sustain. Comput. 2017, 2, 275–289.
-
(2017)
IEEE Trans. Sustain. Comput.
, vol.2
, pp. 275-289
-
-
Anagnostopoulos, T.1
Zaslavsky, A.2
Kolomvatsos, K.3
Medvedev, A.4
Amirian, P.5
Morley, J.6
Hadjieftymiades, S.7
-
44
-
-
84994112003
-
Deep learning with ensemble classification method for sensor sampling decisions
-
Paphos, Cyprus, 5–9 September
-
Taleb, S.; Al Sallab, A.; Hajj, H.; Dawy, Z.; Khanna, R.; Keshavamurthy, A. Deep learning with ensemble classification method for sensor sampling decisions. In Proceedings of the 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus, 5–9 September 2016; pp. 114–119.
-
(2016)
Proceedings of The 2016 International Wireless Communications and Mobile Computing Conference (IWCMC)
, pp. 114-119
-
-
Taleb, S.1
Al Sallab, A.2
Hajj, H.3
Dawy, Z.4
Khanna, R.5
Keshavamurthy, A.6
-
45
-
-
85028466514
-
Deep neural networks for learning spatio-temporal features from tomography sensors
-
Costilla-Reyes, O.; Scully, P.; Ozanyan, K.B. Deep Neural Networks for Learning Spatio-Temporal Features from Tomography Sensors. IEEE Trans. Ind. Electron. 2018, 65, 645–653, doi:10.1109/TIE.2017.2716907.
-
(2018)
IEEE Trans. Ind. Electron.
, vol.65
, pp. 645-653
-
-
Costilla-Reyes, O.1
Scully, P.2
Ozanyan, K.B.3
-
46
-
-
85028993063
-
Learning transportation modes from smartphone sensors based on deep neural network
-
Fang, S.H.; Fei, Y.X.; Xu, Z.; Tsao, Y. Learning Transportation Modes From Smartphone Sensors Based on Deep Neural Network. IEEE Sens. J. 2017, 17, 6111–6118.
-
(2017)
IEEE Sens. J.
, vol.17
, pp. 6111-6118
-
-
Fang, S.H.1
Fei, Y.X.2
Xu, Z.3
Tsao, Y.4
-
47
-
-
85027146898
-
Fast and low-power behavior analysis on vehicles using smartphones
-
Keelung, Taiwan, 23–25 May
-
Xu, X.; Yin, S.; Ouyang, P. Fast and low-power behavior analysis on vehicles using smartphones. In Proceedings of the 2017 6th International Symposium on Next Generation Electronics (ISNE), Keelung, Taiwan, 23–25 May 2017; pp. 1–4.
-
(2017)
Proceedings of The 2017 6th International Symposium on Next Generation Electronics (ISNE)
, pp. 1-4
-
-
Xu, X.1
Yin, S.2
Ouyang, P.3
-
48
-
-
85009128807
-
Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson’s disease assessment
-
Orlando, FL, USA, 16–20 August
-
Eskofier, B.M.; Lee, S.I.; Daneault, J.F.; Golabchi, F.N.; Ferreira-Carvalho, G.; Vergara-Diaz, G.; Sapienza, S.; Costante, G.; Klucken, J.; Kautz, T.; et al. Recent machine learning advancements in sensor-based mobility analysis: Deep learning for Parkinson’s disease assessment. In Proceedings of the 2016 IEEE 38th Annual International Conference of the Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, 16–20 August 2016; pp. 655–658.
-
(2016)
Proceedings of The 2016 IEEE 38th Annual International Conference of The Engineering in Medicine and Biology Society (EMBC)
, pp. 655-658
-
-
Eskofier, B.M.1
Lee, S.I.2
Daneault, J.F.3
Golabchi, F.N.4
Ferreira-Carvalho, G.5
Vergara-Diaz, G.6
Sapienza, S.7
Costante, G.8
Klucken, J.9
Kautz, T.10
-
49
-
-
84966473909
-
Using deep learning for energy expenditure estimation with wearable sensors
-
Application & Services (HealthCom), Boston, MA, USA, 14–17 October
-
Zhu, J.; Pande, A.; Mohapatra, P.; Han, J.J. Using deep learning for energy expenditure estimation with wearable sensors. In Proceedings of the 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 501–506.
-
(2015)
Proceedings of The 2015 17th International Conference on E-Health Networking
, pp. 501-506
-
-
Zhu, J.1
Pande, A.2
Mohapatra, P.3
Han, J.J.4
-
50
-
-
84957587615
-
Deep learning classifier for fall detection based on IR distance sensor data
-
Warsaw, Poland, 24–26 September
-
Jankowski, S.; Szymanski, ´ Z.; Dziomin, U.; Mazurek, P.; Wagner, J. Deep learning classifier for fall detection based on IR distance sensor data. In Proceedings of the 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS), Warsaw, Poland, 24–26 September 2015; Volume 2, pp. 723–727.
-
(2015)
Proceedings of The 2015 IEEE 8th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS)
, vol.2
, pp. 723-727
-
-
Jankowski, S.1
Szymanski, Z.2
Dziomin, U.3
Mazurek, P.4
Wagner, J.5
-
51
-
-
84926328138
-
Deep representations for iris, face, and fingerprint spoofing detection
-
Menotti, D.; Chiachia, G.; Pinto, A.; Schwartz, W.R.; Pedrini, H.; Falcao, A.X.; Rocha, A. Deep representations for iris, face, and fingerprint spoofing detection. IEEE Trans. Inform. Forensics Secur. 2015, 10, 864–879.
-
(2015)
IEEE Trans. Inform. Forensics Secur.
, vol.10
, pp. 864-879
-
-
Menotti, D.1
Chiachia, G.2
Pinto, A.3
Schwartz, W.R.4
Pedrini, H.5
Falcao, A.X.6
Rocha, A.7
-
52
-
-
85030239040
-
Geographic information use in weakly-supervised deep learning for landmark recognition
-
Hong Kong, China, 10–14 July
-
Yin, Y.; Liu, Z.; Zimmermann, R. Geographic information use in weakly-supervised deep learning for landmark recognition. In Proceedings of the 2017 IEEE International Conference on Multimedia and Expo (ICME), Hong Kong, China, 10–14 July 2017; pp. 1015–1020.
-
(2017)
Proceedings of The 2017 IEEE International Conference on Multimedia and Expo (ICME)
, pp. 1015-1020
-
-
Yin, Y.1
Liu, Z.2
Zimmermann, R.3
-
53
-
-
85006129580
-
Classification of detected changes from multitemporal high-res xband SAR Images: Intensity and texture descriptors from superpixels
-
Barreto, T.L.; Rosa, R.A.; Wimmer, C.; Moreira, J.R.; Bins, L.S.; Cappabianco, F.A.M.; Almeida, J. Classification of Detected Changes from Multitemporal High-Res Xband SAR Images: Intensity and Texture Descriptors From SuperPixels. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5436–5448.
-
(2016)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.9
, pp. 5436-5448
-
-
Barreto, T.L.1
Rosa, R.A.2
Wimmer, C.3
Moreira, J.R.4
Bins, L.S.5
Cappabianco, F.A.M.6
Almeida, J.7
-
54
-
-
84944735469
-
-
MIT Press: Cambridge, MA, USA
-
Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
-
(2016)
Deep Learning
-
-
Goodfellow, I.1
Bengio, Y.2
Courville, A.3
-
55
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
56
-
-
84876229795
-
Regularized auto-encoders estimate local statistics
-
Alain, G.; Bengio, Y.; Rifai, S. Regularized auto-encoders estimate local statistics. Proc. CoRR 2012, 1–17.
-
(2012)
Proc. CoRR
, pp. 1-17
-
-
Alain, G.1
Bengio, Y.2
Rifai, S.3
-
58
-
-
84946722304
-
Multi-task CNN Model for attribute prediction
-
Abdulnabi, A.H.; Wang, G.; Lu, J.; Jia, K. Multi-Task CNN Model for Attribute Prediction. IEEE Trans. Multimedia 2015, 17, 1949–1959.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, pp. 1949-1959
-
-
Abdulnabi, A.H.1
Wang, G.2
Lu, J.3
Jia, K.4
-
59
-
-
84890545163
-
A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion
-
Canada, 26–31 May
-
Deng, L.; Abdelhamid, O.; Yu, D. A deep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 6669–6673.
-
(2013)
Proceedings of The 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC
, pp. 6669-6673
-
-
Deng, L.1
Abdelhamid, O.2
Yu, D.3
-
61
-
-
84866691616
-
Learning hierarchical representations for face verification with convolutional deep belief networks
-
Providence, RI, USA, 16–21 June
-
Huang, G.; Lee, H.; Learnedmiller, E. Learning hierarchical representations for face verification with convolutional deep belief networks. In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; pp. 2518–2525.
-
(2012)
Proceedings of The 2012 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2518-2525
-
-
Huang, G.1
Lee, H.2
Learnedmiller, E.3
-
62
-
-
0001578518
-
A learning algorithm for boltzmann machines
-
Ackley, D.H.; Hinton, G.E.; Sejnowski, T.J. A learning algorithm for boltzmann machines. Cognit. Sci. 1985, 9, 147–169.
-
(1985)
Cognit. Sci.
, vol.9
, pp. 147-169
-
-
Ackley, D.H.1
Hinton, G.E.2
Sejnowski, T.J.3
-
63
-
-
34547983260
-
Restricted Boltzmann machines for collaborative filtering
-
Corvalis, OR, USA, 20–24 June
-
Salakhutdinov, R.; Mnih, A.; Hinton, G. Restricted Boltzmann machines for collaborative filtering. In Proceedings of the 24th international conference on Machine learning, Corvalis, OR, USA, 20–24 June 2007; pp. 791–798.
-
(2007)
Proceedings of The 24th International Conference on Machine Learning
, pp. 791-798
-
-
Salakhutdinov, R.1
Mnih, A.2
Hinton, G.3
-
64
-
-
81855185962
-
Deep learning networks for off-line handwritten signature recognition
-
Puc n, Chile, 15–18 November
-
Ribeiro, B.; Gon alves, I.; Santos, S.; Kovacec, A. Deep Learning Networks for Off-Line Handwritten Signature Recognition. In Proceedings of the 2011 CIARP 16th Iberoamerican Congress on Pattern Recognition, Puc n, Chile, 15–18 November 2011; pp. 523–532.
-
(2011)
Proceedings of The 2011 CIARP 16th Iberoamerican Congress on Pattern Recognition
, pp. 523-532
-
-
Ribeiro, B.1
Gon alves, I.2
Santos, S.3
Kovacec, A.4
-
65
-
-
85036508519
-
-
Springer: Cham, Switzerland
-
Nie, D.; Zhang, H.; Adeli, E.; Liu, L.; Shen, D. 3D Deep Learning for Multi-Modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients; Springer: Cham, Switzerland, 2016.
-
(2016)
3D Deep Learning for Multi-Modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients
-
-
Nie, D.1
Zhang, H.2
Adeli, E.3
Liu, L.4
Shen, D.5
-
66
-
-
77955648349
-
Applying deep-layered clustering to mammography image analytics
-
Oak Ridge, TN, USA, 25–26 May
-
Rose, D.C.; Arel, I.; Karnowski, T.P.; Paquit, V.C. Applying deep-layered clustering to mammography image analytics. In Proceedings of the 2010 Biomedical Sciences and Engineering Conference, Oak Ridge, TN, USA, 25–26 May 2010; pp. 1–4.
-
(2010)
Proceedings of The 2010 Biomedical Sciences and Engineering Conference
, pp. 1-4
-
-
Rose, D.C.1
Arel, I.2
Karnowski, T.P.3
Paquit, V.C.4
-
67
-
-
84946687674
-
Classification on ADHD with Deep learning
-
Wuhan, China, 12–14 November
-
Kuang, D.; He, L. Classification on ADHD with Deep Learning. In Proceedings of the 2014 International Conference on Cloud Computing and Big Data, Wuhan, China, 12–14 November 2014; pp. 27–32.
-
(2014)
Proceedings of The 2014 International Conference on Cloud Computing and Big Data
, pp. 27-32
-
-
Kuang, D.1
He, L.2
-
68
-
-
84940975497
-
A robust deep model for improved classification of AD/MCI patients
-
Li, F.; Tran, L.; Thung, K.H.; Ji, S.; Shen, D.; Li, J. A Robust Deep Model for Improved Classification of AD/MCI Patients. IEEE J. Biomed. Health Inform. 2015, 19, 1610–1616.
-
(2015)
IEEE J. Biomed. Health Inform.
, vol.19
, pp. 1610-1616
-
-
Li, F.1
Tran, L.2
Thung, K.H.3
Ji, S.4
Shen, D.5
Li, J.6
-
69
-
-
85016143105
-
Dermatologist-level classification of skin cancer with deep neural networks
-
Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118.
-
(2017)
Nature
, vol.542
, pp. 115-118
-
-
Esteva, A.1
Kuprel, B.2
Novoa, R.A.3
Ko, J.4
Swetter, S.M.5
Blau, H.M.6
Thrun, S.7
-
70
-
-
85008263004
-
Lesion border detection using deep learning
-
Vancouver, BC, Canada, 24–29 July
-
Sabouri, P.; GholamHosseini, H. Lesion border detection using deep learning. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 1416–1421.
-
(2016)
Proceedings of The 2016 IEEE Congress on Evolutionary Computation (CEC)
, pp. 1416-1421
-
-
Sabouri, P.1
GholamHosseini, H.2
-
71
-
-
85007256354
-
Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors
-
Vancouver, BC, Canada, 24–29 July
-
Ha, S.; Choi, S. Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 381–388.
-
(2016)
Proceedings of The 2016 International Joint Conference on Neural Networks (IJCNN)
, pp. 381-388
-
-
Ha, S.1
Choi, S.2
-
72
-
-
85077995533
-
Sleep quality prediction from wearable data using deep learning
-
Sathyanarayana, A.; Joty, S.; Fernandez-Luque, L.; Ofli, F.; Srivastava, J.; Elmagarmid, A.; Arora, T.; Taheri, S. Sleep quality prediction from wearable data using deep learning. JMIR mHealth uHealth 2016, 4, e125.
-
(2016)
JMIR mHealth uHealth
, vol.4
, pp. e125
-
-
Sathyanarayana, A.1
Joty, S.2
Fernandez-Luque, L.3
Ofli, F.4
Srivastava, J.5
Elmagarmid, A.6
Arora, T.7
Taheri, S.8
-
73
-
-
85015230826
-
-
arXiv
-
Hammerla, N.Y.; Halloran, S.; Ploetz, T. Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv 2016, arXiv:1604.08880.
-
(2016)
Deep, Convolutional, and Recurrent Models for Human Activity Recognition Using Wearables
-
-
Hammerla, N.Y.1
Halloran, S.2
Ploetz, T.3
-
74
-
-
81855221241
-
Sequential deep learning for human action recognition
-
Springer: Berlin/Heidelberg, Germany
-
Baccouche, M.; Mamalet, F.; Wolf, C.; Garcia, C.; Baskurt, A. Sequential deep learning for human action recognition. In International Workshop on Human Behavior Understanding; Springer: Berlin/Heidelberg, Germany, 2011; pp. 29–39.
-
(2011)
International Workshop on Human Behavior Understanding
, pp. 29-39
-
-
Baccouche, M.1
Mamalet, F.2
Wolf, C.3
Garcia, C.4
Baskurt, A.5
-
75
-
-
84870183903
-
3D convolutional neural networks for human action recognition
-
Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
76
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
Columbus, OH, USA, 23–28 June
-
Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-scale video classification with convolutional neural networks. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 1725–1732.
-
(2014)
Proceedings of The 2014 IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
77
-
-
0030152412
-
A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements
-
Cheron, G.; Draye, J.P.; Bourgeios, M.; Libert, G. A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements. IEEE Trans. Biomed. Eng. 1996, 43, 552–558.
-
(1996)
IEEE Trans. Biomed. Eng.
, vol.43
, pp. 552-558
-
-
Cheron, G.1
Draye, J.P.2
Bourgeios, M.3
Libert, G.4
-
78
-
-
84985914060
-
Research directions in cloud-based decision support systems for health monitoring using internet-of-things driven data acquisition
-
Page, A.; Hijazi, S.; Askan, D.; Kantarci, B.; Soyata, T. Research Directions in Cloud-Based Decision Support Systems for Health Monitoring Using Internet-of-Things Driven Data Acquisition. Int. J. Serv. Comput. 2016, 4, 18–34.
-
(2016)
Int. J. Serv. Comput.
, vol.4
, pp. 18-34
-
-
Page, A.1
Hijazi, S.2
Askan, D.3
Kantarci, B.4
Soyata, T.5
-
79
-
-
85028841534
-
The emergence of visual crowdsensing: Challenges and opportunities
-
Guo, B.; Han, Q.; Chen, H.; Shangguan, L.; Zhou, Z.; Yu, Z. The Emergence of Visual Crowdsensing: Challenges and Opportunities. IEEE Commun. Surv. Tutor. 2017, PP, 1, doi:10.1109/COMST.2017.2726686.
-
(2017)
IEEE Commun. Surv. Tutor
, pp. 1
-
-
Guo, B.1
Han, Q.2
Chen, H.3
Shangguan, L.4
Zhou, Z.5
Yu, Z.6
-
80
-
-
84906095712
-
Opportunities in mobile crowd sensing
-
Ma, H.; Zhao, D.; Yuan, P. Opportunities in mobile crowd sensing. IEEE Commun. Mag. 2014, 52, 29–35.
-
(2014)
IEEE Commun. Mag.
, vol.52
, pp. 29-35
-
-
Ma, H.1
Zhao, D.2
Yuan, P.3
-
81
-
-
85036495350
-
Situation awareness in crowdsensing for disease surveillance in crisis situations
-
15–18 May
-
Haddawy, P.; Frommberger, L.; Kauppinen, T.; De Felice, G.; Charkratpahu, P.; Saengpao, S.; Kanchanakitsakul, P. Situation awareness in crowdsensing for disease surveillance in crisis situations. In Proceedings of the Seventh International Conference on Information and Communication Technologies and Development, Singapore, 15–18 May 2015; p. 38.
-
(2015)
Proceedings of The Seventh International Conference on Information and Communication Technologies and Development, Singapore
, pp. 38
-
-
Haddawy, P.1
Frommberger, L.2
Kauppinen, T.3
De Felice, G.4
Charkratpahu, P.5
Saengpao, S.6
Kanchanakitsakul, P.7
-
82
-
-
84879104611
-
Fostering participaction in smart cities: A geo-social crowdsensing platform
-
Cardone, G.; Foschini, L.; Bellavista, P.; Corradi, A.; Borcea, C.; Talasila, M.; Curtmola, R. Fostering participaction in smart cities: a geo-social crowdsensing platform. IEEE Commun. Mag. 2013, 51, 112–119.
-
(2013)
IEEE Commun. Mag.
, vol.51
, pp. 112-119
-
-
Cardone, G.1
Foschini, L.2
Bellavista, P.3
Corradi, A.4
Borcea, C.5
Talasila, M.6
Curtmola, R.7
-
83
-
-
85030528184
-
Crowdsensing air quality with camera-enabled mobile devices
-
San Francisco, CA, USA, 6–9 February
-
Pan, Z.; Yu, H.; Miao, C.; Leung, C. Crowdsensing Air Quality with Camera-Enabled Mobile Devices. In Proceedings of the Twenty-Ninth IAAI Conference, San Francisco, CA, USA, 6–9 February 2017; pp. 4728–4733.
-
(2017)
Proceedings of The Twenty-Ninth IAAI Conference
, pp. 4728-4733
-
-
Pan, Z.1
Yu, H.2
Miao, C.3
Leung, C.4
-
84
-
-
84991489204
-
SpotGarbage: Smartphone app to detect garbage using deep learning
-
Heidelberg, Germany, 12–16 September
-
Mittal, G.; Yagnik, K.B.; Garg, M.; Krishnan, N.C. SpotGarbage: Smartphone app to detect garbage using deep learning. In Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Heidelberg, Germany, 12–16 September 2016; pp. 940–945.
-
(2016)
Proceedings of The 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing
, pp. 940-945
-
-
Mittal, G.1
Yagnik, K.B.2
Garg, M.3
Krishnan, N.C.4
-
85
-
-
85023606587
-
Large scale distributed dedicated- and non-dedicated smart city sensing systems
-
Habibzadeh, H.; Qin, Z.; Soyata, T.; Kantarci, B. Large Scale Distributed Dedicated- and Non-Dedicated Smart City Sensing Systems. IEEE Sens. J. 2017, 17, 7649–7658, doi:10.1109/JSEN.2017.2725638.
-
(2017)
IEEE Sens. J.
, vol.17
, pp. 7649-7658
-
-
Habibzadeh, H.1
Qin, Z.2
Soyata, T.3
Kantarci, B.4
-
86
-
-
84960906191
-
More with less: Lowering user burden in mobile crowdsourcing through compressive sensing
-
Osaka, Japan, 7–11 September ACM: New York, NY, USA, 2015;
-
Xu, L.; Hao, X.; Lane, N.D.; Liu, X.; Moscibroda, T. More with Less: Lowering User Burden in Mobile Crowdsourcing through Compressive Sensing. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; ACM: New York, NY, USA, 2015; pp. 659–670.
-
(2015)
Proceedings of The 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing
, pp. 659-670
-
-
Xu, L.1
Hao, X.2
Lane, N.D.3
Liu, X.4
Moscibroda, T.5
-
87
-
-
84982084051
-
The smart citizen factor in trustworthy smart city crowdsensing
-
Pouryazdan, M.; Kantarci, B. The Smart Citizen Factor in Trustworthy Smart City Crowdsensing. IT Prof. 2016, 18, 26–33.
-
(2016)
IT Prof
, vol.18
, pp. 26-33
-
-
Pouryazdan, M.1
Kantarci, B.2
-
88
-
-
84979828629
-
Anchor-assisted and vote-based trustworthiness assurance in smart city crowdsensing
-
Pouryazdan, M.; Kantarci, B.; Soyata, T.; Song, H. Anchor-Assisted and Vote-Based Trustworthiness Assurance in Smart City Crowdsensing. IEEE Access 2016, 4, 529–541.
-
(2016)
IEEE Access
, vol.4
, pp. 529-541
-
-
Pouryazdan, M.1
Kantarci, B.2
Soyata, T.3
Song, H.4
-
89
-
-
85020832978
-
Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare
-
Farahani, B.; Firouzi, F.; Chang, V.; Badaroglu, M.; Constant, N.; Mankodiya, K. Towards fog-driven IoT eHealth: Promises and challenges of IoT in medicine and healthcare. Future Gener. Comput. Syst. 2018, 78, 659–676.
-
(2018)
Future Gener. Comput. Syst.
, vol.78
, pp. 659-676
-
-
Farahani, B.1
Firouzi, F.2
Chang, V.3
Badaroglu, M.4
Constant, N.5
Mankodiya, K.6
-
90
-
-
84959203985
-
Deep MRI brain extraction: A 3D convolutional neural network for skull stripping
-
Kleesiek, J.; Urban, G.; Hubert, A.; Schwarz, D.; Maier-Hein, K.; Bendszus, M.; Biller, A. Deep MRI brain extraction: A 3D convolutional neural network for skull stripping. Neuroimage 2016, 129, 460–469.
-
(2016)
Neuroimage
, vol.129
, pp. 460-469
-
-
Kleesiek, J.1
Urban, G.2
Hubert, A.3
Schwarz, D.4
Maier-Hein, K.5
Bendszus, M.6
Biller, A.7
-
91
-
-
84996600285
-
Deep neural networks for fast segmentation of 3D Medical images
-
Springer: Cham, Switzerland
-
Fritscher, K.; Raudaschl, P.; Zaffino, P.; Spadea, M.F.; Sharp, G.C.; Schubert, R. Deep Neural Networks for Fast Segmentation of 3D Medical Images. In Medical Image Computing and Computer-Assisted Intervention—MICCAI; Springer: Cham, Switzerland, 2016.
-
(2016)
Medical Image Computing and Computer-Assisted Intervention—MICCAI
-
-
Fritscher, K.1
Raudaschl, P.2
Zaffino, P.3
Spadea, M.F.4
Sharp, G.C.5
Schubert, R.6
-
92
-
-
84925878230
-
Using deep learning to enhance cancer diagnosis and classification
-
Atlanta, GA, USA, 16–21 June
-
Fakoor, R.; Ladhak, F.; Nazi, A.; Huber, M. Using deep learning to enhance cancer diagnosis and classification. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013.
-
(2013)
Proceedings of The 30th International Conference on Machine Learning
-
-
Fakoor, R.1
Ladhak, F.2
Nazi, A.3
Huber, M.4
-
93
-
-
84969622676
-
Probabilistic graphical models and deep belief networks for prognosis of breast cancer
-
Miami, FL, USA, 9–11 December
-
Khademi, M.; Nedialkov, N.S. Probabilistic Graphical Models and Deep Belief Networks for Prognosis of Breast Cancer. In Proceedings of the 2015 IEEE 14th International Conference on Machine Learning and Applications, Miami, FL, USA, 9–11 December 2016; pp. 727–732.
-
(2016)
Proceedings of The 2015 IEEE 14th International Conference on Machine Learning and Applications
, pp. 727-732
-
-
Khademi, M.1
Nedialkov, N.S.2
-
94
-
-
85018466550
-
DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning
-
Angermueller, C.; Lee, H.J.; Reik, W.; Stegle, O. DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 2017, 18, 67.
-
(2017)
Genome Biol.
, vol.18
, pp. 67
-
-
Angermueller, C.1
Lee, H.J.2
Reik, W.3
Stegle, O.4
-
95
-
-
84979678858
-
Boosting compound-protein interaction prediction by deep learning
-
Tian, K.; Shao, M.; Wang, Y.; Guan, J.; Zhou, S. Boosting Compound-Protein Interaction Prediction by Deep Learning. Methods 2016, 110, 64–72.
-
(2016)
Methods
, vol.110
, pp. 64-72
-
-
Tian, K.1
Shao, M.2
Wang, Y.3
Guan, J.4
Zhou, S.5
-
96
-
-
85036551132
-
Distilling knowledge from deep networks with applications to healthcare domain
-
Che, Z.; Purushotham, S.; Khemani, R.; Liu, Y. Distilling Knowledge from Deep Networks with Applications to Healthcare Domain. Ann. Chirurgie 2015, 40, 529–532.
-
(2015)
Ann. Chirurgie
, vol.40
, pp. 529-532
-
-
Che, Z.1
Purushotham, S.2
Khemani, R.3
Liu, Y.4
-
97
-
-
85083954099
-
Learning to diagnose with LSTM Recurrent neural networks
-
San Juan, Puerto Rico, 2–4 May
-
Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzell, R. Learning to Diagnose with LSTM Recurrent Neural Networks. In Proceedings of the International Conference on Learning Representations (ICLR 2016), San Juan, Puerto Rico, 2–4 May 2016.
-
(2016)
Proceedings of The International Conference on Learning Representations (ICLR 2016
-
-
Lipton, Z.C.1
Kale, D.C.2
Elkan, C.3
Wetzell, R.4
-
98
-
-
84922784970
-
Deep learning for healthcare decision making with EMRs
-
Belfast, UK, 2–5 November
-
Liang, Z.; Zhang, G.; Huang, J.X.; Hu, Q.V. Deep learning for healthcare decision making with EMRs. In Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine, Belfast, UK, 2–5 November 2014; pp. 556–559.
-
(2014)
Proceedings of The IEEE International Conference on Bioinformatics and Biomedicine
, pp. 556-559
-
-
Liang, Z.1
Zhang, G.2
Huang, J.X.3
Hu, Q.V.4
|