메뉴 건너뛰기




Volumn 6, Issue 4, 2017, Pages

Big sensed data meets deep learning for smarter health care in smart cities

Author keywords

Analytics; Biosensors; Deep learning; Machine learning; Smart health; Wearable sensors

Indexed keywords


EID: 85036506913     PISSN: None     EISSN: 22242708     Source Type: Journal    
DOI: 10.3390/jsan6040026     Document Type: Article
Times cited : (49)

References (98)
  • 1
    • 84987899447 scopus 로고    scopus 로고
    • Chapter 1—Introduction and overview of key enabling technologies for smart cities and homes
    • Obaidat, M.S., Nicopolitidis, Eds.; Morgan Kaufmann: Boston, MA, USA
    • Guelzim, T.; Obaidat, M.; Sadoun, B. Chapter 1—Introduction and overview of key enabling technologies for smart cities and homes. In Smart Cities and Homes; Obaidat, M.S., Nicopolitidis, P., Eds.; Morgan Kaufmann: Boston, MA, USA, 2016; pp. 1–16.
    • (2016) Smart Cities and Homes , pp. 1-16
    • Guelzim, T.1    Obaidat, M.2    Sadoun, B.3
  • 2
    • 85036594381 scopus 로고    scopus 로고
    • Development of smart cities: Educational perspective
    • Springer: Singapore
    • Liu, D.; Huang, R.; Wosinski, M. Development of Smart Cities: Educational Perspective. In Smart Learning in Smart Cities; Springer: Singapore, 2017; pp. 3–14.
    • (2017) Smart Learning in Smart Cities , pp. 3-14
    • Liu, D.1    Huang, R.2    Wosinski, M.3
  • 5
    • 85044034227 scopus 로고    scopus 로고
    • The social side of sustainability: Well-being as a driver and an outcome of social relationships and interactions on social networking sites
    • press
    • Munzel, A.; Meyer-Waarden, L.; Galan, J.P. The social side of sustainability: Well-being as a driver and an outcome of social relationships and interactions on social networking sites. Technol. Forecast. Soc. Change 2017, in press.
    • (2017) Technol. Forecast. Soc. Change
    • Munzel, A.1    Meyer-Waarden, L.2    Galan, J.P.3
  • 6
    • 84949651642 scopus 로고    scopus 로고
    • The smart health initiative in China: The case of Wuhan, Hubei province
    • Fan, M.; Sun, J.; Zhou, B.; Chen, M. The smart health initiative in China: The case of Wuhan, Hubei province. J. Med. Syst. 2016, 40, 62.
    • (2016) J. Med. Syst. , vol.40 , pp. 62
    • Fan, M.1    Sun, J.2    Zhou, B.3    Chen, M.4
  • 7
    • 85019109106 scopus 로고    scopus 로고
    • Software defined networking for improved wireless sensor network management: A survey
    • Ndiaye, M.; Hancke, G.P.; Abu-Mahfouz, A.M. Software Defined Networking for Improved Wireless Sensor Network Management: A Survey. Sensors 2017, 17, 1031.
    • (2017) Sensors , vol.17 , pp. 1031
    • Ndiaye, M.1    Hancke, G.P.2    Abu-Mahfouz, A.M.3
  • 8
    • 85021432726 scopus 로고    scopus 로고
    • Smart health: Big data enabled health paradigm within smart cities
    • Pramanik, M.I.; Lau, R.Y.; Demirkan, H.; Azad, M.A.K. Smart health: Big data enabled health paradigm within smart cities. Expert Syst. Appl. 2017, 87, 370–383.
    • (2017) Expert Syst. Appl. , vol.87 , pp. 370-383
    • Pramanik, M.I.1    Lau, R.Y.2    Demirkan, H.3    Azad, M.A.K.4
  • 9
    • 84930640821 scopus 로고    scopus 로고
    • Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data
    • Nef, T.; Urwyler, P.; B chler, M.; Tarnanas, I.; Stucki, R.; Cazzoli, D.; M ri, R.; Mosimann, U. Evaluation of three state-of-the-art classifiers for recognition of activities of daily living from smart home ambient data. Sensors 2015, 15, 11725–11740.
    • (2015) Sensors , vol.15 , pp. 11725-11740
    • Nef, T.1    Urwyler, P.2    B chler, M.3    Tarnanas, I.4    Stucki, R.5    Cazzoli, D.6    M ri, R.7    Mosimann, U.8
  • 10
    • 85018965825 scopus 로고    scopus 로고
    • An automatic health monitoring system for patients suffering from voice complications in smart cities
    • Ali, Z.; Muhammad, G.; Alhamid, M.F. An Automatic Health Monitoring System for Patients Suffering from Voice Complications in Smart Cities. IEEE Access 2017, 5, 3900–3908.
    • (2017) IEEE Access , vol.5 , pp. 3900-3908
    • Ali, Z.1    Muhammad, G.2    Alhamid, M.F.3
  • 11
    • 85021861108 scopus 로고    scopus 로고
    • Smart healthcare monitoring: A voice pathology detection paradigm for smart cities
    • Hossain, M.S.; Muhammad, G.; Alamri, A. Smart healthcare monitoring: A voice pathology detection paradigm for smart cities. Multimedia Syst. 2017, doi:10.1007/s00530-017-0561-x.
    • (2017) Multimedia Syst
    • Hossain, M.S.1    Muhammad, G.2    Alamri, A.3
  • 13
    • 85016612257 scopus 로고    scopus 로고
    • A cardiac early warning system with multi channel scg and ECG monitoring for mobile health
    • Sahoo, P.K.; Thakkar, H.K.; Lee, M.Y. A Cardiac Early Warning System with Multi Channel SCG and ECG Monitoring for Mobile Health. Sensors 2017, 17, 711.
    • (2017) Sensors , vol.17 , pp. 711
    • Sahoo, P.K.1    Thakkar, H.K.2    Lee, M.Y.3
  • 14
    • 85036515407 scopus 로고    scopus 로고
    • Characterizing dynamic walking patterns and detecting falls with wearable sensors using Gaussian process methods
    • Kim, T.; Park, J.; Heo, S.; Sung, K.; Park, J. Characterizing dynamic walking patterns and detecting falls with wearable sensors using Gaussian process methods. Sensors 2017, 17, 1172.
    • (2017) Sensors , vol.17 , pp. 1172
    • Kim, T.1    Park, J.2    Heo, S.3    Sung, K.4    Park, J.5
  • 15
  • 16
    • 85036584684 scopus 로고    scopus 로고
    • Modular and personalized smart health application design in a smart city environment
    • Venkatesh, J.; Aksanli, B.; Chan, C.S.; Akyurek, A.S.; Rosing, T.S. Modular and Personalized Smart Health Application Design in a Smart City Environment. IEEE Internet Things J. 2017, PP, 1, doi:10.1109/JIOT.2017.2712558.
    • (2017) IEEE Internet Things J , pp. 1
    • Venkatesh, J.1    Aksanli, B.2    Chan, C.S.3    Akyurek, A.S.4    Rosing, T.S.5
  • 18
    • 84997483353 scopus 로고    scopus 로고
    • Machine learning in cardiac health monitoring and decision support
    • Hijazi, S.; Page, A.; Kantarci, B.; Soyata, T. Machine Learning in Cardiac Health Monitoring and Decision Support. IEEE Comput. 2016, 49, 38–48.
    • (2016) IEEE Comput , vol.49 , pp. 38-48
    • Hijazi, S.1    Page, A.2    Kantarci, B.3    Soyata, T.4
  • 20
    • 85032782045 scopus 로고    scopus 로고
    • Deep learning and its applications to signal and information processing [Exploratory DSP]
    • Yu, D.; Deng, L. Deep Learning and Its Applications to Signal and Information Processing [Exploratory DSP]. IEEE Signal Process. Mag. 2011, 28, 145–154.
    • (2011) IEEE Signal Process. Mag. , vol.28 , pp. 145-154
    • Yu, D.1    Deng, L.2
  • 22
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P.A. Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 2010, 11, 3371–3408.
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 27
    • 84912542262 scopus 로고    scopus 로고
    • Machine learning in wireless sensor networks: Algorithms, strategies, and applications
    • Alsheikh, M.A.; Lin, S.; Niyato, D.; Tan, H.P. Machine Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications. IEEE Commun. Surv. Tutor. 2014, 16, 1996–2018.
    • (2014) IEEE Commun. Surv. Tutor. , vol.16 , pp. 1996-2018
    • Alsheikh, M.A.1    Lin, S.2    Niyato, D.3    Tan, H.P.4
  • 31
    • 85028944139 scopus 로고    scopus 로고
    • Hazeest: Machine learning based metropolitan air pollution estimation from fixed and mobile sensors
    • Hu, K.; Rahman, A.; Bhrugubanda, H.; Sivaraman, V. HazeEst: Machine Learning Based Metropolitan Air Pollution Estimation from Fixed and Mobile Sensors. IEEE Sens. J. 2017, 17, 3517–3525.
    • (2017) IEEE Sens. J. , vol.17 , pp. 3517-3525
    • Hu, K.1    Rahman, A.2    Bhrugubanda, H.3    Sivaraman, V.4
  • 32
    • 85022081417 scopus 로고    scopus 로고
    • Performance of machine learning classifiers for indoor person localization with capacitive sensors
    • Tariq, O.B.; Lazarescu, M.T.; Iqbal, J.; Lavagno, L. Performance of Machine Learning Classifiers for Indoor Person Localization with Capacitive Sensors. IEEE Access 2017, 5, 12913–12926.
    • (2017) IEEE Access , vol.5 , pp. 12913-12926
    • Tariq, O.B.1    Lazarescu, M.T.2    Iqbal, J.3    Lavagno, L.4
  • 33
    • 84959525056 scopus 로고    scopus 로고
    • Applying machine learning techniques to transportation mode recognition using mobile phone sensor data
    • Jahangiri, A.; Rakha, H.A. Applying Machine Learning Techniques to Transportation Mode Recognition Using Mobile Phone Sensor Data. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2406–2417.
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , pp. 2406-2417
    • Jahangiri, A.1    Rakha, H.A.2
  • 34
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2014, 61, 85–117.
    • (2014) Neural Netw , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 35
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: Methods and applications
    • Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2014, 7, 197–387.
    • (2014) Found. Trends Signal Process , vol.7 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 36
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E.; Osindero, S.; Teh, Y.W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554.
    • (2006) Neural Comput. , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.W.3
  • 37
    • 84894543523 scopus 로고    scopus 로고
    • The places of our lives: Visiting patterns and automatic labeling from longitudinal smartphone data
    • Do, T.M.T.; Gatica-Perez, D. The places of our lives: Visiting patterns and automatic labeling from longitudinal smartphone data. IEEE Trans. Mob. Comput. 2014, 13, 638–648.
    • (2014) IEEE Trans. Mob. Comput. , vol.13 , pp. 638-648
    • Do, T.M.T.1    Gatica-Perez, D.2
  • 38
  • 39
    • 85020802670 scopus 로고    scopus 로고
    • Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
    • Acharya, U.R.; Fujita, H.; Lih, O.S.; Adam, M.; Tan, J.H.; Chua, C.K. Automated Detection of Coronary Artery Disease Using Different Durations of ECG Segments with Convolutional Neural Network. Knowl.-Based Syst. 2017, 132, 62–71.
    • (2017) Knowl.-Based Syst. , vol.132 , pp. 62-71
    • Acharya, U.R.1    Fujita, H.2    Lih, O.S.3    Adam, M.4    Tan, J.H.5    Chua, C.K.6
  • 42
    • 85019034197 scopus 로고    scopus 로고
    • Non-intrusive blood glucose monitor by multi-task deep learning: PhD forum abstract
    • Pittsburgh, PA, USA, 18–20 April 2017; ACM: New York, NY, USA
    • Gu, W. Non-intrusive blood glucose monitor by multi-task deep learning: PhD forum abstract. In Proceedings of the 16th ACM/IEEE International Conference on Information Processing in Sensor Networks, Pittsburgh, PA, USA, 18–20 April 2017; ACM: New York, NY, USA, 2017; pp. 249–250.
    • (2017) Proceedings of The 16th ACM/IEEE International Conference on Information Processing in Sensor Networks , pp. 249-250
    • Gu, W.1
  • 45
    • 85028466514 scopus 로고    scopus 로고
    • Deep neural networks for learning spatio-temporal features from tomography sensors
    • Costilla-Reyes, O.; Scully, P.; Ozanyan, K.B. Deep Neural Networks for Learning Spatio-Temporal Features from Tomography Sensors. IEEE Trans. Ind. Electron. 2018, 65, 645–653, doi:10.1109/TIE.2017.2716907.
    • (2018) IEEE Trans. Ind. Electron. , vol.65 , pp. 645-653
    • Costilla-Reyes, O.1    Scully, P.2    Ozanyan, K.B.3
  • 46
    • 85028993063 scopus 로고    scopus 로고
    • Learning transportation modes from smartphone sensors based on deep neural network
    • Fang, S.H.; Fei, Y.X.; Xu, Z.; Tsao, Y. Learning Transportation Modes From Smartphone Sensors Based on Deep Neural Network. IEEE Sens. J. 2017, 17, 6111–6118.
    • (2017) IEEE Sens. J. , vol.17 , pp. 6111-6118
    • Fang, S.H.1    Fei, Y.X.2    Xu, Z.3    Tsao, Y.4
  • 49
    • 84966473909 scopus 로고    scopus 로고
    • Using deep learning for energy expenditure estimation with wearable sensors
    • Application & Services (HealthCom), Boston, MA, USA, 14–17 October
    • Zhu, J.; Pande, A.; Mohapatra, P.; Han, J.J. Using deep learning for energy expenditure estimation with wearable sensors. In Proceedings of the 2015 17th International Conference on E-health Networking, Application & Services (HealthCom), Boston, MA, USA, 14–17 October 2015; pp. 501–506.
    • (2015) Proceedings of The 2015 17th International Conference on E-Health Networking , pp. 501-506
    • Zhu, J.1    Pande, A.2    Mohapatra, P.3    Han, J.J.4
  • 55
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 56
    • 84876229795 scopus 로고    scopus 로고
    • Regularized auto-encoders estimate local statistics
    • Alain, G.; Bengio, Y.; Rifai, S. Regularized auto-encoders estimate local statistics. Proc. CoRR 2012, 1–17.
    • (2012) Proc. CoRR , pp. 1-17
    • Alain, G.1    Bengio, Y.2    Rifai, S.3
  • 62
    • 0001578518 scopus 로고
    • A learning algorithm for boltzmann machines
    • Ackley, D.H.; Hinton, G.E.; Sejnowski, T.J. A learning algorithm for boltzmann machines. Cognit. Sci. 1985, 9, 147–169.
    • (1985) Cognit. Sci. , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 69
    • 85016143105 scopus 로고    scopus 로고
    • Dermatologist-level classification of skin cancer with deep neural networks
    • Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118.
    • (2017) Nature , vol.542 , pp. 115-118
    • Esteva, A.1    Kuprel, B.2    Novoa, R.A.3    Ko, J.4    Swetter, S.M.5    Blau, H.M.6    Thrun, S.7
  • 71
    • 85007256354 scopus 로고    scopus 로고
    • Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors
    • Vancouver, BC, Canada, 24–29 July
    • Ha, S.; Choi, S. Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope sensors. In Proceedings of the 2016 International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 381–388.
    • (2016) Proceedings of The 2016 International Joint Conference on Neural Networks (IJCNN) , pp. 381-388
    • Ha, S.1    Choi, S.2
  • 75
    • 84870183903 scopus 로고    scopus 로고
    • 3D convolutional neural networks for human action recognition
    • Ji, S.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell. , vol.35 , pp. 221-231
    • Ji, S.1    Xu, W.2    Yang, M.3    Yu, K.4
  • 77
    • 0030152412 scopus 로고    scopus 로고
    • A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements
    • Cheron, G.; Draye, J.P.; Bourgeios, M.; Libert, G. A dynamic neural network identification of electromyography and arm trajectory relationship during complex movements. IEEE Trans. Biomed. Eng. 1996, 43, 552–558.
    • (1996) IEEE Trans. Biomed. Eng. , vol.43 , pp. 552-558
    • Cheron, G.1    Draye, J.P.2    Bourgeios, M.3    Libert, G.4
  • 78
    • 84985914060 scopus 로고    scopus 로고
    • Research directions in cloud-based decision support systems for health monitoring using internet-of-things driven data acquisition
    • Page, A.; Hijazi, S.; Askan, D.; Kantarci, B.; Soyata, T. Research Directions in Cloud-Based Decision Support Systems for Health Monitoring Using Internet-of-Things Driven Data Acquisition. Int. J. Serv. Comput. 2016, 4, 18–34.
    • (2016) Int. J. Serv. Comput. , vol.4 , pp. 18-34
    • Page, A.1    Hijazi, S.2    Askan, D.3    Kantarci, B.4    Soyata, T.5
  • 79
    • 85028841534 scopus 로고    scopus 로고
    • The emergence of visual crowdsensing: Challenges and opportunities
    • Guo, B.; Han, Q.; Chen, H.; Shangguan, L.; Zhou, Z.; Yu, Z. The Emergence of Visual Crowdsensing: Challenges and Opportunities. IEEE Commun. Surv. Tutor. 2017, PP, 1, doi:10.1109/COMST.2017.2726686.
    • (2017) IEEE Commun. Surv. Tutor , pp. 1
    • Guo, B.1    Han, Q.2    Chen, H.3    Shangguan, L.4    Zhou, Z.5    Yu, Z.6
  • 80
    • 84906095712 scopus 로고    scopus 로고
    • Opportunities in mobile crowd sensing
    • Ma, H.; Zhao, D.; Yuan, P. Opportunities in mobile crowd sensing. IEEE Commun. Mag. 2014, 52, 29–35.
    • (2014) IEEE Commun. Mag. , vol.52 , pp. 29-35
    • Ma, H.1    Zhao, D.2    Yuan, P.3
  • 83
    • 85030528184 scopus 로고    scopus 로고
    • Crowdsensing air quality with camera-enabled mobile devices
    • San Francisco, CA, USA, 6–9 February
    • Pan, Z.; Yu, H.; Miao, C.; Leung, C. Crowdsensing Air Quality with Camera-Enabled Mobile Devices. In Proceedings of the Twenty-Ninth IAAI Conference, San Francisco, CA, USA, 6–9 February 2017; pp. 4728–4733.
    • (2017) Proceedings of The Twenty-Ninth IAAI Conference , pp. 4728-4733
    • Pan, Z.1    Yu, H.2    Miao, C.3    Leung, C.4
  • 85
    • 85023606587 scopus 로고    scopus 로고
    • Large scale distributed dedicated- and non-dedicated smart city sensing systems
    • Habibzadeh, H.; Qin, Z.; Soyata, T.; Kantarci, B. Large Scale Distributed Dedicated- and Non-Dedicated Smart City Sensing Systems. IEEE Sens. J. 2017, 17, 7649–7658, doi:10.1109/JSEN.2017.2725638.
    • (2017) IEEE Sens. J. , vol.17 , pp. 7649-7658
    • Habibzadeh, H.1    Qin, Z.2    Soyata, T.3    Kantarci, B.4
  • 87
    • 84982084051 scopus 로고    scopus 로고
    • The smart citizen factor in trustworthy smart city crowdsensing
    • Pouryazdan, M.; Kantarci, B. The Smart Citizen Factor in Trustworthy Smart City Crowdsensing. IT Prof. 2016, 18, 26–33.
    • (2016) IT Prof , vol.18 , pp. 26-33
    • Pouryazdan, M.1    Kantarci, B.2
  • 88
    • 84979828629 scopus 로고    scopus 로고
    • Anchor-assisted and vote-based trustworthiness assurance in smart city crowdsensing
    • Pouryazdan, M.; Kantarci, B.; Soyata, T.; Song, H. Anchor-Assisted and Vote-Based Trustworthiness Assurance in Smart City Crowdsensing. IEEE Access 2016, 4, 529–541.
    • (2016) IEEE Access , vol.4 , pp. 529-541
    • Pouryazdan, M.1    Kantarci, B.2    Soyata, T.3    Song, H.4
  • 94
    • 85018466550 scopus 로고    scopus 로고
    • DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning
    • Angermueller, C.; Lee, H.J.; Reik, W.; Stegle, O. DeepCpG: Accurate prediction of single-cell DNA methylation states using deep learning. Genome Biol. 2017, 18, 67.
    • (2017) Genome Biol. , vol.18 , pp. 67
    • Angermueller, C.1    Lee, H.J.2    Reik, W.3    Stegle, O.4
  • 95
    • 84979678858 scopus 로고    scopus 로고
    • Boosting compound-protein interaction prediction by deep learning
    • Tian, K.; Shao, M.; Wang, Y.; Guan, J.; Zhou, S. Boosting Compound-Protein Interaction Prediction by Deep Learning. Methods 2016, 110, 64–72.
    • (2016) Methods , vol.110 , pp. 64-72
    • Tian, K.1    Shao, M.2    Wang, Y.3    Guan, J.4    Zhou, S.5
  • 96
    • 85036551132 scopus 로고    scopus 로고
    • Distilling knowledge from deep networks with applications to healthcare domain
    • Che, Z.; Purushotham, S.; Khemani, R.; Liu, Y. Distilling Knowledge from Deep Networks with Applications to Healthcare Domain. Ann. Chirurgie 2015, 40, 529–532.
    • (2015) Ann. Chirurgie , vol.40 , pp. 529-532
    • Che, Z.1    Purushotham, S.2    Khemani, R.3    Liu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.