메뉴 건너뛰기




Volumn 2017-July, Issue , 2017, Pages 1251-1258

When Kernel Methods Meet Feature Learning: Log-Covariance Network for Action Recognition from Skeletal Data

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; RECURRENT NEURAL NETWORKS;

EID: 85030258155     PISSN: 21607508     EISSN: 21607516     Source Type: Conference Proceeding    
DOI: 10.1109/CVPRW.2017.165     Document Type: Conference Paper
Times cited : (11)

References (44)
  • 1
    • 84959193616 scopus 로고    scopus 로고
    • Elastic functional coding of human actions: From vector-fields to latent variables
    • R. Anirudh, P. Turaga, J. Su, and A. Srivastava. Elastic functional coding of human actions: From vector-fields to latent variables. In CVPR, 2015.
    • (2015) CVPR
    • Anirudh, R.1    Turaga, P.2    Su, J.3    Srivastava, A.4
  • 2
    • 84864999742 scopus 로고    scopus 로고
    • G3D: A gaming action dataset and real time action recognition evaluation framework
    • V. Bloom, D. Makris, and V. Argyriou. G3D: A gaming action dataset and real time action recognition evaluation framework. In CVPR, 2012.
    • (2012) CVPR
    • Bloom, V.1    Makris, D.2    Argyriou, V.3
  • 5
    • 84959217041 scopus 로고    scopus 로고
    • Hierarchical recurrent neural network for skeleton based action recognition
    • Y. Du, W. Wang, and L. Wang. Hierarchical recurrent neural network for skeleton based action recognition. In CVPR, 2015.
    • (2015) CVPR
    • Du, Y.1    Wang, W.2    Wang, L.3
  • 6
    • 84919934807 scopus 로고    scopus 로고
    • Skeletal quads: Human action recognition using joint quadruples
    • G. Evangelidis, G. Singh, and R. Horaud. Skeletal quads: Human action recognition using joint quadruples. In ICPR, 2014.
    • (2014) ICPR
    • Evangelidis, G.1    Singh, G.2    Horaud, R.3
  • 7
    • 50949133669 scopus 로고    scopus 로고
    • LIBLINEAR: A library for large linear classification
    • R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. LIBLINEAR: A library for large linear classification. JMLR, 9:1871-1874, 2008.
    • (2008) JMLR , vol.9 , pp. 1871-1874
    • Fan, R.-E.1    Chang, K.-W.2    Hsieh, C.-J.3    Wang, X.-R.4    Lin, C.-J.5
  • 8
    • 84911441225 scopus 로고    scopus 로고
    • Instructing people for training gestural interactive systems
    • S. Fothergill, H. M. Mentis, P. Kohli, and S. Nowozin. Instructing people for training gestural interactive systems. In ACM-CHI, 2012.
    • (2012) ACM-CHI
    • Fothergill, S.1    Mentis, H.M.2    Kohli, P.3    Nowozin, S.4
  • 9
    • 84959195179 scopus 로고    scopus 로고
    • Deformable part models are convolutional neural networks
    • R. Girshick, F. Iandola, T. Darrell, and J. Malik. Deformable part models are convolutional neural networks. In CVPR, 2015.
    • (2015) CVPR
    • Girshick, R.1    Iandola, F.2    Darrell, T.3    Malik, J.4
  • 10
    • 84986257836 scopus 로고    scopus 로고
    • Approximate log-Hilbert-Schmidt distances between covariance operators for image classification
    • M. Ha Quang, M. San Biagio, L. Bazzani, and V. Murino. Approximate log-Hilbert-Schmidt distances between covariance operators for image classification. In CVPR, 2016.
    • (2016) CVPR
    • Ha Quang, M.1    San Biagio, M.2    Bazzani, L.3    Murino, V.4
  • 11
    • 84911424665 scopus 로고    scopus 로고
    • Bregman divergences for infinite dimensional covariance matrices
    • M. Harandi, M. Salzmann, and F. Porikli. Bregman divergences for infinite dimensional covariance matrices. In CVPR, 2014.
    • (2014) CVPR
    • Harandi, M.1    Salzmann, M.2    Porikli, F.3
  • 12
    • 84938938571 scopus 로고    scopus 로고
    • From manifold to manifold: Geometry-aware dimensionality reduction for SPD matrices
    • M. T. Harandi, M. Salzmann, and R. Hartley. From manifold to manifold: geometry-aware dimensionality reduction for SPD matrices. In ECCV, 2014.
    • (2014) ECCV
    • Harandi, M.T.1    Salzmann, M.2    Hartley, R.3
  • 13
    • 84887348112 scopus 로고    scopus 로고
    • Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach
    • M. T. Harandi, C. Sanderson, R. Hartley, and B. C. Lovell. Sparse coding and dictionary learning for symmetric positive definite matrices: A kernel approach. In ECCV, 2012.
    • (2012) ECCV
    • Harandi, M.T.1    Sanderson, C.2    Hartley, R.3    Lovell, B.C.4
  • 14
    • 85030215929 scopus 로고    scopus 로고
    • A riemannian network for spd matrix learning
    • Z. Huang and L. V. Gool. A riemannian network for spd matrix learning. In AAAI, 2017.
    • (2017) AAAI
    • Huang, Z.1    Gool, L.V.2
  • 16
    • 84896061825 scopus 로고    scopus 로고
    • Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations
    • M. Hussein, M. Torki, M. Gowayyed, and M. El-Saban. Human action recognition using a temporal hierarchy of covariance descriptors on 3d joint locations. IJCAI, 2013.
    • (2013) IJCAI
    • Hussein, M.1    Torki, M.2    Gowayyed, M.3    El-Saban, M.4
  • 18
    • 85020179705 scopus 로고    scopus 로고
    • Tensor representation via kernel linearization for action recognition from 3d skeletons
    • P. Koniusz, A. Cherian, and F. Porikli. Tensor representation via kernel linearization for action recognition from 3d skeletons. In ECCV, 2016.
    • (2016) ECCV
    • Koniusz, P.1    Cherian, A.2    Porikli, F.3
  • 19
    • 85018500124 scopus 로고    scopus 로고
    • Joint distance maps based action recognition with convolutional neural network
    • C. Li, Y. Hou, P. Wang, and W. Li. Joint distance maps based action recognition with convolutional neural network. IEEE Signal Process. Lett., 2017.
    • (2017) IEEE Signal Process. Lett.
    • Li, C.1    Hou, Y.2    Wang, P.3    Li, W.4
  • 20
    • 77956552331 scopus 로고    scopus 로고
    • Action recognition based on a bag of 3d points
    • W. Li, Z. Zhang, and Z. Liu. Action recognition based on a bag of 3d points. In CVPR workshop, 2010.
    • (2010) CVPR Workshop
    • Li, W.1    Zhang, Z.2    Liu, Z.3
  • 21
    • 85030235359 scopus 로고    scopus 로고
    • Spatio-temporal LSTM with trust gates for 3D human action recognition
    • J. Liu, A. Shahroudy, D. Xu, and G. Wang. Spatio-temporal LSTM with trust gates for 3D human action recognition. In ECCV, 2016.
    • (2016) ECCV
    • Liu, J.1    Shahroudy, A.2    Xu, D.3    Wang, G.4
  • 26
    • 84919935600 scopus 로고    scopus 로고
    • Capturing global and local dynamics for human action recognition
    • S. Nie and Q. Ji. Capturing global and local dynamics for human action recognition. In ICPR, 2014.
    • (2014) ICPR
    • Nie, S.1    Ji, Q.2
  • 27
    • 84887375927 scopus 로고    scopus 로고
    • HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences
    • O. Oreifej and Z. Liu. HON4D: Histogram of oriented 4D normals for activity recognition from depth sequences. In CVPR, 2013.
    • (2013) CVPR
    • Oreifej, O.1    Liu, Z.2
  • 28
    • 84887375927 scopus 로고    scopus 로고
    • Hon4d: Histogram of oriented normals for activity recognition from depth sequences
    • O. Oreifej and Z. Liu. Hon4d: Histogram of oriented normals for activity recognition from depth sequences. In CVPR, 2013.
    • (2013) CVPR
    • Oreifej, O.1    Liu, Z.2
  • 29
    • 84942048946 scopus 로고    scopus 로고
    • Deep multilayer multiple kernel learning
    • I. Rebai, Y. BenAyed, and W. Mahdi. Deep multilayer multiple kernel learning. NCA, 27 (8), 2016.
    • (2016) NCA , vol.27 , Issue.8
    • Rebai, I.1    BenAyed, Y.2    Mahdi, W.3
  • 30
    • 84884935306 scopus 로고    scopus 로고
    • Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses
    • L. Seidenari, V. Varano, S. Berretti, A. D. Bimbo, and P. Pala. Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses. In CVPRw, 2013.
    • (2013) CVPRw
    • Seidenari, L.1    Varano, V.2    Berretti, S.3    Bimbo, A.D.4    Pala, P.5
  • 31
    • 84884935306 scopus 로고    scopus 로고
    • Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses
    • L. Seidenari, V. Varano, S. Berretti, A. D. Bimbo, and P. Pala. Recognizing actions from depth cameras as weakly aligned multi-part bag-of-poses. In CVPR workshops, 2013.
    • (2013) CVPR Workshops
    • Seidenari, L.1    Varano, V.2    Berretti, S.3    Bimbo, A.D.4    Pala, P.5
  • 32
    • 84986252370 scopus 로고    scopus 로고
    • NTU RGB+D: A large scale dataset for 3D human activity analysis
    • A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang. NTU RGB+D: A large scale dataset for 3D human activity analysis. In CVPR, 2016.
    • (2016) CVPR
    • Shahroudy, A.1    Liu, J.2    Ng, T.-T.3    Wang, G.4
  • 33
    • 84902261734 scopus 로고    scopus 로고
    • Deep learning using support vector machines
    • Y. Tang. Deep learning using support vector machines. In ICML workshop, 2013.
    • (2013) ICML Workshop
    • Tang, Y.1
  • 34
    • 33748781681 scopus 로고    scopus 로고
    • Region covariance: A fast descriptor for detection and classification
    • O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for detection and classification. In ECCV, 2006.
    • (2006) ECCV
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 35
    • 84911376484 scopus 로고    scopus 로고
    • Human action recognition by representing 3d skeletons as points in a lie group
    • June
    • R. Vemulapalli, F. Arrate, and R. Chellappa. Human action recognition by representing 3d skeletons as points in a lie group. In CVPR, June 2014.
    • (2014) CVPR
    • Vemulapalli, R.1    Arrate, F.2    Chellappa, R.3
  • 36
    • 84986271081 scopus 로고    scopus 로고
    • Rolling rotations for recognizing human actions from 3d skeletal data
    • R. Vemulapalli and R. Chellapa. Rolling rotations for recognizing human actions from 3d skeletal data. In CVPR, 2016.
    • (2016) CVPR
    • Vemulapalli, R.1    Chellapa, R.2
  • 37
    • 84973879713 scopus 로고    scopus 로고
    • Beyond covariance: Feature representation with nonlinear kernel matrices
    • L. Wang, J. Zhang, L. Zhou, C. Tang, and W. Li. Beyond covariance: Feature representation with nonlinear kernel matrices. In ICCV, 2015.
    • (2015) ICCV
    • Wang, L.1    Zhang, J.2    Zhou, L.3    Tang, C.4    Li, W.5
  • 38
    • 84994571080 scopus 로고    scopus 로고
    • Action recognition based on joint trajectory maps using convolutional neural networks
    • P. Wang, Z. Li, Y. Hou, and W. Li. Action recognition based on joint trajectory maps using convolutional neural networks. In ACMMM, 2016.
    • (2016) ACMMM
    • Wang, P.1    Li, Z.2    Hou, Y.3    Li, W.4
  • 39
    • 85030214175 scopus 로고    scopus 로고
    • Covariance discriminative learning: A natural and efficient approach to imageset classification
    • R. Wang, H. Guo, L. S. Davis, and Q. Dai. Covariance discriminative learning: A natural and efficient approach to imageset classification. In CVPR, 2013.
    • (2013) CVPR
    • Wang, R.1    Guo, H.2    Davis, L.S.3    Dai, Q.4
  • 40
    • 84865033379 scopus 로고    scopus 로고
    • View invariant human action recognition using histograms of 3D joints
    • L. Xia, C.-C. Chen, and J. Aggarwal. View invariant human action recognition using histograms of 3D joints. In CVPR workshops, 2012.
    • (2012) CVPR Workshops
    • Xia, L.1    Chen, C.-C.2    Aggarwal, J.3
  • 41
    • 84865033379 scopus 로고    scopus 로고
    • View invariant human action recognition using histograms of 3d joints
    • L. Xia, C. C. Chen, and J. K. Aggarwal. View invariant human action recognition using histograms of 3d joints. In CVPRw, 2012.
    • (2012) CVPRw
    • Xia, L.1    Chen, C.C.2    Aggarwal, J.K.3
  • 42
    • 84911437630 scopus 로고    scopus 로고
    • Super normal vector for activity recognition using depth sequences
    • X. Yang and Y. Tian. Super normal vector for activity recognition using depth sequences. In CVPR, 2014.
    • (2014) CVPR
    • Yang, X.1    Tian, Y.2
  • 43
    • 84986269503 scopus 로고    scopus 로고
    • Efficient temporal sequence comparison and classification using gram matrix embeddings on a riemannian manifold
    • X. Zhang, Y. Wang, M. Gou, M. Sznaier, and O. Camps. Efficient temporal sequence comparison and classification using gram matrix embeddings on a riemannian manifold. In CVPR, 2016.
    • (2016) CVPR
    • Zhang, X.1    Wang, Y.2    Gou, M.3    Sznaier, M.4    Camps, O.5
  • 44
    • 84884960526 scopus 로고    scopus 로고
    • Fusing spatiotemporal features and joints for 3d action recognition
    • Y. Zhu, W. Chen, and G. Guo. Fusing spatiotemporal features and joints for 3d action recognition. In CVPRw, 2013.
    • (2013) CVPRw
    • Zhu, Y.1    Chen, W.2    Guo, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.