-
1
-
-
80155202826
-
Agile sensing systems for tomography
-
Dec.
-
T. York, H. McCann, and K. B. Ozanyan, "Agile sensing systems for tomography," IEEE Sensors J., vol. 12, no. 11, pp. 3086-3105, Dec. 2011.
-
(2011)
IEEE Sensors J.
, vol.12
, Issue.11
, pp. 3086-3105
-
-
York, T.1
McCann, H.2
Ozanyan, K.B.3
-
2
-
-
84963584358
-
Tomography defined as sensor fusion
-
Nov.
-
K. B. Ozanyan, "Tomography defined as sensor fusion," in Proc. IEEE SENSORS, Nov. 2015, pp. 1-4.
-
(2015)
Proc. IEEE SENSORS
, pp. 1-4
-
-
Ozanyan, K.B.1
-
3
-
-
77956331390
-
Compressed sensing based cone-beam computed tomography reconstruction with a first-order method
-
K. Choi, J. Wang, L. Zhu, T.-S. Suh, S. Boyd, and L. Xing, "Compressed sensing based cone-beam computed tomography reconstruction with a first-order method," Med. Phys., vol. 37, no. 9, pp. 5113-5125, 2010.
-
(2010)
Med. Phys.
, vol.37
, Issue.9
, pp. 5113-5125
-
-
Choi, K.1
Wang, J.2
Zhu, L.3
Suh, T.-S.4
Boyd, S.5
Xing, L.6
-
4
-
-
84969883911
-
Velocity measurement for two-phase flows based on ultrafast x-ray tomography
-
F. Barthel, M. Bieberle, D. Hoppe, M. Banowski, and U. Hampel, "Velocity measurement for two-phase flows based on ultrafast x-ray tomography," Flow Meas. Instrum., vol. 46, pp. 196-203, 2015.
-
(2015)
Flow Meas. Instrum.
, vol.46
, pp. 196-203
-
-
Barthel, F.1
Bieberle, M.2
Hoppe, D.3
Banowski, M.4
Hampel, U.5
-
5
-
-
84903814644
-
Regime transition in viscous and pseudo viscous systems: A comparative study
-
S. Rabha, M. Schubert, and U. Hampel, "Regime transition in viscous and pseudo viscous systems: A comparative study," Amer. Instit. Chem. Eng. J., vol. 60, no. 8, pp. 3079-3090, 2014.
-
(2014)
Amer. Instit. Chem. Eng. J.
, vol.60
, Issue.8
, pp. 3079-3090
-
-
Rabha, S.1
Schubert, M.2
Hampel, U.3
-
6
-
-
0036994410
-
Determination of multi-component flow process parameters based on electrical capacitance tomography data using artificial neural networks
-
J. Mohamad-Saleh and B. Hoyle, "Determination of multi-component flow process parameters based on electrical capacitance tomography data using artificial neural networks," Meas. Sci. Technol., vol. 13, no. 12, pp. 1815-1821, 2002.
-
(2002)
Meas. Sci. Technol.
, vol.13
, Issue.12
, pp. 1815-1821
-
-
Mohamad-Saleh, J.1
Hoyle, B.2
-
7
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
8
-
-
84910033534
-
Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments
-
Jan.
-
J. A. Cantoral-Ceballos et al., "Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments," IEEE Sensors J., vol. 15, no. 1, pp. 279-289, Jan. 2015.
-
(2015)
IEEE Sensors J.
, vol.15
, Issue.1
, pp. 279-289
-
-
Cantoral-Ceballos, J.A.1
-
9
-
-
84894470504
-
Classification of body movements based on posturographic data
-
S. K. Saripalle, G. C. Paiva, T. C. Cliett, R. R. Derakhshani, G. W. King, and C. T. Lovelace, "Classification of body movements based on posturographic data," Human Movement Sci., vol. 33, pp. 238-250, 2014.
-
(2014)
Human Movement Sci.
, vol.33
, pp. 238-250
-
-
Saripalle, S.K.1
Paiva, G.C.2
Cliett, T.C.3
Derakhshani, R.R.4
King, G.W.5
Lovelace, C.T.6
-
10
-
-
58249127684
-
Dual-task decrements in gait: Contributing factors among healthy older adults
-
J. M. Hausdorff, A. Schweiger, T. Herman, G. Yogev-Seligmann, and N. Giladi, "Dual-task decrements in gait: Contributing factors among healthy older adults," J. Gerontology Ser. A: Biol. Sci. Med. Sci., vol. 63, no. 12, pp. 1335-1343, 2008.
-
(2008)
J. Gerontology Ser. A: Biol. Sci. Med. Sci.
, vol.63
, Issue.12
, pp. 1335-1343
-
-
Hausdorff, J.M.1
Schweiger, A.2
Herman, T.3
Yogev-Seligmann, G.4
Giladi, N.5
-
12
-
-
84893715407
-
Learning robot gait stability using neural networks as sensory feedback function for central pattern generators
-
S. Gay, J. Santos-Victor, and A. Ijspeert, "Learning robot gait stability using neural networks as sensory feedback function for central pattern generators," in Proc. 2013 IEEE/RSJ Int. Conf., Intell. Robots Syst., 2013, pp. 194-201.
-
(2013)
Proc. 2013 IEEE/RSJ Int. Conf., Intell. Robots Syst.
, pp. 194-201
-
-
Gay, S.1
Santos-Victor, J.2
Ijspeert, A.3
-
13
-
-
84969505828
-
The identification of emotions from gait
-
I. Birch, T. Birch, and D. Bray, "The identification of emotions from gait," Science Justice, vol. 56, pp. 351-356, 2016.
-
(2016)
Science Justice
, vol.56
, pp. 351-356
-
-
Birch, I.1
Birch, T.2
Bray, D.3
-
14
-
-
84894251966
-
Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications
-
A. Muro-de-la Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, "Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications," Sensors, vol. 14, no. 2, pp. 3362-3394, 2014.
-
(2014)
Sensors
, vol.14
, Issue.2
, pp. 3362-3394
-
-
Muro-De-La Herran, A.1
Garcia-Zapirain, B.2
Mendez-Zorrilla, A.3
-
15
-
-
82155185366
-
When your living space knows what you do: Acceptance of medical home monitoring by different technologies
-
M. Ziefle, S. Himmel, and W. Wilkowska, "When your living space knows what you do: Acceptance of medical home monitoring by different technologies," in Proc. Symp. Austrian Human Comput. Interact. Usability Eng. Group, 2011, pp. 607-624.
-
(2011)
Proc. Symp. Austrian Human Comput. Interact. Usability Eng. Group
, pp. 607-624
-
-
Ziefle, M.1
Himmel, S.2
Wilkowska, W.3
-
17
-
-
0000518587
-
An iteration formula for fredholm integral equations of the first kind
-
L. Landweber, "An iteration formula for fredholm integral equations of the first kind," Amer. J. Math., vol. 73, no. 3, pp. 615-624, 1951.
-
(1951)
Amer. J. Math.
, vol.73
, Issue.3
, pp. 615-624
-
-
Landweber, L.1
-
18
-
-
16444367985
-
Guided-path tomography sensors for nonplanar mapping
-
Apr.
-
K. B. Ozanyan, S. G. Castillo, and F. P. Ortiz, "Guided-path tomography sensors for nonplanar mapping," IEEE Sensors J., vol. 5, no. 2, pp. 167-174, Apr. 2005.
-
(2005)
IEEE Sensors J.
, vol.5
, Issue.2
, pp. 167-174
-
-
Ozanyan, K.B.1
Castillo, S.G.2
Ortiz, F.P.3
-
19
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 568-576.
-
(2014)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 568-576
-
-
Simonyan, K.1
Zisserman, A.2
-
20
-
-
84959236502
-
Long-term recurrent convolutional networks for visual recognition and description
-
J. Donahue et al., "Long-term recurrent convolutional networks for visual recognition and description," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 2625-2634.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 2625-2634
-
-
Donahue, J.1
-
21
-
-
84973865953
-
Learning spatiotemporal features with 3D convolutional networks
-
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, "Learning spatiotemporal features with 3D convolutional networks," in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4489-4497.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 4489-4497
-
-
Tran, D.1
Bourdev, L.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
22
-
-
85013345352
-
Temporal pattern recognition in gait activities recorded with a footprint imaging sensor system
-
Dec.
-
O. Costilla-Reyes, P. Scully, and K. B. Ozanyan, "Temporal pattern recognition in gait activities recorded with a footprint imaging sensor system," IEEE Sensors J., vol. 16, no. 24, pp. 8815-8822, Dec. 2016.
-
(2016)
IEEE Sensors J.
, vol.16
, Issue.24
, pp. 8815-8822
-
-
Costilla-Reyes, O.1
Scully, P.2
Ozanyan, K.B.3
-
23
-
-
0004122638
-
-
New York, NY, USA: McGraw-Hill
-
R.W. Daniels, Approximation Methods for Electronic Filter Design: With Applications to Passive, Active, and Digital Networks. New York, NY, USA: McGraw-Hill, 1974.
-
(1974)
Approximation Methods for Electronic Filter Design: With Applications to Passive, Active, and Digital Networks
-
-
Daniels, R.W.1
-
25
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
26
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky et al., "Imagenet large scale visual recognition challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.
-
(2015)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
-
28
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. Int. Conf. Artif. Intell. Statist., 2010, pp. 249-256.
-
(2010)
Proc. Int. Conf. Artif. Intell. Statist.
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
29
-
-
85164392958
-
A study of cross-validation and bootstrap for accuracy estimation and model selection
-
R. Kohavi et al., "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Int. Joint Conf. Artif. Intell., 1995, vol. 2, pp. 1137-1143.
-
(1995)
Int. Joint Conf. Artif. Intell.
, vol.2
, pp. 1137-1143
-
-
Kohavi, R.1
-
31
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
F. Pedregosa et al., "Scikit-learn: Machine learning in python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
|