메뉴 건너뛰기




Volumn 65, Issue 1, 2018, Pages 645-653

Deep Neural Networks for Learning Spatio-Temporal Features From Tomography Sensors

Author keywords

Convolutional neural networks (CNNs); deep learning; floor sensor system; machine learning; spatio temporal analysis; tomography

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVOLUTION; DECISION MAKING; DEEP LEARNING; DEEP NEURAL NETWORKS; EXTRACTION; FEATURE EXTRACTION; FLOORS; GAIT ANALYSIS; IMAGE PROCESSING; IMAGE RECONSTRUCTION; IMAGE SENSORS; LEARNING SYSTEMS; NETWORK ARCHITECTURE; NEURAL NETWORKS; TOMOGRAPHY;

EID: 85028466514     PISSN: 02780046     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIE.2017.2716907     Document Type: Article
Times cited : (73)

References (31)
  • 1
    • 80155202826 scopus 로고    scopus 로고
    • Agile sensing systems for tomography
    • Dec.
    • T. York, H. McCann, and K. B. Ozanyan, "Agile sensing systems for tomography," IEEE Sensors J., vol. 12, no. 11, pp. 3086-3105, Dec. 2011.
    • (2011) IEEE Sensors J. , vol.12 , Issue.11 , pp. 3086-3105
    • York, T.1    McCann, H.2    Ozanyan, K.B.3
  • 2
    • 84963584358 scopus 로고    scopus 로고
    • Tomography defined as sensor fusion
    • Nov.
    • K. B. Ozanyan, "Tomography defined as sensor fusion," in Proc. IEEE SENSORS, Nov. 2015, pp. 1-4.
    • (2015) Proc. IEEE SENSORS , pp. 1-4
    • Ozanyan, K.B.1
  • 3
    • 77956331390 scopus 로고    scopus 로고
    • Compressed sensing based cone-beam computed tomography reconstruction with a first-order method
    • K. Choi, J. Wang, L. Zhu, T.-S. Suh, S. Boyd, and L. Xing, "Compressed sensing based cone-beam computed tomography reconstruction with a first-order method," Med. Phys., vol. 37, no. 9, pp. 5113-5125, 2010.
    • (2010) Med. Phys. , vol.37 , Issue.9 , pp. 5113-5125
    • Choi, K.1    Wang, J.2    Zhu, L.3    Suh, T.-S.4    Boyd, S.5    Xing, L.6
  • 4
    • 84969883911 scopus 로고    scopus 로고
    • Velocity measurement for two-phase flows based on ultrafast x-ray tomography
    • F. Barthel, M. Bieberle, D. Hoppe, M. Banowski, and U. Hampel, "Velocity measurement for two-phase flows based on ultrafast x-ray tomography," Flow Meas. Instrum., vol. 46, pp. 196-203, 2015.
    • (2015) Flow Meas. Instrum. , vol.46 , pp. 196-203
    • Barthel, F.1    Bieberle, M.2    Hoppe, D.3    Banowski, M.4    Hampel, U.5
  • 5
    • 84903814644 scopus 로고    scopus 로고
    • Regime transition in viscous and pseudo viscous systems: A comparative study
    • S. Rabha, M. Schubert, and U. Hampel, "Regime transition in viscous and pseudo viscous systems: A comparative study," Amer. Instit. Chem. Eng. J., vol. 60, no. 8, pp. 3079-3090, 2014.
    • (2014) Amer. Instit. Chem. Eng. J. , vol.60 , Issue.8 , pp. 3079-3090
    • Rabha, S.1    Schubert, M.2    Hampel, U.3
  • 6
    • 0036994410 scopus 로고    scopus 로고
    • Determination of multi-component flow process parameters based on electrical capacitance tomography data using artificial neural networks
    • J. Mohamad-Saleh and B. Hoyle, "Determination of multi-component flow process parameters based on electrical capacitance tomography data using artificial neural networks," Meas. Sci. Technol., vol. 13, no. 12, pp. 1815-1821, 2002.
    • (2002) Meas. Sci. Technol. , vol.13 , Issue.12 , pp. 1815-1821
    • Mohamad-Saleh, J.1    Hoyle, B.2
  • 7
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 8
    • 84910033534 scopus 로고    scopus 로고
    • Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments
    • Jan.
    • J. A. Cantoral-Ceballos et al., "Intelligent carpet system, based on photonic guided-path tomography, for gait and balance monitoring in home environments," IEEE Sensors J., vol. 15, no. 1, pp. 279-289, Jan. 2015.
    • (2015) IEEE Sensors J. , vol.15 , Issue.1 , pp. 279-289
    • Cantoral-Ceballos, J.A.1
  • 12
    • 84893715407 scopus 로고    scopus 로고
    • Learning robot gait stability using neural networks as sensory feedback function for central pattern generators
    • S. Gay, J. Santos-Victor, and A. Ijspeert, "Learning robot gait stability using neural networks as sensory feedback function for central pattern generators," in Proc. 2013 IEEE/RSJ Int. Conf., Intell. Robots Syst., 2013, pp. 194-201.
    • (2013) Proc. 2013 IEEE/RSJ Int. Conf., Intell. Robots Syst. , pp. 194-201
    • Gay, S.1    Santos-Victor, J.2    Ijspeert, A.3
  • 13
    • 84969505828 scopus 로고    scopus 로고
    • The identification of emotions from gait
    • I. Birch, T. Birch, and D. Bray, "The identification of emotions from gait," Science Justice, vol. 56, pp. 351-356, 2016.
    • (2016) Science Justice , vol.56 , pp. 351-356
    • Birch, I.1    Birch, T.2    Bray, D.3
  • 14
    • 84894251966 scopus 로고    scopus 로고
    • Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications
    • A. Muro-de-la Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, "Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications," Sensors, vol. 14, no. 2, pp. 3362-3394, 2014.
    • (2014) Sensors , vol.14 , Issue.2 , pp. 3362-3394
    • Muro-De-La Herran, A.1    Garcia-Zapirain, B.2    Mendez-Zorrilla, A.3
  • 17
    • 0000518587 scopus 로고
    • An iteration formula for fredholm integral equations of the first kind
    • L. Landweber, "An iteration formula for fredholm integral equations of the first kind," Amer. J. Math., vol. 73, no. 3, pp. 615-624, 1951.
    • (1951) Amer. J. Math. , vol.73 , Issue.3 , pp. 615-624
    • Landweber, L.1
  • 18
    • 16444367985 scopus 로고    scopus 로고
    • Guided-path tomography sensors for nonplanar mapping
    • Apr.
    • K. B. Ozanyan, S. G. Castillo, and F. P. Ortiz, "Guided-path tomography sensors for nonplanar mapping," IEEE Sensors J., vol. 5, no. 2, pp. 167-174, Apr. 2005.
    • (2005) IEEE Sensors J. , vol.5 , Issue.2 , pp. 167-174
    • Ozanyan, K.B.1    Castillo, S.G.2    Ortiz, F.P.3
  • 19
    • 84937862424 scopus 로고    scopus 로고
    • Two-stream convolutional networks for action recognition in videos
    • K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 568-576.
    • (2014) Proc. Adv. Neural Inf. Process. Syst. , pp. 568-576
    • Simonyan, K.1    Zisserman, A.2
  • 20
    • 84959236502 scopus 로고    scopus 로고
    • Long-term recurrent convolutional networks for visual recognition and description
    • J. Donahue et al., "Long-term recurrent convolutional networks for visual recognition and description," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 2625-2634.
    • (2015) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 2625-2634
    • Donahue, J.1
  • 22
    • 85013345352 scopus 로고    scopus 로고
    • Temporal pattern recognition in gait activities recorded with a footprint imaging sensor system
    • Dec.
    • O. Costilla-Reyes, P. Scully, and K. B. Ozanyan, "Temporal pattern recognition in gait activities recorded with a footprint imaging sensor system," IEEE Sensors J., vol. 16, no. 24, pp. 8815-8822, Dec. 2016.
    • (2016) IEEE Sensors J. , vol.16 , Issue.24 , pp. 8815-8822
    • Costilla-Reyes, O.1    Scully, P.2    Ozanyan, K.B.3
  • 26
    • 84947041871 scopus 로고    scopus 로고
    • Imagenet large scale visual recognition challenge
    • O. Russakovsky et al., "Imagenet large scale visual recognition challenge," Int. J. Comput. Vis., vol. 115, no. 3, pp. 211-252, 2015.
    • (2015) Int. J. Comput. Vis. , vol.115 , Issue.3 , pp. 211-252
    • Russakovsky, O.1
  • 28
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. Int. Conf. Artif. Intell. Statist., 2010, pp. 249-256.
    • (2010) Proc. Int. Conf. Artif. Intell. Statist. , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 29
    • 85164392958 scopus 로고
    • A study of cross-validation and bootstrap for accuracy estimation and model selection
    • R. Kohavi et al., "A study of cross-validation and bootstrap for accuracy estimation and model selection," in Int. Joint Conf. Artif. Intell., 1995, vol. 2, pp. 1137-1143.
    • (1995) Int. Joint Conf. Artif. Intell. , vol.2 , pp. 1137-1143
    • Kohavi, R.1
  • 31
    • 80555140075 scopus 로고    scopus 로고
    • Scikit-learn: Machine learning in python
    • F. Pedregosa et al., "Scikit-learn: Machine learning in python," J. Mach. Learn. Res., vol. 12, pp. 2825-2830, 2011.
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 2825-2830
    • Pedregosa, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.