메뉴 건너뛰기




Volumn 10, Issue 8, 2017, Pages

Short-Term Load Forecasting Using EMD-LSTM neural networks with a xgboost algorithm for feature importance evaluation

Author keywords

Empirical Mode Decomposition; Extreme Gradient Boosting; K Means; Long Short Term Memory Neural Networks; Short Term Load Forecasting; Similar Day

Indexed keywords

BRAIN; ELECTRIC POWER PLANT LOADS; FORECASTING; LOAD TESTING; NUMERICAL METHODS; SIGNAL PROCESSING;

EID: 85035125246     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en10081168     Document Type: Article
Times cited : (555)

References (39)
  • 1
    • 84942163884 scopus 로고    scopus 로고
    • Pattern-based local linear regression models for short-term load forecasting
    • Dudek, G. Pattern-based local linear regression models for short-term load forecasting. Electr. Power Syst. Res. 2016, 130, 139-147.
    • (2016) Electr. Power Syst. Res. , vol.130 , pp. 139-147
    • Dudek, G.1
  • 2
    • 84940939232 scopus 로고    scopus 로고
    • Non-parametric regression modeling for stochastic optimization of power grid load forecast
    • Chicago, IL, USA, 1-3 July
    • Shenoy, S., Gorinevsky, D., Boyd, S. Non-parametric regression modeling for stochastic optimization of power grid load forecast. In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1-3 July 2015; pp. 1010-1015.
    • (2015) Proceedings of the American Control Conference (ACC) , pp. 1010-1015
    • Shenoy, S.1    Gorinevsky, D.2    Boyd, S.3
  • 3
    • 0015022169 scopus 로고
    • Short-term load forecasting using general exponential smoothing
    • PAS-90
    • Christiaanse, W. Short-term load forecasting using general exponential smoothing. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 900-911.
    • (1971) IEEE Trans. Power Appar. Syst. , pp. 900-911
    • Christiaanse, W.1
  • 4
    • 0036577197 scopus 로고    scopus 로고
    • Long-term load forecasting for fast developing utility using a knowledge-based expert system
    • Kandil, M., El-Debeiky, S.M., Hasanien, N. Long-term load forecasting for fast developing utility using a knowledge-based expert system. IEEE Trans. Power Syst. 2002, 17, 491-496.
    • (2002) IEEE Trans. Power Syst. , vol.17 , pp. 491-496
    • Kandil, M.1    El-Debeiky, S.M.2    Hasanien, N.3
  • 6
    • 84924909991 scopus 로고    scopus 로고
    • A hybrid short-term load forecasting with a new input selection framework
    • Ghofrani, M., Ghayekhloo, M., Arabali, A., Ghayekhloo, A. A hybrid short-term load forecasting with a new input selection framework. Energy 2015, 81, 777-786.
    • (2015) Energy , vol.81 , pp. 777-786
    • Ghofrani, M.1    Ghayekhloo, M.2    Arabali, A.3    Ghayekhloo, A.4
  • 7
    • 33646399473 scopus 로고    scopus 로고
    • Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market
    • Mandal, P., Senjyu, T., Funabashi, T. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Convers. Manag. 2006, 47, 2128-2142.
    • (2006) Energy Convers. Manag. , vol.47 , pp. 2128-2142
    • Mandal, P.1    Senjyu, T.2    Funabashi, T.3
  • 10
    • 84945585574 scopus 로고    scopus 로고
    • Input variable selection for forecasting models
    • Arahal, M.R., Cepeda, A., Camacho, E.F. Input variable selection for forecasting models. IFAC Proc. Vol. 2002, 35, 463-468.
    • (2002) IFAC Proc. , vol.35 , pp. 463-468
    • Arahal, M.R.1    Cepeda, A.2    Camacho, E.F.3
  • 11
    • 84935845022 scopus 로고    scopus 로고
    • A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings
    • Raza, M.Q., Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352-1372.
    • (2015) Renew. Sustain. Energy Rev. , vol.50 , pp. 1352-1372
    • Raza, M.Q.1    Khosravi, A.2
  • 14
    • 85009291134 scopus 로고    scopus 로고
    • Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs
    • Buitrago, J., Asfour, S. Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs. Energies 2017, 10, 40.
    • (2017) Energies , vol.10 , pp. 40
    • Buitrago, J.1    Asfour, S.2
  • 15
    • 84919800700 scopus 로고    scopus 로고
    • Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines
    • Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F. Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2015, 67, 431-438.
    • (2015) Int. J. Electr. Power Energy Syst. , vol.67 , pp. 431-438
    • Kaytez, F.1    Taplamacioglu, M.C.2    Cam, E.3    Hardalac, F.4
  • 16
    • 84891616845 scopus 로고    scopus 로고
    • Hybrid pso-SVM method for short-term load forecasting during periods with significant temperature variations in city of burbank
    • Selakov, A., Cvijetinovíc, D., Milovíc, L., Mellon, S., Bekut, D. Hybrid pso-svm method for short-term load forecasting during periods with significant temperature variations in city of burbank. Appl. Soft Comput. 2014, 16, 80-88.
    • (2014) Appl. Soft Comput. , vol.16 , pp. 80-88
    • Selakov, A.1    Cvijetinovíc, D.2    Milovíc, L.3    Mellon, S.4    Bekut, D.5
  • 17
    • 85024398136 scopus 로고    scopus 로고
    • A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis
    • Niu, D., Dai, S. A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis. Energies 2017, 10, 408.
    • (2017) Energies , vol.10 , pp. 408
    • Niu, D.1    Dai, S.2
  • 18
    • 85021184170 scopus 로고    scopus 로고
    • Short-term load forecasting based on wavelet transform and least squares support vector machine optimized by improved cuckoo search
    • Liang, Y., Niu, D., Ye, M., Hong, W.-C. Short-term load forecasting based on wavelet transform and least squares support vector machine optimized by improved cuckoo search. Energies 2016, 9, 827.
    • (2016) Energies , vol.9 , pp. 827
    • Liang, Y.1    Niu, D.2    Ye, M.3    Hong, W.-C.4
  • 19
    • 0029356764 scopus 로고
    • Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems
    • Kim, K.-H., Park, J.-K., Hwang, K.-J., Kim, S.-H. Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Trans. Power Syst. 1995, 10, 1534-1539.
    • (1995) IEEE Trans. Power Syst. , vol.10 , pp. 1534-1539
    • Kim, K.-H.1    Park, J.-K.2    Hwang, K.-J.3    Kim, S.-H.4
  • 20
    • 84928710711 scopus 로고    scopus 로고
    • Applications of fuzzy logic in renewable energy systems-A review
    • Suganthi, L., Iniyan, S., Samuel, A.A. Applications of fuzzy logic in renewable energy systems-A review. Renew. Sustain. Energy Rev. 2015, 48, 585-607.
    • (2015) Renew. Sustain. Energy Rev. , vol.48 , pp. 585-607
    • Suganthi, L.1    Iniyan, S.2    Samuel, A.A.3
  • 21
    • 84859610654 scopus 로고    scopus 로고
    • Short-term load forecasting using Bayesian neural networks learned by hybrid monte carlo algorithm
    • Niu, D.-X., Shi, H.-F., Wu, D.D. Short-term load forecasting using bayesian neural networks learned by hybrid monte carlo algorithm. Appl. Soft Comput. 2012, 12, 1822-1827.
    • (2012) Appl. Soft Comput. , vol.12 , pp. 1822-1827
    • Niu, D.-X.1    Shi, H.-F.2    Wu, D.D.3
  • 23
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with lstm
    • Gers, F.A., Schmidhuber, J., Cummins, F. Learning to forget: Continual prediction with lstm. Neural Comput. 2000, 12, 2451-2471.
    • (2000) Neural Comput. , vol.12 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 24
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • Williams, R.J., Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1989, 1, 270-280.
    • (1989) Neural Comput. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 25
    • 19044366077 scopus 로고    scopus 로고
    • Roller bearing fault diagnosis method based on emd and neural network
    • Yang, Y., Yu, D.J., Cheng, J.S., Shi, M.L., Yu, Y. Roller bearing fault diagnosis method based on emd and neural network. J. Vib. Shock 2005, 1.
    • (2005) J. Vib. Shock , vol.1
    • Yang, Y.1    Yu, D.J.2    Cheng, J.S.3    Shi, M.L.4    Yu, Y.5
  • 27
    • 84868201484 scopus 로고    scopus 로고
    • An optimization based empirical mode decomposition scheme
    • Huang, B., Kunoth, A. An optimization based empirical mode decomposition scheme. J. Comput. Appl. Math 2013, 240, 174-183.
    • (2013) J. Comput. Appl. Math , vol.240 , pp. 174-183
    • Huang, B.1    Kunoth, A.2
  • 28
    • 80052379563 scopus 로고    scopus 로고
    • Short-term prediction of wind power using emd and chaotic theory
    • An, X., Jiang, D., Zhao, M., Liu, C. Short-term prediction of wind power using emd and chaotic theory. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1036-1042.
    • (2012) Commun. Nonlinear Sci. Numer. Simul. , vol.17 , pp. 1036-1042
    • An, X.1    Jiang, D.2    Zhao, M.3    Liu, C.4
  • 29
    • 85012272132 scopus 로고    scopus 로고
    • Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting
    • Dong, Y., Ma, X., Ma, C., Wang, J. Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting. Energies 2016, 9, 1050.
    • (2016) Energies , vol.9 , pp. 1050
    • Dong, Y.1    Ma, X.2    Ma, C.3    Wang, J.4
  • 30
    • 0038144791 scopus 로고    scopus 로고
    • McGraw Hill: Burr Ridge, IL, USA
    • Mitchell, T.M. Machine Learning; McGraw Hill: Burr Ridge, IL, USA, 1997; Volume 45, pp. 230-247.
    • (1997) Machine Learning , vol.45 , pp. 230-247
    • Mitchell, T.M.1
  • 31
    • 0037186544 scopus 로고    scopus 로고
    • Stochastic gradient boosting
    • Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367-378.
    • (2002) Comput. Stat. Data Anal. , vol.38 , pp. 367-378
    • Friedman, J.H.1
  • 38
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Bengio, Y., Simard, P., Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157-166.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.