-
1
-
-
84942163884
-
Pattern-based local linear regression models for short-term load forecasting
-
Dudek, G. Pattern-based local linear regression models for short-term load forecasting. Electr. Power Syst. Res. 2016, 130, 139-147.
-
(2016)
Electr. Power Syst. Res.
, vol.130
, pp. 139-147
-
-
Dudek, G.1
-
2
-
-
84940939232
-
Non-parametric regression modeling for stochastic optimization of power grid load forecast
-
Chicago, IL, USA, 1-3 July
-
Shenoy, S., Gorinevsky, D., Boyd, S. Non-parametric regression modeling for stochastic optimization of power grid load forecast. In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1-3 July 2015; pp. 1010-1015.
-
(2015)
Proceedings of the American Control Conference (ACC)
, pp. 1010-1015
-
-
Shenoy, S.1
Gorinevsky, D.2
Boyd, S.3
-
3
-
-
0015022169
-
Short-term load forecasting using general exponential smoothing
-
PAS-90
-
Christiaanse, W. Short-term load forecasting using general exponential smoothing. IEEE Trans. Power Appar. Syst. 1971, PAS-90, 900-911.
-
(1971)
IEEE Trans. Power Appar. Syst.
, pp. 900-911
-
-
Christiaanse, W.1
-
4
-
-
0036577197
-
Long-term load forecasting for fast developing utility using a knowledge-based expert system
-
Kandil, M., El-Debeiky, S.M., Hasanien, N. Long-term load forecasting for fast developing utility using a knowledge-based expert system. IEEE Trans. Power Syst. 2002, 17, 491-496.
-
(2002)
IEEE Trans. Power Syst.
, vol.17
, pp. 491-496
-
-
Kandil, M.1
El-Debeiky, S.M.2
Hasanien, N.3
-
5
-
-
84945968600
-
An efficient approach to short-term load forecasting at the distribution level
-
Sun, X., Luh, P.B., Cheung, K.W., Guan, W., Michel, L.D., Venkata, S., Miller, M.T. An efficient approach to short-term load forecasting at the distribution level. IEEE Trans. Power Syst. 2016, 31, 2526-2537.
-
(2016)
IEEE Trans. Power Syst.
, vol.31
, pp. 2526-2537
-
-
Sun, X.1
Luh, P.B.2
Cheung, K.W.3
Guan, W.4
Michel, L.D.5
Venkata, S.6
Miller, M.T.7
-
6
-
-
84924909991
-
A hybrid short-term load forecasting with a new input selection framework
-
Ghofrani, M., Ghayekhloo, M., Arabali, A., Ghayekhloo, A. A hybrid short-term load forecasting with a new input selection framework. Energy 2015, 81, 777-786.
-
(2015)
Energy
, vol.81
, pp. 777-786
-
-
Ghofrani, M.1
Ghayekhloo, M.2
Arabali, A.3
Ghayekhloo, A.4
-
7
-
-
33646399473
-
Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market
-
Mandal, P., Senjyu, T., Funabashi, T. Neural networks approach to forecast several hour ahead electricity prices and loads in deregulated market. Energy Convers. Manag. 2006, 47, 2128-2142.
-
(2006)
Energy Convers. Manag.
, vol.47
, pp. 2128-2142
-
-
Mandal, P.1
Senjyu, T.2
Funabashi, T.3
-
8
-
-
76649105074
-
Short-term load forecasting: Similar day-based wavelet neural networks
-
Chen, Y., Luh, P.B., Guan, C., Zhao, Y., Michel, L.D., Coolbeth, M.A., Friedland, P.B., Rourke, S.J. Short-term load forecasting: Similar day-based wavelet neural networks. IEEE Trans. Power Syst. 2010, 25, 322-330.
-
(2010)
IEEE Trans. Power Syst.
, vol.25
, pp. 322-330
-
-
Chen, Y.1
Luh, P.B.2
Guan, C.3
Zhao, Y.4
Michel, L.D.5
Coolbeth, M.A.6
Friedland, P.B.7
Rourke, S.J.8
-
9
-
-
84870047704
-
Short-term load forecasting using improved similar days method
-
Chengdu, China, 28-31 March
-
Mu, Q., Wu, Y., Pan, X., Huang, L., Li, X. Short-term load forecasting using improved similar days method. In Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC), Chengdu, China, 28-31 March 2010; pp. 1-4.
-
(2010)
Proceedings of the 2010 Asia-Pacific Power and Energy Engineering Conference (APPEEC)
, pp. 1-4
-
-
Mu, Q.1
Wu, Y.2
Pan, X.3
Huang, L.4
Li, X.5
-
10
-
-
84945585574
-
Input variable selection for forecasting models
-
Arahal, M.R., Cepeda, A., Camacho, E.F. Input variable selection for forecasting models. IFAC Proc. Vol. 2002, 35, 463-468.
-
(2002)
IFAC Proc.
, vol.35
, pp. 463-468
-
-
Arahal, M.R.1
Cepeda, A.2
Camacho, E.F.3
-
11
-
-
84935845022
-
A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings
-
Raza, M.Q., Khosravi, A. A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings. Renew. Sustain. Energy Rev. 2015, 50, 1352-1372.
-
(2015)
Renew. Sustain. Energy Rev.
, vol.50
, pp. 1352-1372
-
-
Raza, M.Q.1
Khosravi, A.2
-
12
-
-
84965130549
-
Next day electric load forecasting using artificial neural networks
-
Cebu City, Philippines, 9-12 December
-
Velasco, L.C.P., Villezas, C.R., Palahang, P.N.C., Dagaang, J.A.A. Next day electric load forecasting using artificial neural networks. In Proceedings of the 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Cebu City, Philippines, 9-12 December 2015; pp. 1-6.
-
(2015)
Proceedings of the 2015 International Conference On Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM)
, pp. 1-6
-
-
Velasco, L.C.P.1
Villezas, C.R.2
Palahang, P.N.C.3
Dagaang, J.A.A.4
-
13
-
-
84896976741
-
Artificial neural network for short-term load forecasting in distribution systems
-
Hernández, L., Baladrón, C., Aguiar, J.M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., Pérez, F., Fernández, Á., Lloret, J. Artificial neural network for short-term load forecasting in distribution systems. Energies 2014, 7, 1576-1598.
-
(2014)
Energies
, vol.7
, pp. 1576-1598
-
-
Hernández, L.1
Baladrón, C.2
Aguiar, J.M.3
Calavia, L.4
Carro, B.5
Sánchez-Esguevillas, A.6
Pérez, F.7
Fernández, A.8
Lloret, J.9
-
14
-
-
85009291134
-
Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs
-
Buitrago, J., Asfour, S. Short-term forecasting of electric loads using nonlinear autoregressive artificial neural networks with exogenous vector inputs. Energies 2017, 10, 40.
-
(2017)
Energies
, vol.10
, pp. 40
-
-
Buitrago, J.1
Asfour, S.2
-
15
-
-
84919800700
-
Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines
-
Kaytez, F., Taplamacioglu, M.C., Cam, E., Hardalac, F. Forecasting electricity consumption: A comparison of regression analysis, neural networks and least squares support vector machines. Int. J. Electr. Power Energy Syst. 2015, 67, 431-438.
-
(2015)
Int. J. Electr. Power Energy Syst.
, vol.67
, pp. 431-438
-
-
Kaytez, F.1
Taplamacioglu, M.C.2
Cam, E.3
Hardalac, F.4
-
16
-
-
84891616845
-
Hybrid pso-SVM method for short-term load forecasting during periods with significant temperature variations in city of burbank
-
Selakov, A., Cvijetinovíc, D., Milovíc, L., Mellon, S., Bekut, D. Hybrid pso-svm method for short-term load forecasting during periods with significant temperature variations in city of burbank. Appl. Soft Comput. 2014, 16, 80-88.
-
(2014)
Appl. Soft Comput.
, vol.16
, pp. 80-88
-
-
Selakov, A.1
Cvijetinovíc, D.2
Milovíc, L.3
Mellon, S.4
Bekut, D.5
-
17
-
-
85024398136
-
A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis
-
Niu, D., Dai, S. A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis. Energies 2017, 10, 408.
-
(2017)
Energies
, vol.10
, pp. 408
-
-
Niu, D.1
Dai, S.2
-
18
-
-
85021184170
-
Short-term load forecasting based on wavelet transform and least squares support vector machine optimized by improved cuckoo search
-
Liang, Y., Niu, D., Ye, M., Hong, W.-C. Short-term load forecasting based on wavelet transform and least squares support vector machine optimized by improved cuckoo search. Energies 2016, 9, 827.
-
(2016)
Energies
, vol.9
, pp. 827
-
-
Liang, Y.1
Niu, D.2
Ye, M.3
Hong, W.-C.4
-
19
-
-
0029356764
-
Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems
-
Kim, K.-H., Park, J.-K., Hwang, K.-J., Kim, S.-H. Implementation of hybrid short-term load forecasting system using artificial neural networks and fuzzy expert systems. IEEE Trans. Power Syst. 1995, 10, 1534-1539.
-
(1995)
IEEE Trans. Power Syst.
, vol.10
, pp. 1534-1539
-
-
Kim, K.-H.1
Park, J.-K.2
Hwang, K.-J.3
Kim, S.-H.4
-
20
-
-
84928710711
-
Applications of fuzzy logic in renewable energy systems-A review
-
Suganthi, L., Iniyan, S., Samuel, A.A. Applications of fuzzy logic in renewable energy systems-A review. Renew. Sustain. Energy Rev. 2015, 48, 585-607.
-
(2015)
Renew. Sustain. Energy Rev.
, vol.48
, pp. 585-607
-
-
Suganthi, L.1
Iniyan, S.2
Samuel, A.A.3
-
21
-
-
84859610654
-
Short-term load forecasting using Bayesian neural networks learned by hybrid monte carlo algorithm
-
Niu, D.-X., Shi, H.-F., Wu, D.D. Short-term load forecasting using bayesian neural networks learned by hybrid monte carlo algorithm. Appl. Soft Comput. 2012, 12, 1822-1827.
-
(2012)
Appl. Soft Comput.
, vol.12
, pp. 1822-1827
-
-
Niu, D.-X.1
Shi, H.-F.2
Wu, D.D.3
-
22
-
-
84910046405
-
Long short-term memory recurrent neural network architectures for large scale acoustic modeling
-
14-18 September
-
Sak, H., Senior, A., Beaufays, F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association, Singapore, 14-18 September 2014.
-
(2014)
Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association, Singapore
-
-
Sak, H.1
Senior, A.2
Beaufays, F.3
-
23
-
-
0034293152
-
Learning to forget: Continual prediction with lstm
-
Gers, F.A., Schmidhuber, J., Cummins, F. Learning to forget: Continual prediction with lstm. Neural Comput. 2000, 12, 2451-2471.
-
(2000)
Neural Comput.
, vol.12
, pp. 2451-2471
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
24
-
-
0001202594
-
A learning algorithm for continually running fully recurrent neural networks
-
Williams, R.J., Zipser, D. A learning algorithm for continually running fully recurrent neural networks. Neural Comput. 1989, 1, 270-280.
-
(1989)
Neural Comput.
, vol.1
, pp. 270-280
-
-
Williams, R.J.1
Zipser, D.2
-
25
-
-
19044366077
-
Roller bearing fault diagnosis method based on emd and neural network
-
Yang, Y., Yu, D.J., Cheng, J.S., Shi, M.L., Yu, Y. Roller bearing fault diagnosis method based on emd and neural network. J. Vib. Shock 2005, 1.
-
(2005)
J. Vib. Shock
, vol.1
-
-
Yang, Y.1
Yu, D.J.2
Cheng, J.S.3
Shi, M.L.4
Yu, Y.5
-
26
-
-
5444236478
-
The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis
-
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-C. Tung, C.C., Liu, H.H. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998, 454, 903-995.
-
(1998)
R. Soc. Lond. A Math. Phys. Eng. Sci.
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.C.4
Shih, H.H.5
Zheng, Q.6
Yen, N.-C.7
Tung, C.C.8
Liu, H.H.9
-
27
-
-
84868201484
-
An optimization based empirical mode decomposition scheme
-
Huang, B., Kunoth, A. An optimization based empirical mode decomposition scheme. J. Comput. Appl. Math 2013, 240, 174-183.
-
(2013)
J. Comput. Appl. Math
, vol.240
, pp. 174-183
-
-
Huang, B.1
Kunoth, A.2
-
28
-
-
80052379563
-
Short-term prediction of wind power using emd and chaotic theory
-
An, X., Jiang, D., Zhao, M., Liu, C. Short-term prediction of wind power using emd and chaotic theory. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 1036-1042.
-
(2012)
Commun. Nonlinear Sci. Numer. Simul.
, vol.17
, pp. 1036-1042
-
-
An, X.1
Jiang, D.2
Zhao, M.3
Liu, C.4
-
29
-
-
85012272132
-
Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting
-
Dong, Y., Ma, X., Ma, C., Wang, J. Research and application of a hybrid forecasting model based on data decomposition for electrical load forecasting. Energies 2016, 9, 1050.
-
(2016)
Energies
, vol.9
, pp. 1050
-
-
Dong, Y.1
Ma, X.2
Ma, C.3
Wang, J.4
-
30
-
-
0038144791
-
-
McGraw Hill: Burr Ridge, IL, USA
-
Mitchell, T.M. Machine Learning; McGraw Hill: Burr Ridge, IL, USA, 1997; Volume 45, pp. 230-247.
-
(1997)
Machine Learning
, vol.45
, pp. 230-247
-
-
Mitchell, T.M.1
-
31
-
-
0037186544
-
Stochastic gradient boosting
-
Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367-378.
-
(2002)
Comput. Stat. Data Anal.
, vol.38
, pp. 367-378
-
-
Friedman, J.H.1
-
32
-
-
0003684449
-
-
Springer Series in Statistics; Springer: Berlin Germany
-
Friedman, J., Hastie, T., Tibshirani, R. The Elements of Statistical Learning; Springer Series in Statistics; Springer: Berlin, Germany, 2001; Volume 1.
-
(2001)
The Elements of Statistical Learning
, vol.1
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
33
-
-
0003802343
-
-
Wadsworth International Group, Chapman and Hall/CRC: Belmont, CA, USA
-
Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J. Classification and Regression Trees; Wadsworth International Group, Chapman and Hall/CRC: Belmont, CA, USA, 1984.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
34
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
Oakland, CA, USA, 21 June
-
Macqueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, 21 June 1967; Volume 1, pp. 281-297.
-
(1967)
Proceedings of the Fifth Berkeley Symposium On Mathematical Statistics and Probability
, vol.1
, pp. 281-297
-
-
MacQueen, J.1
-
36
-
-
85009962818
-
-
Morgan Kaufmann:Burlington, MA, USA
-
Witten, I.H., Frank, E., Hall, M.A., Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann:Burlington, MA, USA, 2016.
-
(2016)
Data Mining: Practical Machine Learning Tools and Techniques
-
-
Witten, I.H.1
Frank, E.2
Hall, M.A.3
Pal, C.J.4
-
37
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
Atlanta, GA, USA, 16-21 June
-
Pascanu, R., Mikolov, T., Bengio, Y. On the difficulty of training recurrent neural networks. In Proceedings of the 30th International Conference on International Conference on Machine Learning, Atlanta, GA, USA, 16-21 June 2013; Volume 28, pp. 1310-1318.
-
(2013)
Proceedings of the 30th International Conference On International Conference On Machine Learning
, vol.28
, pp. 1310-1318
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
38
-
-
0028392483
-
Learning long-term dependencies with gradient descent is difficult
-
Bengio, Y., Simard, P., Frasconi, P. Learning long-term dependencies with gradient descent is difficult. IEEE Trans. Neural Netw. 1994, 5, 157-166.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 157-166
-
-
Bengio, Y.1
Simard, P.2
Frasconi, P.3
|