메뉴 건너뛰기




Volumn 10, Issue 3, 2017, Pages

A short-term load forecasting model with a modified particle swarm optimization algorithm and least squares support vector machine based on the denoising method of empirical mode decomposition and grey relational analysis

Author keywords

Empirical Mode Decomposition; Grey Relational Analysis; Least square support vector machine; Modified particle swarm optimization algorithm; Short term load forecasting

Indexed keywords

ELECTRIC POWER PLANT LOADS; ELECTRIC POWER SYSTEMS; FORECASTING; LEAST SQUARES APPROXIMATIONS; LOADS (FORCES); NEURAL NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); SIGNAL PROCESSING; VECTORS;

EID: 85024398136     PISSN: None     EISSN: 19961073     Source Type: Journal    
DOI: 10.3390/en10030408     Document Type: Article
Times cited : (59)

References (43)
  • 2
    • 84901808961 scopus 로고    scopus 로고
    • Artificial neural network based short term load forecasting
    • Kowm, D.; Kim, M.; Hong, C; Cho, S. Artificial neural network based short term load forecasting. Int. J. Smart Home 2014, 8, 145-150.
    • (2014) Int. J. Smart Home , vol.8 , pp. 145-150
    • Kowm, D.1    Kim, M.2    Hong, C.3    Cho, S.4
  • 4
    • 84894588398 scopus 로고    scopus 로고
    • A short-term power load forecasting method based on BP neural network
    • Li, L. J.; Huang, W. A Short-Term Power Load Forecasting Method Based on BP Neural Network. Appl. Mech. Mater. 2014, 494-495, 1647-1650.
    • (2014) Appl. Mech. Mater. , vol.494-495 , pp. 1647-1650
    • Li, L.J.1    Huang, W.2
  • 5
    • 84901699169 scopus 로고    scopus 로고
    • A forecasting method of short-term electric power load based on BP neural network
    • Bin, H; Zu, Y. X.; Zhang, C. A Forecasting Method of Short-Term Electric Power Load Based on BP Neural Network. Appl. Mech. Mater. 2014, 538, 247-250.
    • (2014) Appl. Mech. Mater. , vol.538 , pp. 247-250
    • Bin, H.1    Zu, Y.X.2    Zhang, C.3
  • 6
    • 84906672685 scopus 로고    scopus 로고
    • An improved RBF neural network for short term load forecasting
    • Li, C; Liang, Z. Q.; Chen, M. Y. An Improved RBF Neural Network for Short Term Load Forecasting. Adv. Mater. Res. 2014, 1008-1009, 709-713.
    • (2014) Adv. Mater. Res. , vol.1008-1009 , pp. 709-713
    • Li, C.1    Liang, Z.Q.2    Chen, M.Y.3
  • 7
    • 85035203179 scopus 로고    scopus 로고
    • The short term load forecasting of RBF neural network power system based on fuzzy control
    • Network and Computer Engineering, Yinchuan, China, 13-14 August
    • Ni, J.; Jin, G. The Short Term Load Forecasting of RBF Neural Network Power System Based on Fuzzy Control. In Proceedings of the International Conference on Electronics, Network and Computer Engineering, Yinchuan, China, 13-14 August 2016.
    • (2016) Proceedings of the International Conference on Electronics
    • Ni, J.1    Jin, G.2
  • 8
    • 84958536613 scopus 로고    scopus 로고
    • A new model for short-term power system load forecasting using wavelet transform fuzzy RBF neural network
    • Dong, J.; Xia, C; Zhang, W. A New Model for Short-Term Power System Load Forecasting Using Wavelet Transform Fuzzy RBF Neural Network. Lect. Notes. Electr. Eng. 2014, 277, 99-106.
    • (2014) Lect. Notes. Electr. Eng. , vol.277 , pp. 99-106
    • Dong, J.1    Xia, C.2    Zhang, W.3
  • 10
    • 24944463776 scopus 로고    scopus 로고
    • Application of SVM to power system short-term load forecast
    • Yang, J. F.; Cheng, H. Z. Application of SVM to power system short-term load forecast. Electr. Power. Autom. Equip. 2004, 24, 30-32.
    • (2004) Electr. Power. Autom. Equip. , vol.24 , pp. 30-32
    • Yang, J.F.1    Cheng, H.Z.2
  • 11
    • 33846153781 scopus 로고    scopus 로고
    • Parameter selection and optimization method of SVM model for short-term load forecasting
    • Hong, X.; Wei, J. P; Liu, H. L. Parameter Selection and Optimization Method of SVM Model for Short-term Load Forecasting. Proc. CSEE 2006, 26, 17-22.
    • (2006) Proc. CSEE , vol.26 , pp. 17-22
    • Hong, X.1    Wei, J.P.2    Liu, H.L.3
  • 12
    • 84973100859 scopus 로고    scopus 로고
    • Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine
    • De Giorgi, M. G.; Malvoni, M.; Congedo, P. M. Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine. Energy 2016, 107, 360-373.
    • (2016) Energy , vol.107 , pp. 360-373
    • De Giorgi, M.G.1    Malvoni, M.2    Congedo, P.M.3
  • 13
    • 84938206905 scopus 로고    scopus 로고
    • Wind speed prediction using reduced support vector machines with feature selection
    • Kong, X.; Liu, X.; Shi, R.; Lee, K. Y. Wind speed prediction using reduced support vector machines with feature selection. Neurocomputing 2015, 169, 449-456.
    • (2015) Neurocomputing , vol.169 , pp. 449-456
    • Kong, X.1    Liu, X.2    Shi, R.3    Lee, K.Y.4
  • 14
    • 84887548066 scopus 로고    scopus 로고
    • Short-term wind power forecasting based on least-square support vector machine (LSSVM)
    • Li, X.; Wang, X.; Zheng, Y. H.; Li, L. X.; Zhou, L. D.; Sheng, X. K. Short-Term Wind Power Forecasting Based on Least-Square Support Vector Machine (LSSVM). Appl. Mech. Mater. 2013, 448, 1825-1828.
    • (2013) Appl. Mech. Mater. , vol.448 , pp. 1825-1828
    • Li, X.1    Wang, X.2    Zheng, Y.H.3    Li, L.X.4    Zhou, L.D.5    Sheng, X.K.6
  • 16
    • 85035217988 scopus 로고    scopus 로고
    • Research of least square support vector machine based on chaotic time series in power load forecasting model
    • Hong Kong, China, 3-6 October
    • Sun, W.; Yang, C. Research of Least Square Support Vector Machine Based on Chaotic Time Series in Power Load Forecasting Model. In Proceedings of the International Conference on Neural Information Processing, Hong Kong, China, 3-6 October 2006.
    • (2006) Proceedings of the International Conference on Neural Information Processing
    • Sun, W.1    Yang, C.2
  • 18
    • 85035222723 scopus 로고    scopus 로고
    • Research on failure prediction technology based on time series analysis and ACO-LSSVM
    • Liu, H. Y.; Jiang, Z. J. Research on Failure Prediction Technology Based on Time Series Analysis and ACO-LSSVM. Comput. Mod. 2013, 1, 219-222.
    • (2013) Comput. Mod. , vol.1 , pp. 219-222
    • Liu, H.Y.1    Jiang, Z.J.2
  • 20
    • 84907931854 scopus 로고    scopus 로고
    • A forecasting model of natural gas daily load based on wavelet transform and LSSVM-DE
    • Qiao, W.; Chen, B.; Wu, S.; Ma, J. A forecasting model of natural gas daily load based on wavelet transform and LSSVM-DE. Nat. Gas Ind. 2014, 34, 118-124.
    • (2014) Nat. Gas Ind. , vol.34 , pp. 118-124
    • Qiao, W.1    Chen, B.2    Wu, S.3    Ma, J.4
  • 21
    • 84952314900 scopus 로고    scopus 로고
    • Wind power grid connected capacity prediction using LSSVM optimized by the bat algorithm
    • Wu, Q.; Peng, C. Wind power grid connected capacity prediction using LSSVM optimized by the bat algorithm. Energies 2015, 8, 14346-14360.
    • (2015) Energies , vol.8 , pp. 14346-14360
    • Wu, Q.1    Peng, C.2
  • 22
    • 84991396324 scopus 로고    scopus 로고
    • Photovoltaic forecast based on hybrid PCA-LSSVM using dimensionality reducted data
    • Malvoni, M.; De Giorgi, M. G.; Congedo, P. M. Photovoltaic forecast based on hybrid PCA-LSSVM using dimensionality reducted data. Neurocomputing 2016, 211, 72-83.
    • (2016) Neurocomputing , vol.211 , pp. 72-83
    • Malvoni, M.1    De Giorgi, M.G.2    Congedo, P.M.3
  • 23
    • 33646346476 scopus 로고    scopus 로고
    • Survey on particle swarm optimization algorithm
    • Yang, W.; Li, Q. Survey on Particle Swarm Optimization Algorithm. Eng. Sci. 2004, 6, 87-94.
    • (2004) Eng. Sci. , vol.6 , pp. 87-94
    • Yang, W.1    Li, Q.2
  • 25
    • 84866626314 scopus 로고    scopus 로고
    • Parameters optimization and application of v-support vector machine based on particle swarm optimization algorithm
    • Control and Sensor Network, Taiyuan, China, 7-9 July
    • Bai, J.; Zhang, X.; Xue, P.; Wang, J. Parameters Optimization and Application of v-Support Vector Machine Based on Particle Swarm Optimization Algorithm. In Proceedings of the International Conference on Computing, Measurement, Control and Sensor Network, Taiyuan, China, 7-9 July 2012.
    • (2012) Proceedings of the International Conference on Computing, Measurement
    • Bai, J.1    Zhang, X.2    Xue, P.3    Wang, J.4
  • 26
    • 85028083790 scopus 로고    scopus 로고
    • Research on power load forecasting based on PSO-LSSVM
    • Zhu, L.; Wang, Z. Research on Power Load Forecasting Based on PSO-LSSVM. Sci. Mos. 2014, 2, 11-15.
    • (2014) Sci. Mos. , vol.2 , pp. 11-15
    • Zhu, L.1    Wang, Z.2
  • 27
    • 84858724450 scopus 로고    scopus 로고
    • The short-term wind speed forecast analysis based on the PSO-LSSVM predict model
    • Sun, B.; Yao, H. T. The short-term wind speed forecast analysis based on the PSO-LSSVM predict model. Power Syst. Prot. Control. 2012, 40, 85-89.
    • (2012) Power Syst. Prot. Control. , vol.40 , pp. 85-89
    • Sun, B.1    Yao, H.T.2
  • 28
    • 0036825521 scopus 로고    scopus 로고
    • On the use of the wavelet decomposition for time series prediction
    • Soltani, S. On the use of the wavelet decomposition for time series prediction. Neurocomputing 2002, 48, 267-277.
    • (2002) Neurocomputing , vol.48 , pp. 267-277
    • Soltani, S.1
  • 29
    • 41949140720 scopus 로고    scopus 로고
    • Wavelet decomposition and autoregressive model for time series prediction
    • Mabrouk, A. B.; Abdallah, N. B.; Dhifaoui, Z. Wavelet decomposition and autoregressive model for time series prediction. Appl. Math. Comput. 2008, 199, 334-340.
    • (2008) Appl. Math. Comput. , vol.199 , pp. 334-340
    • Mabrouk, A.B.1    Abdallah, N.B.2    Dhifaoui, Z.3
  • 30
    • 79955623964 scopus 로고    scopus 로고
    • Wind farm power prediction based on wavelet decomposition and chaotic time series
    • An, X.; Jiang, D.; Liu, C.; Zhao, M. Wind farm power prediction based on wavelet decomposition and chaotic time series. Expert Syst. Appl. 2011, 38, 11280-11285.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 11280-11285
    • An, X.1    Jiang, D.2    Liu, C.3    Zhao, M.4
  • 32
    • 80053409436 scopus 로고    scopus 로고
    • Research on short-term load forecasting model based on wavelet decomposition and neural network
    • Shanghai, China, 26-28 July
    • Xia, C.; Lei, B.; Rao, C.; He, Z. Research on short-term load forecasting model based on wavelet decomposition and neural network. In Proceedings of the International Conference on Natural Computation, Shanghai, China, 26-28 July 2011.
    • (2011) Proceedings of the International Conference on Natural Computation
    • Xia, C.1    Lei, B.2    Rao, C.3    He, Z.4
  • 33
    • 84906911087 scopus 로고    scopus 로고
    • Comparison between wind power prediction models based on wavelet decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN)
    • De Giorgi, M. G.; Campilongo, S.; Ficarella, A.; Congedo, P. M. Comparison between wind power prediction models based on wavelet decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN). Energies 2014, 7, 5251-5272.
    • (2014) Energies , vol.7 , pp. 5251-5272
    • De Giorgi, M.G.1    Campilongo, S.2    Ficarella, A.3    Congedo, P.M.4
  • 34
    • 33746869631 scopus 로고    scopus 로고
    • Empirical mode decomposition: A novel technique for the study of tremor time series
    • Lima, E. R. D.; Andrade, A. O.; Pons, J. L.; Kyberd, P.; Nasuto, S. J. Empirical mode decomposition: A novel technique for the study of tremor time series. Med. Biol. Eng. Comput. 2006, 44, 569-582.
    • (2006) Med. Biol. Eng. Comput. , vol.44 , pp. 569-582
    • Lima, E.R.D.1    Andrade, A.O.2    Pons, J.L.3    Kyberd, P.4    Nasuto, S.J.5
  • 37
    • 84959140574 scopus 로고    scopus 로고
    • A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting
    • Wei, L. Y. A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting. Appl. Soft Comput. 2016, 42, 368-376.
    • (2016) Appl. Soft Comput. , vol.42 , pp. 368-376
    • Wei, L.Y.1
  • 38
    • 84883858082 scopus 로고    scopus 로고
    • Multi-scale modeling method based on EMD-LSSVM and its application
    • Xing, H.; Wang, H.; Liu, Y.; Lu, J.; Jiang, W. Multi-scale modeling method based on EMD-LSSVM and its application. Infrared Laser Eng. 2013, 42, 1737-1742.
    • (2013) Infrared Laser Eng. , vol.42 , pp. 1737-1742
    • Xing, H.1    Wang, H.2    Liu, Y.3    Lu, J.4    Jiang, W.5
  • 42
    • 84958673283 scopus 로고    scopus 로고
    • Fault diagnosis on lubrication state of journal bearings based on EMD and grey relational degree
    • Xuxiang, L. U.; Yiming, S. U.; Jiateng, W. U.; Luping, L. I. Fault Diagnosis on Lubrication State of Journal Bearings Based on EMD and Grey Relational Degree. J. Chin. Soc. Power Eng. 2016, 36, 42-47.
    • (2016) J. Chin. Soc. Power Eng. , vol.36 , pp. 42-47
    • Xuxiang, L.U.1    Yiming, S.U.2    Jiateng, W.U.3    Luping, L.I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.