-
1
-
-
84940949735
-
-
Cambridge University Press
-
R. Koenker, Quantile Regression. No. 38, Cambridge University Press, 2005.
-
(2005)
Quantile Regression
, Issue.38
-
-
Koenker, R.1
-
2
-
-
0000665083
-
Non-parametric estimation of a multivariate probability density
-
V. A. Epanechnikov, "Non-parametric estimation of a multivariate probability density," Theory of Probability & Its Applications, vol. 14, no. 1, pp. 153-158, 1969.
-
(1969)
Theory of Probability & its Applications
, vol.14
, Issue.1
, pp. 153-158
-
-
Epanechnikov, V.A.1
-
3
-
-
0001652263
-
Quantile smoothing splines
-
R. Koenker, P. Ng, and S. Portnoy, "Quantile smoothing splines," Biometrika, vol. 81, no. 4, pp. 673-680, 1994.
-
(1994)
Biometrika
, vol.81
, Issue.4
, pp. 673-680
-
-
Koenker, R.1
Ng, P.2
Portnoy, S.3
-
4
-
-
33745777631
-
Nonparametric quantile estimation
-
I. Takeuchi, Q. V. Le, T. D. Sears, and A. J. Smola, "Nonparametric quantile estimation," The Journal of Machine Learning Research, vol. 7, pp. 1231-1264, 2006.
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1231-1264
-
-
Takeuchi, I.1
Le, Q.V.2
Sears, T.D.3
Smola, A.J.4
-
5
-
-
0031527874
-
Quantile curves without crossing
-
X. He, "Quantile curves without crossing," The American Statistician, vol. 51, no. 2, pp. 186-192, 1997.
-
(1997)
The American Statistician
, vol.51
, Issue.2
, pp. 186-192
-
-
He, X.1
-
6
-
-
79955830804
-
A family of simple non-parametric kernel learning algorithms
-
J. Zhuang, I. W. Tsang, and S. C. Hoi, "A family of simple non-parametric kernel learning algorithms," The Journal of Machine Learning Research, vol. 12, pp. 1313-1347, 2011.
-
(2011)
The Journal of Machine Learning Research
, vol.12
, pp. 1313-1347
-
-
Zhuang, J.1
Tsang, I.W.2
Hoi, S.C.3
-
7
-
-
84883715312
-
Interquantile shrinkage and variable selection in quantile regression
-
L. Jiang, H. D. Bondell, and H. J. Wang, "Interquantile shrinkage and variable selection in quantile regression," Computational Statistics & Data Analysis, vol. 69, pp. 208-219, 2014.
-
(2014)
Computational Statistics & Data Analysis
, vol.69
, pp. 208-219
-
-
Jiang, L.1
Bondell, H.D.2
Wang, H.J.3
-
8
-
-
77954111515
-
Quantile and probability curves without crossing
-
V. Chernozhukov, I. Fernández-Val, and A. Galichon, "Quantile and probability curves without crossing," Econometrica, vol. 78, no. 3, pp. 1093-1125, 2010.
-
(2010)
Econometrica
, vol.78
, Issue.3
, pp. 1093-1125
-
-
Chernozhukov, V.1
Fernández-Val, I.2
Galichon, A.3
-
9
-
-
84866874265
-
Quantile tomography: Using quantiles with multivariate data
-
L. Kong and I. Mizera, "Quantile tomography: Using quantiles with multivariate data," Statsitica Sinica, vol. 22, no. 4, pp. 1589-1610, 2008.
-
(2008)
Statsitica Sinica
, vol.22
, Issue.4
, pp. 1589-1610
-
-
Kong, L.1
Mizera, I.2
-
11
-
-
84871981201
-
Estimation of high conditional quantiles for heavy-tailed distributions
-
H. J. Wang, D. Li, and X. He, "Estimation of high conditional quantiles for heavy-tailed distributions," Journal of the American Statistical Association, vol. 107, no. 500, pp. 1453-1464, 2012.
-
(2012)
Journal of the American Statistical Association
, vol.107
, Issue.500
, pp. 1453-1464
-
-
Wang, H.J.1
Li, D.2
He, X.3
-
12
-
-
84882795817
-
The risk linkage effects of stock indexes based on quantile regression and granger causality test
-
2013 25th Chinese May
-
L. Qian, L. Yongli, and W. Chong, "The risk linkage effects of stock indexes based on quantile regression and granger causality test," in Control and Decision Conference (CCDC), 2013 25th Chinese, pp. 4252-4257, May 2013.
-
(2013)
Control and Decision Conference (CCDC)
, pp. 4252-4257
-
-
Qian, L.1
Yongli, L.2
Chong, W.3
-
13
-
-
33244496469
-
Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts
-
H. A. Nielsen, H. Madsen, and T. S. Nielsen, "Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts," Wind Energy, vol. 9, no. 1-2, pp. 95-108, 2006.
-
(2006)
Wind Energy
, vol.9
, Issue.1-2
, pp. 95-108
-
-
Nielsen, H.A.1
Madsen, H.2
Nielsen, T.S.3
-
14
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, "Distributed optimization and statistical learning via the alternating direction method of multipliers," Foundations and Trends in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.
-
(2011)
Foundations and Trends in Machine Learning
, vol.3
, Issue.1
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
15
-
-
84898065835
-
Block splitting for distributed optimization
-
N. Parikh and S. Boyd, "Block splitting for distributed optimization," Mathematical Programming Computation, vol. 6, no. 1, pp. 77-102, 2014.
-
(2014)
Mathematical Programming Computation
, vol.6
, Issue.1
, pp. 77-102
-
-
Parikh, N.1
Boyd, S.2
-
16
-
-
84884129062
-
Proximal algorithms
-
N. Parikh and S. Boyd, "Proximal algorithms," Foundations and Trends in Optimization, vol. 1, no. 3, pp. 123-231, 2013.
-
(2013)
Foundations and Trends in Optimization
, vol.1
, Issue.3
, pp. 123-231
-
-
Parikh, N.1
Boyd, S.2
-
19
-
-
0030335268
-
Tail index estimation, pareto quantile plots, and regression diagnostics
-
December
-
J. Beirlant, P. Vynckier, and J. L. Teugels, "Tail index estimation, Pareto quantile plots, and regression diagnostics," Journal of the American Statistical Association, vol. 91, pp. 1659-1667, December 1996.
-
(1996)
Journal of the American Statistical Association
, vol.91
, pp. 1659-1667
-
-
Beirlant, J.1
Vynckier, P.2
Teugels, J.L.3
|