메뉴 건너뛰기




Volumn 8, Issue NOV, 2017, Pages

Microbiome datasets are compositional: And this is not optional

Author keywords

Bayesian estimation; Compositional data; Correlation; Count normalization; High throughput sequencing; Microbiota; Relative abundance

Indexed keywords

RNA 16S;

EID: 85034034202     PISSN: None     EISSN: 1664302X     Source Type: Journal    
DOI: 10.3389/fmicb.2017.02224     Document Type: Short Survey
Times cited : (1697)

References (43)
  • 1
    • 0002769176 scopus 로고
    • Principal component analysis of compositional data
    • Aitchison, J. (1983). Principal component analysis of compositional data. Biometrika 70, 57-65. doi: 10.1093/biomet/70.1.57
    • (1983) Biometrika , vol.70 , pp. 57-65
    • Aitchison, J.1
  • 4
    • 0036406446 scopus 로고    scopus 로고
    • Biplots of compositional data
    • Aitchison, J., and Greenacre, M. (2002). Biplots of compositional data. J. Roy. Stat. Soc. Ser. C 51, 375-392. doi: 10.1111/1467-9876.00275
    • (2002) J. Roy. Stat. Soc. Ser. C , vol.51 , pp. 375-392
    • Aitchison, J.1    Greenacre, M.2
  • 5
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • Anders, S., and Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. 11:R106. doi: 10.1186/gb-2010-11-10-r106
    • (2010) Genome Biol , vol.11
    • Anders, S.1    Huber, W.2
  • 6
    • 85034027749 scopus 로고    scopus 로고
    • The gut microbiota of healthy aged chinese is similar to that of the healthy young
    • Bian, G., Gloor, G. B., Gong, A., Jia, C., Zhang, W., Hu, J., et al. (2017). The gut microbiota of healthy aged chinese is similar to that of the healthy young. mSphere 2:e00327-17. doi: 10.1128/mSphere.00327-17
    • (2017) MSphere , vol.2
    • Bian, G.1    Gloor, G.B.2    Gong, A.3    Jia, C.4    Zhang, W.5    Hu, J.6
  • 7
    • 84954349651 scopus 로고    scopus 로고
    • How should we measure proportionality on relative gene expression data?
    • Erb, I., and Notredame, C. (2016). How should we measure proportionality on relative gene expression data? Theory Biosci. 135, 21-36. doi: 10.1007/s12064-015-0220-8
    • (2016) Theory Biosci , vol.135 , pp. 21-36
    • Erb, I.1    Notredame, C.2
  • 8
    • 84879750908 scopus 로고    scopus 로고
    • ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-seq
    • Fernandes, A. D., Macklaim, J. M., Linn, T., Reid, G., and Gloor, G. B. (2013). ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-seq. PLoS ONE 8:e67019
    • (2013) PLoS ONE , vol.8
    • Fernandes, A.D.1    Macklaim, J.M.2    Linn, T.3    Reid, G.4    Gloor, G.B.5
  • 9
    • 84902140982 scopus 로고    scopus 로고
    • Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis
    • Fernandes, A. D., Reid, J. N., Macklaim, J. M., McMurrough, T. A., Edgell, D. R., and Gloor, G. B. (2014). Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15.1-15.13. doi: 10.1186/2049-2618-2-15
    • (2014) Microbiome , vol.2 , pp. 151-1513
    • Fernandes, A.D.1    Reid, J.N.2    Macklaim, J.M.3    McMurrough, T.A.4    Edgell, D.R.5    Gloor, G.B.6
  • 10
    • 84865733148 scopus 로고    scopus 로고
    • Inferring correlation networks from genomic survey data
    • Friedman, J., and Alm, E. J. (2012). Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8:e1002687. doi: 10.1371/journal.pcbi.1002687
    • (2012) PLoS Comput. Biol , vol.8
    • Friedman, J.1    Alm, E.J.2
  • 11
    • 84979763111 scopus 로고    scopus 로고
    • Compositional uncertainty should not be ignored in high-throughput sequencing data analysis
    • Gloor, G. B., Macklaim, J. M., Vu, M., and Fernandes, A. D. (2016a). Compositional uncertainty should not be ignored in high-throughput sequencing data analysis. Aust. J. Stat. 45, 73-87. doi: 10.17713/ajs.v45i4.122
    • (2016) Aust. J. Stat , vol.45 , pp. 73-87
    • Gloor, G.B.1    Macklaim, J.M.2    Vu, M.3    Fernandes, A.D.4
  • 12
    • 84982953236 scopus 로고    scopus 로고
    • Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data
    • Gloor, G. B., and Reid, G. (2016). Compositional analysis: a valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. 62, 692-703. doi: 10.1139/cjm-2015-0821
    • (2016) Can. J. Microbiol , vol.62 , pp. 692-703
    • Gloor, G.B.1    Reid, G.2
  • 13
    • 84975717775 scopus 로고    scopus 로고
    • It's all relative: analyzing microbiome data as compositions
    • Gloor, G. B., Wu, J. R., Pawlowsky-Glahn, V., and Egozcue, J. J. (2016b). It's all relative: analyzing microbiome data as compositions. Ann. Epidemiol. 26, 322-329. doi: 10.1016/j.annepidem.2016.03.003
    • (2016) Ann. Epidemiol , vol.26 , pp. 322-329
    • Gloor, G.B.1    Wu, J.R.2    Pawlowsky-Glahn, V.3    Egozcue, J.J.4
  • 14
    • 84995755353 scopus 로고    scopus 로고
    • Interpreting prevotella and bacteroides as biomarkers of diet and lifestyle
    • Gorvitovskaia, A., Holmes, S. P., and Huse, S. M. (2016). Interpreting prevotella and bacteroides as biomarkers of diet and lifestyle. Microbiome 4:15. doi: 10.1186/s40168-016-0160-7
    • (2016) Microbiome , vol.4 , pp. 15
    • Gorvitovskaia, A.1    Holmes, S.P.2    Huse, S.M.3
  • 15
    • 85034092211 scopus 로고    scopus 로고
    • A broken promise: microbiome differential abundance methods do not control the false discovery rate
    • Hawinkel, S., Mattiello, F., Bijnens, L., and Thas, O. (2017). A broken promise: microbiome differential abundance methods do not control the false discovery rate. Brief. Bioinf. bbx104. doi: 10.1093/bib/bbx104
    • (2017) Brief. Bioinf. bbx104
    • Hawinkel, S.1    Mattiello, F.2    Bijnens, L.3    Thas, O.4
  • 18
    • 84885502854 scopus 로고    scopus 로고
    • 'Proportions, percentages, ppm: do the molecular biosciences treat compositional data right,'
    • eds V. Pawlowsky-Glahn and A. Buccianti (London: John Wiley & Sons, Ltd.)
    • Lovell, D., Müller, W., Taylor, J., Zwart, A., and Helliwell, C. (2011). 'Proportions, percentages, ppm: do the molecular biosciences treat compositional data right,' in Compositional Data Analysis: Theory and Applications, eds V. Pawlowsky-Glahn and A. Buccianti (London: John Wiley & Sons, Ltd.), 193-207
    • (2011) Compositional Data Analysis: Theory and Applications , pp. 193-207
    • Lovell, D.1    Müller, W.2    Taylor, J.3    Zwart, A.4    Helliwell, C.5
  • 20
    • 78751575501 scopus 로고    scopus 로고
    • Unifrac: an effective distance metric for microbial community comparison
    • Lozupone, C., Lladser, M. E., Knights, D., Stombaugh, J., and Knight, R. (2011). Unifrac: an effective distance metric for microbial community comparison. ISME J. 5, 169-172. doi: 10.1038/ismej.2010.133
    • (2011) ISME J , vol.5 , pp. 169-172
    • Lozupone, C.1    Lladser, M.E.2    Knights, D.3    Stombaugh, J.4    Knight, R.5
  • 21
    • 84879769779 scopus 로고    scopus 로고
    • Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis
    • Macklaim, M. J., Fernandes, D. A., Di Bella, M. J., Hammond, J.-A., Reid, G., and Gloor, G. B. (2013). Comparative meta-RNA-seq of the vaginal microbiota and differential expression by Lactobacillus iners in health and dysbiosis. Microbiome 1:15. doi: 10.1186/2049-2618-1-12
    • (2013) Microbiome , vol.1 , pp. 15
    • Macklaim, M.J.1    Fernandes, D.A.2    Di Bella, M.J.3    Hammond, J.-A.4    Reid, G.5    Gloor, G.B.6
  • 22
    • 84946878517 scopus 로고    scopus 로고
    • Analysis of composition of microbiomes: a novel method for studying microbial composition
    • Mandal, S., Van Treuren, W., White, R. A., Eggesbø, M., Knight, R., and Peddada, S. D. (2015). Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26:27663. doi: 10.3402/mehd.v26.27663
    • (2015) Microb. Ecol. Health Dis , vol.26 , pp. 27663
    • Mandal, S.1    Van Treuren, W.2    White, R.A.3    Eggesbø, M.4    Knight, R.5    Peddada, S.D.6
  • 24
    • 84942134765 scopus 로고    scopus 로고
    • A multi-platform metabolomics approach identifies highly specific biomarkers of bacterial diversity in the vagina of pregnant and non-pregnant women
    • McMillan, A., Rulisa, S., Sumarah, M., Macklaim, J. M., Renaud, J., Bisanz, J. E., et al. (2015). A multi-platform metabolomics approach identifies highly specific biomarkers of bacterial diversity in the vagina of pregnant and non-pregnant women. Sci. Rep. 5, 14174. doi: 10.1038/srep14174
    • (2015) Sci. Rep , vol.5 , pp. 14174
    • McMillan, A.1    Rulisa, S.2    Sumarah, M.3    Macklaim, J.M.4    Renaud, J.5    Bisanz, J.E.6
  • 25
    • 84876427223 scopus 로고    scopus 로고
    • phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data
    • McMurdie, P. J., and Holmes, S. (2013). phyloseq: an r package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. doi: 10.1371/journal.pone.0061217
    • (2013) PLoS ONE , vol.8
    • McMurdie, P.J.1    Holmes, S.2
  • 26
    • 84901363655 scopus 로고    scopus 로고
    • Waste not, want not: why rarefying microbiome data is inadmissible
    • McMurdie, P. J., and Holmes, S. (2014). Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10:e1003531. doi: 10.1371/journal.pcbi.1003531
    • (2014) PLoS Comput. Biol , vol.10
    • McMurdie, P.J.1    Holmes, S.2
  • 27
    • 84902204278 scopus 로고    scopus 로고
    • Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues
    • McMurrough, T. A., Dickson, R. J., Thibert, S. M. F., Gloor, G. B., and Edgell, D. R. (2014). Control of catalytic efficiency by a coevolving network of catalytic and noncatalytic residues. Proc. Natl. Acad. Sci. U.S.A. 111, E2376-E2383. doi: 10.1073/pnas.1322352111
    • (2014) Proc. Natl. Acad. Sci. U.S.A , vol.111 , pp. E2376-E2383
    • McMurrough, T.A.1    Dickson, R.J.2    Thibert, S.M.F.3    Gloor, G.B.4    Edgell, D.R.5
  • 30
    • 84924529798 scopus 로고    scopus 로고
    • zCompositions-R package for multivariate imputation of left-censored data under a compositional approach
    • Palarea-Albaladejo, J., and Martín-Fernández, J. A. (2015). zCompositions-R package for multivariate imputation of left-censored data under a compositional approach. Chemometr. Intel. Lab. Syst. 143, 85-96. doi: 10.1016/j.chemolab.2015.02.019
    • (2015) Chemometr. Intel. Lab. Syst , vol.143 , pp. 85-96
    • Palarea-Albaladejo, J.1    Martín-Fernández, J.A.2
  • 32
    • 0000629281 scopus 로고
    • Mathematical contributions to the theory of evolution -on a form of spurious correlation which may arise when indices are used in the measurement of organs
    • Pearson, K. (1897). Mathematical contributions to the theory of evolution.-on a form of spurious correlation which may arise when indices are used in the measurement of organs. Proc. Roy. Soc. Lond. 60, 489-498
    • (1897) Proc. Roy. Soc. Lond , vol.60 , pp. 489-498
    • Pearson, K.1
  • 33
    • 85034029771 scopus 로고    scopus 로고
    • Propr: An R-package for identifying proportionally abundant features using compositional data analysis
    • Quinn, T., Richardson, M. F., Lovell, D., and Crowley, T. (2017). propr: An R-package for identifying proportionally abundant features using compositional data analysis. bioRxiv. doi: 10.1101/104935
    • (2017) BioRxiv
    • Quinn, T.1    Richardson, M.F.2    Lovell, D.3    Crowley, T.4
  • 34
    • 84970021127 scopus 로고    scopus 로고
    • Intricacies of assessing the human microbiome in epidemiologic studies
    • Robinson, C. K., Brotman, R. M., and Ravel, J. (2016). Intricacies of assessing the human microbiome in epidemiologic studies. Ann. Epidemiol. 26, 311-321. doi: 10.1016/j.annepidem.2016.04.005
    • (2016) Ann. Epidemiol , vol.26 , pp. 311-321
    • Robinson, C.K.1    Brotman, R.M.2    Ravel, J.3
  • 35
    • 77953176036 scopus 로고    scopus 로고
    • A scaling normalization method for differential expression analysis of RNA-seq data
    • Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 11, R25.1-R25.9. doi: 10.1186/gb-2010-11-3-r25
    • (2010) Genome Biol , vol.11
    • Robinson, M.D.1    Oshlack, A.2
  • 36
    • 0000905848 scopus 로고
    • Minimum population sizes for species conservation
    • Shaffer, M. L. (1981). Minimum population sizes for species conservation. BioScience 31, 131-134
    • (1981) BioScience , vol.31 , pp. 131-134
    • Shaffer, M.L.1
  • 37
    • 85014129703 scopus 로고    scopus 로고
    • A phylogenetic transform enhances analysis of compositional microbiota data
    • Silverman, J. D., Washburne, A. D., Mukherjee, S., and David, L. A. (2017). A phylogenetic transform enhances analysis of compositional microbiota data. Elife 6:21887. doi: 10.7554/eLife.21887
    • (2017) Elife , vol.6 , pp. 21887
    • Silverman, J.D.1    Washburne, A.D.2    Mukherjee, S.3    David, L.A.4
  • 38
    • 85020054792 scopus 로고    scopus 로고
    • Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies
    • Thorsen, J., Brejnrod, A., Mortensen, M., Rasmussen, M. A., Stokholm, J., Al-Soud, W. A., et al. (2016). Large-scale benchmarking reveals false discoveries and count transformation sensitivity in 16S rRNA gene amplicon data analysis methods used in microbiome studies. Microbiome 4, 62. doi: 10.1186/s40168-016-0208-8
    • (2016) Microbiome , vol.4 , pp. 62
    • Thorsen, J.1    Brejnrod, A.2    Mortensen, M.3    Rasmussen, M.A.4    Stokholm, J.5    Al-Soud, W.A.6
  • 39
    • 84996599775 scopus 로고    scopus 로고
    • Compositional data analysis of the microbiome: fundamentals, tools, and challenges
    • Tsilimigras, M. C. B., and Fodor, A. A. (2016). Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Ann. Epidemiol. 26, 330-335. doi: 10.1016/j.annepidem.2016.03.002
    • (2016) Ann. Epidemiol , vol.26 , pp. 330-335
    • Tsilimigras, M.C.B.1    Fodor, A.A.2
  • 41
    • 84959106176 scopus 로고    scopus 로고
    • Correlation detection strategies in microbial data sets vary widely in sensitivity and precision
    • Weiss, S., Van Treuren, W., Lozupone, C., Faust, K., Friedman, J., Deng, Y., et al. (2016). Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 10, 1669-1681. doi: 10.1038/ismej.2015.235
    • (2016) ISME J , vol.10 , pp. 1669-1681
    • Weiss, S.1    Van Treuren, W.2    Lozupone, C.3    Faust, K.4    Friedman, J.5    Deng, Y.6
  • 42
    • 85015975393 scopus 로고    scopus 로고
    • Normalization and microbial differential abundance strategies depend upon data characteristics
    • Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., et al. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27. doi: 10.1186/s40168-017-0237-y
    • (2017) Microbiome , vol.5 , pp. 27
    • Weiss, S.1    Xu, Z.Z.2    Peddada, S.3    Amir, A.4    Bittinger, K.5    Gonzalez, A.6
  • 43
    • 84992418314 scopus 로고    scopus 로고
    • Expanding the UniFrac toolbox
    • Wong, R. G., Wu, J. R., and Gloor, G. B. (2016). Expanding the UniFrac toolbox. PLoS ONE 11:e0161196. doi: 10.1371/journal.pone.0161196
    • (2016) PLoS ONE , vol.11
    • Wong, R.G.1    Wu, J.R.2    Gloor, G.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.