메뉴 건너뛰기




Volumn 6, Issue , 2017, Pages

A phylogenetic transform enhances analysis of compositional microbiota data

Author keywords

[No Author keywords available]

Indexed keywords

ACTINOBACTERIA; ARTICLE; CLADISTICS; CONTROLLED STUDY; FUSOBACTERIA; GENETIC ANALYSIS; GENETIC VARIABILITY; HUMAN; INFORMATION PROCESSING; MICROBIAL COMMUNITY; MICROBIAL IDENTIFICATION; MICROFLORA; MOLECULAR BIOLOGY; NONHUMAN; PHYLOGENY; PREVOTELLA; STREPTOCOCCUS; BIOLOGY; BIOSTATISTICS; PROCEDURES;

EID: 85014129703     PISSN: None     EISSN: 2050084X     Source Type: Journal    
DOI: 10.7554/eLife.21887     Document Type: Article
Times cited : (234)

References (73)
  • 3
    • 77958471357 scopus 로고    scopus 로고
    • Differential expression analysis for sequence count data
    • PMID: 20979621
    • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biology 11:R106. doi: 10.1186/gb-2010-11-10-r106, PMID: 20979621
    • (2010) Genome Biology , vol.11
    • Anders, S.1    Huber, W.2
  • 4
    • 84872092312 scopus 로고    scopus 로고
    • A Short History of Compositional Data Analysis
    • Pawlowsky-Glahn V, Buccianti A (eds), Hoboken, NJ: John Wiley & Sons, Ltd
    • Bacon-Shone J. 2011. A Short History of Compositional Data Analysis. Pawlowsky-Glahn V, Buccianti A (eds). Compositional Data Analysis. Hoboken, NJ: John Wiley & Sons, Ltd. p. 1–11.
    • (2011) Compositional Data Analysis , pp. 1-11
    • Bacon-Shone, J.1
  • 5
    • 84979740899 scopus 로고    scopus 로고
    • A logistic normal mixture model for compositional data allowing essential zeros
    • Bear J, Billheimer D. 2016. A logistic normal mixture model for compositional data allowing essential zeros. Austrian Journal of Statistics 45:3–23. doi: 10.17713/ajs.v45i4.117
    • (2016) Austrian Journal of Statistics , vol.45 , pp. 3-23
    • Bear, J.1    Billheimer, D.2
  • 7
    • 70449703996 scopus 로고    scopus 로고
    • What are the consequences of the disappearing human Microbiota?
    • PMID: 19898491
    • Blaser MJ, Falkow S. 2009. What are the consequences of the disappearing human Microbiota? Nature Reviews Microbiology 7:887–894. doi: 10.1038/nrmicro2245, PMID: 19898491
    • (2009) Nature Reviews Microbiology , vol.7 , pp. 887-894
    • Blaser, M.J.1    Falkow, S.2
  • 10
    • 84865082160 scopus 로고    scopus 로고
    • Associating microbiome composition with environmental covariates using generalized UniFrac distances
    • PMID: 22711789
    • Chen J, Bittinger K, Charlson ES, Hoffmann C, Lewis J, Wu GD, Collman RG, Bushman FD, Li H. 2012. Associating microbiome composition with environmental covariates using generalized UniFrac distances. Bioinformatics 28:2106–2113. doi: 10.1093/bioinformatics/bts342, PMID: 22711789
    • (2012) Bioinformatics , vol.28 , pp. 2106-2113
    • Chen, J.1    Bittinger, K.2    Charlson, E.S.3    Hoffmann, C.4    Lewis, J.5    Wu, G.D.6    Collman, R.G.7    Bushman, F.D.8    Li, H.9
  • 11
    • 84876058250 scopus 로고    scopus 로고
    • Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis
    • PMID: 24312162
    • Chen J, Li H. 2013. Variable selection for sparse Dirichlet-multinomial regression with an application to microbiome data analysis. The Annals of Applied Statistics 7:418–442. doi: 10.1214/12-AOAS592, PMID: 24312162
    • (2013) The Annals of Applied Statistics , vol.7 , pp. 418-442
    • Chen, J.1    Li, H.2
  • 12
    • 72949091232 scopus 로고    scopus 로고
    • Bacterial community variation in human body habitats across space and time
    • PMID: 19892944
    • Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. doi: 10.1126/science.1177486, PMID: 19892944
    • (2009) Science , vol.326 , pp. 1694-1697
    • Costello, E.K.1    Lauber, C.L.2    Hamady, M.3    Fierer, N.4    Gordon, J.I.5    Knight, R.6
  • 13
    • 33745513227 scopus 로고    scopus 로고
    • Metagenomic analysis of coastal RNA virus communities
    • PMID: 16794078
    • Culley AI, Lang AS, Suttle CA. 2006. Metagenomic analysis of coastal RNA virus communities. Science 312:1795–1798. doi: 10.1126/science.1127404, PMID: 16794078
    • (2006) Science , vol.312 , pp. 1795-1798
    • Culley, A.I.1    Lang, A.S.2    Suttle, C.A.3
  • 14
    • 77957075815 scopus 로고    scopus 로고
    • Impact of diet in shaping gut Microbiota revealed by a comparative study in children from Europe and rural Africa
    • PMID: 20679230
    • De Filippo C, Cavalieri D, Di Paola M, Ramazzotti M, Poullet JB, Massart S, Collini S, Pieraccini G, Lionetti P. 2010. Impact of diet in shaping gut Microbiota revealed by a comparative study in children from Europe and rural Africa. PNAS 107:14691–14696. doi: 10.1073/pnas.1005963107, PMID: 20679230
    • (2010) PNAS , vol.107 , pp. 14691-14696
    • De Filippo, C.1    Cavalieri, D.2    Di Paola, M.3    Ramazzotti, M.4    Poullet, J.B.5    Massart, S.6    Collini, S.7    Pieraccini, G.8    Lionetti, P.9
  • 16
    • 33646244766 scopus 로고    scopus 로고
    • Groups of parts and their balances in compositional data analysis
    • Egozcue JJ, Pawlowsky-Glahn V. 2005. Groups of parts and their balances in compositional data analysis. Mathematical Geology 37:795–828. doi: 10.1007/s11004-005-7381-9
    • (2005) Mathematical Geology , vol.37 , pp. 795-828
    • Egozcue, J.J.1    Pawlowsky-Glahn, V.2
  • 17
    • 84979750794 scopus 로고    scopus 로고
    • Changing the reference measure in the simplex and its weighting effects
    • Egozcue JJ, Pawlowsky-Glahn V. 2016. Changing the reference measure in the simplex and its weighting effects. Austrian Journal of Statistics 45:25–44. doi: 10.17713/ajs.v45i4.126
    • (2016) Austrian Journal of Statistics , vol.45 , pp. 25-44
    • Egozcue, J.J.1    Pawlowsky-Glahn, V.2
  • 18
    • 84943379443 scopus 로고    scopus 로고
    • CCLasso: Correlation inference for compositional data through lasso
    • PMID: 26048598
    • Fang H, Huang C, Zhao H, Deng M. 2015. CCLasso: correlation inference for compositional data through lasso. Bioinformatics 31:3172–3180. doi: 10.1093/bioinformatics/btv349, PMID: 26048598
    • (2015) Bioinformatics , vol.31 , pp. 3172-3180
    • Fang, H.1    Huang, C.2    Zhao, H.3    Deng, M.4
  • 20
    • 84902140982 scopus 로고    scopus 로고
    • Unifying the analysis of high-throughput sequencing datasets: Characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis
    • PMID: 24910773
    • Fernandes AD, Reid JN, Macklaim JM, McMurrough TA, Edgell DR, Gloor GB. 2014. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2:15. doi: 10.1186/2049-2618-2-15, PMID: 24910773
    • (2014) Microbiome , vol.2 , pp. 15
    • Fernandes, A.D.1    Reid, J.N.2    Macklaim, J.M.3    McMurrough, T.A.4    Edgell, D.R.5    Gloor, G.B.6
  • 21
    • 84897138661 scopus 로고    scopus 로고
    • A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter
    • PMID: 24416266
    • Finucane MM, Sharpton TJ, Laurent TJ, Pollard KS. 2014. A taxonomic signature of obesity in the microbiome? getting to the guts of the matter. PLoS One 9:e84689. doi: 10.1371/journal.pone.0084689, PMID: 24416266
    • (2014) Plos One , vol.9
    • Finucane, M.M.1    Sharpton, T.J.2    Laurent, T.J.3    Pollard, K.S.4
  • 22
    • 84865733148 scopus 로고    scopus 로고
    • Inferring correlation networks from genomic survey data
    • PMID: 23028285
    • Friedman J, Alm EJ. 2012. Inferring correlation networks from genomic survey data. PLoS Computational Biology 8:e1002687. doi: 10.1371/journal.pcbi.1002687, PMID: 23028285
    • (2012) Plos Computational Biology , vol.8
    • Friedman, J.1    Alm, E.J.2
  • 23
    • 84865104842 scopus 로고    scopus 로고
    • Comparisons of distance methods for combining covariates and abundances in microbiome studies
    • Pacific Symposium on Biocomputing. NIH Public Access
    • Fukuyama J, McMurdie PJ, Dethlefsen L, Relman DA, Holmes S. 2012. Comparisons of distance methods for combining covariates and abundances in microbiome studies. Pacific Symposium on Biocomputing. NIH Public Access. p. 213
    • (2012) Pacific Symposium on Biocomputing , pp. 213
    • Fukuyama, J.1    McMurdie, P.J.2    Dethlefsen, L.3    Relman, D.A.4    Holmes, S.5
  • 24
    • 84979763111 scopus 로고    scopus 로고
    • Compositional uncertainty should not be ignored in high-throughput sequencing data analysis
    • Gloor GB, Macklaim JM, Vu M, Fernandes AD. 2016a. Compositional uncertainty should not be ignored in high-throughput sequencing data analysis. Austrian Journal of Statistics 45:73. doi: 10.17713/ajs.v45i4.122
    • (2016) Austrian Journal of Statistics , vol.45 , pp. 73
    • Gloor, G.B.1    Macklaim, J.M.2    Vu, M.3    Fernandes, A.D.4
  • 25
    • 84975717775 scopus 로고    scopus 로고
    • It’s all relative: Analyzing microbiome data as compositions
    • PMID: 27143475
    • Gloor GB, Wu JR, Pawlowsky-Glahn V, Egozcue JJ. 2016b. It’s all relative: analyzing microbiome data as compositions. Annals of Epidemiology 26:322–329. doi: 10.1016/j.annepidem.2016.03.003, PMID: 27143475
    • (2016) Annals of Epidemiology , vol.26 , pp. 322-329
    • Gloor, G.B.1    Wu, J.R.2    Pawlowsky-Glahn, V.3    Egozcue, J.J.4
  • 27
    • 79952750288 scopus 로고    scopus 로고
    • The skin microbiome
    • PMID: 21407241
    • Grice EA, Segre JA. 2011. The skin microbiome. Nature Reviews Microbiology 9:244–253. doi: 10.1038/nrmicro2537, PMID: 21407241
    • (2011) Nature Reviews Microbiology , vol.9 , pp. 244-253
    • Grice, E.A.1    Segre, J.A.2
  • 28
    • 84862276328 scopus 로고    scopus 로고
    • Structure, function and diversity of the healthy human microbiome
    • PMID: 22699609
    • Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi: 10.1038/nature11234, PMID: 22699609
    • (2012) Nature , vol.486 , pp. 207-214
  • 29
    • 44449178480 scopus 로고    scopus 로고
    • Resource partitioning and sympatric differentiation among closely related bacterioplankton
    • PMID: 18497299
    • Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF. 2008. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320:1081–1085. doi: 10.1126/science.1157890, PMID: 18497299
    • (2008) Science , vol.320 , pp. 1081-1085
    • Hunt, D.E.1    David, L.A.2    Gevers, D.3    Preheim, S.P.4    Alm, E.J.5    Polz, M.F.6
  • 30
    • 0030616851 scopus 로고    scopus 로고
    • Compositional data in community ecology: The paradigm or peril of proportions?
    • Jackson DA. 1997. Compositional data in community ecology: the paradigm or peril of proportions? Ecology 78: 929–940. doi: 10.1890/0012-9658(1997)078[0929:CDICET]2.0.CO;2
    • (1997) Ecology , vol.78 , pp. 929-940
    • Jackson, D.A.1
  • 31
    • 34548696115 scopus 로고    scopus 로고
    • 16s rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls
    • PMID: 17626177
    • Janda JM, Abbott SL. 2007. 16s rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. Journal of Clinical Microbiology 45:2761–2764. doi: 10.1128/JCM.01228-07, PMID: 17626177
    • (2007) Journal of Clinical Microbiology , vol.45 , pp. 2761-2764
    • Janda, J.M.1    Abbott, S.L.2
  • 32
    • 79251625980 scopus 로고    scopus 로고
    • Supervised classification of human Microbiota
    • PMID: 21039646
    • Knights D, Costello EK, Knight R. 2011. Supervised classification of human Microbiota. FEMS Microbiology Reviews 35:343–359. doi: 10.1111/j.1574-6976.2010.00251.x, PMID: 21039646
    • (2011) FEMS Microbiology Reviews , vol.35 , pp. 343-359
    • Knights, D.1    Costello, E.K.2    Knight, R.3
  • 36
    • 84881110826 scopus 로고    scopus 로고
    • Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules
    • PMID: 23858463
    • Levy R, Borenstein E. 2013. Metabolic modeling of species interaction in the human microbiome elucidates community-level assembly rules. PNAS 110:12804–12809. doi: 10.1073/pnas.1300926110, PMID: 23858463
    • (2013) PNAS , vol.110 , pp. 12804-12809
    • Levy, R.1    Borenstein, E.2
  • 38
    • 84983494270 scopus 로고    scopus 로고
    • MixMC: A multivariate statistical framework to gain insight into microbial communities
    • PMID: 27513472
    • Lê Cao KA, Costello ME, Lakis VA, Bartolo F, Chua XY, Brazeilles R, Rondeau P. 2016. MixMC: a multivariate statistical framework to gain insight into microbial communities. PLoS One 11:e0160169. doi: 10.1371/journal.pone.0160169, PMID: 27513472
    • (2016) Plos One , vol.11
    • Lê Cao, K.A.1    Costello, M.E.2    Lakis, V.A.3    Bartolo, F.4    Chua, X.Y.5    Brazeilles, R.6    Rondeau, P.7
  • 39
    • 84928107779 scopus 로고    scopus 로고
    • Microbiome, metagenomics, and high-dimensional compositional data analysis
    • Li H. 2015. Microbiome, metagenomics, and high-dimensional compositional data analysis. Annual Review of Statistics and Its Application 2:73–94. doi: 10.1146/annurev-statistics-010814-020351
    • (2015) Annual Review of Statistics and Its Application , vol.2 , pp. 73-94
    • Li, H.1
  • 40
    • 84985997789 scopus 로고    scopus 로고
    • Variable selection in regression with compositional covariates
    • Lin W, Shi P, Feng R, Li H. 2014. Variable selection in regression with compositional covariates. Biometrika 101: 785–797. doi: 10.1093/biomet/asu031
    • (2014) Biometrika , vol.101 , pp. 785-797
    • Lin, W.1    Shi, P.2    Feng, R.3    Li, H.4
  • 41
    • 84885502854 scopus 로고    scopus 로고
    • Proportions, percentages, ppm: Do the molecular biosciences treat compositional data right
    • Pawlowsky-Glahn V, Buccianti A (eds), Hoboken, NJ: John Wiley & Sons, Ltd
    • Lovell D, Müller W, Taylor J, Zwart A, Helliwell C. 2011. Proportions, percentages, ppm: do the molecular biosciences treat compositional data right. Pawlowsky-Glahn V, Buccianti A (eds). Compositional Data Analysis: Theory and Applications. Hoboken, NJ: John Wiley & Sons, Ltd. p. 193–207.
    • (2011) Compositional Data Analysis: Theory and Applications , pp. 193-207
    • Lovell, D.1    Müller, W.2    Taylor, J.3    Zwart, A.4    Helliwell, C.5
  • 43
    • 29144464937 scopus 로고    scopus 로고
    • UniFrac: A new phylogenetic method for comparing microbial communities
    • PMID: 16332807
    • Lozupone C, Knight R. 2005. UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71:8228–8235. doi: 10.1128/AEM.71.12.8228-8235.2005, PMID: 16332807
    • (2005) Applied and Environmental Microbiology , vol.71 , pp. 8228-8235
    • Lozupone, C.1    Knight, R.2
  • 48
    • 84947460926 scopus 로고    scopus 로고
    • Microbiomes in light of traits: A phylogenetic perspective
    • aac9323, PMID: 26542581
    • Martiny JB, Jones SE, Lennon JT, Martiny AC. 2015. Microbiomes in light of traits: a phylogenetic perspective. Science 350:aac9323. doi: 10.1126/science.aac9323, PMID: 26542581
    • (2015) Science , vol.350
    • Martiny, J.B.1    Jones, S.E.2    Lennon, J.T.3    Martiny, A.C.4
  • 49
    • 84965149936 scopus 로고    scopus 로고
    • Phylogenetics and the human microbiome
    • PMID: 25102857
    • Matsen FA. 2015. Phylogenetics and the human microbiome. Systematic Biology 64:e26–e41. doi: 10.1093/sysbio/syu053, PMID: 25102857
    • (2015) Systematic Biology , vol.64 , pp. e26-e41
    • Matsen, F.A.1
  • 51
    • 84876427223 scopus 로고    scopus 로고
    • Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data
    • PMID: 23630581
    • McMurdie PJ, Holmes S. 2013. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217. doi: 10.1371/journal.pone.0061217, PMID: 23630581
    • (2013) Plos One , vol.8
    • McMurdie, P.J.1    Holmes, S.2
  • 52
    • 84901363655 scopus 로고    scopus 로고
    • Waste not, want not: Why rarefying microbiome data is inadmissible
    • PMID: 24699258
    • McMurdie PJ, Holmes S. 2014. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Computational Biology 10:e1003531. doi: 10.1371/journal.pcbi.1003531, PMID: 24699258
    • (2014) Plos Computational Biology , vol.10
    • McMurdie, P.J.1    Holmes, S.2
  • 55
    • 1042304216 scopus 로고    scopus 로고
    • APE: Analyses of phylogenetics and evolution in R language
    • PMID: 14734327
    • Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290. doi: 10.1093/bioinformatics/btg412, PMID: 14734327
    • (2004) Bioinformatics , vol.20 , pp. 289-290
    • Paradis, E.1    Claude, J.2    Strimmer, K.3
  • 56
    • 84888865593 scopus 로고    scopus 로고
    • Differential abundance analysis for microbial marker-gene surveys
    • PMID: 24076764
    • Paulson JN, Stine OC, Bravo HC, Pop M. 2013. Differential abundance analysis for microbial marker-gene surveys. Nature Methods 10:1200–1202. doi: 10.1038/nmeth.2658, PMID: 24076764
    • (2013) Nature Methods , vol.10 , pp. 1200-1202
    • Paulson, J.N.1    Stine, O.C.2    Bravo, H.C.3    Pop, M.4
  • 60
    • 84870268389 scopus 로고    scopus 로고
    • Analysis of a data matrix and a graph: Metagenomic data and the phylogenetic tree
    • Purdom E. 2011. Analysis of a data matrix and a graph: metagenomic data and the phylogenetic tree. The Annals of Applied Statistics 5:2326–2358. doi: 10.1214/10-AOAS402
    • (2011) The Annals of Applied Statistics , vol.5 , pp. 2326-2358
    • Purdom, E.1
  • 61
    • 84967195417 scopus 로고    scopus 로고
    • The evolution of cooperation within the gut microbiota
    • PMID: 27111508
    • Rakoff-Nahoum S, Foster KR, Comstock LE. 2016. The evolution of cooperation within the gut microbiota. Nature 533:255–259. doi: 10.1038/nature17626, PMID: 27111508
    • (2016) Nature , vol.533 , pp. 255-259
    • Rakoff-Nahoum, S.1    Foster, K.R.2    Comstock, L.E.3
  • 63
    • 79951548848 scopus 로고    scopus 로고
    • Phangorn: Phylogenetic analysis in R
    • PMID: 21169378
    • Schliep KP. 2011. Phangorn: phylogenetic analysis in R. Bioinformatics 27:592–593. doi: 10.1093/bioinformatics/btq706, PMID: 21169378
    • (2011) Bioinformatics , vol.27 , pp. 592-593
    • Schliep, K.P.1
  • 64
    • 83055186603 scopus 로고    scopus 로고
    • Ecology drives a global network of gene exchange connecting the human microbiome
    • PMID: 22037308
    • Smillie CS, Smith MB, Friedman J, Cordero OX, David LA, Alm EJ. 2011. Ecology drives a global network of gene exchange connecting the human microbiome. Nature 480:241–244. doi: 10.1038/nature10571, PMID: 22037308
    • (2011) Nature , vol.480 , pp. 241-244
    • Smillie, C.S.1    Smith, M.B.2    Friedman, J.3    Cordero, O.X.4    David, L.A.5    Alm, E.J.6
  • 65
    • 84996599775 scopus 로고    scopus 로고
    • Compositional data analysis of the microbiome: Fundamentals, tools, and challenges
    • PMID: 27255738
    • Tsilimigras MC, Fodor AA. 2016. Compositional data analysis of the microbiome: fundamentals, tools, and challenges. Annals of Epidemiology 26:330–335. doi: 10.1016/j.annepidem.2016.03.002, PMID: 27255738
    • (2016) Annals of Epidemiology , vol.26 , pp. 330-335
    • Tsilimigras, M.C.1    Fodor, A.A.2
  • 67
    • 84874536596 scopus 로고    scopus 로고
    • The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses
    • PMID: 23460914
    • Větrovský T, Baldrian P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One 8:e57923. doi: 10.1371/journal.pone.0057923, PMID: 23460914
    • (2013) Plos One , vol.8
    • Větrovský, T.1    Baldrian, P.2
  • 71
    • 84988637625 scopus 로고    scopus 로고
    • Ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data
    • Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. 2017. Ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods in Ecology and Evolution 8:28–36. doi: 10.1111/2041-210X.12628
    • (2017) Methods in Ecology and Evolution , vol.8 , pp. 28-36
    • Yu, G.1    Smith, D.K.2    Zhu, H.3    Guan, Y.4    Lam, T.-Y.5
  • 72
    • 84935892963 scopus 로고    scopus 로고
    • BitPhylogeny: A probabilistic framework for reconstructing intra-tumor phylogenies
    • PMID: 257 86108
    • Yuan K, Sakoparnig T, Markowetz F, Beerenwinkel N. 2015. BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biology 16:36. doi: 10.1186/s13059-015-0592-6, PMID: 257 86108
    • (2015) Genome Biology , vol.16 , pp. 36
    • Yuan, K.1    Sakoparnig, T.2    Markowetz, F.3    Beerenwinkel, N.4
  • 73
    • 77955085506 scopus 로고    scopus 로고
    • Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives
    • PMID: 20197316
    • Zaneveld JR, Lozupone C, Gordon JI, Knight R. 2010. Ribosomal RNA diversity predicts genome diversity in gut bacteria and their relatives. Nucleic Acids Research 38:3869–3879. doi: 10.1093/nar/gkq066, PMID: 20197316
    • (2010) Nucleic Acids Research , vol.38 , pp. 3869-3879
    • Zaneveld, J.R.1    Lozupone, C.2    Gordon, J.I.3    Knight, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.