-
1
-
-
84859389254
-
The microbiome in infectious disease and inflammation
-
Honda, K., and D. R. Littman. 2012. The microbiome in infectious disease and inflammation. Annu. Rev. Immunol. 30: 759-795.
-
(2012)
Annu. Rev. Immunol
, vol.30
, pp. 759-795
-
-
Honda, K.1
Littman, D.R.2
-
2
-
-
84971201113
-
Gut microbiota, metabolites and host immunity
-
Rooks, M. G., and W. S. Garrett. 2016. Gut microbiota, metabolites and host immunity. Nat. Rev. Immunol. 16: 341-352.
-
(2016)
Nat. Rev. Immunol
, vol.16
, pp. 341-352
-
-
Rooks, M.G.1
Garrett, W.S.2
-
3
-
-
84879369738
-
Commensal bacteria at the interface of host metabolism and the immune system
-
Brestoff, J. R., and D. Artis. 2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14: 676-684.
-
(2013)
Nat. Immunol
, vol.14
, pp. 676-684
-
-
Brestoff, J.R.1
Artis, D.2
-
4
-
-
84864614787
-
Host remodeling of the gut microbiome and metabolic changes during pregnancy
-
Koren, O., J. K. Goodrich, T. C. Cullender, A. Spor, K. Laitinen, H. K. Bäckhed, A. Gonzalez, J. J. Werner, L. T. Angenent, R. Knight, et al. 2012. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell 150: 470-480.
-
(2012)
Cell
, vol.150
, pp. 470-480
-
-
Koren, O.1
Goodrich, J.K.2
Cullender, T.C.3
Spor, A.4
Laitinen, K.5
Bäckhed, H.K.6
Gonzalez, A.7
Werner, J.J.8
Angenent, L.T.9
Knight, R.10
-
5
-
-
84962605055
-
The maternal microbiota drives early postnatal innate immune development
-
Gomez de Agüero, M., S. C. Ganal-Vonarburg, T. Fuhrer, S. Rupp, Y. Uchimura, H. Li, A. Steinert, M. Heikenwalder, S. Hapfelmeier, U. Sauer, et al. 2016. The maternal microbiota drives early postnatal innate immune development. Science 351: 1296-1302.
-
(2016)
Science
, vol.351
, pp. 1296-1302
-
-
Gomez De Agüero, M.1
Ganal-Vonarburg, S.C.2
Fuhrer, T.3
Rupp, S.4
Uchimura, Y.5
Li, H.6
Steinert, A.7
Heikenwalder, M.8
Hapfelmeier, S.9
Sauer, U.10
-
6
-
-
84975317355
-
Microbial reconstitution reverses maternal dietinduced social and synaptic deficits in offspring
-
Buffington, S. A., G. V. Di Prisco, T. A. Auchtung, N. J. Ajami, J. F. Petrosino, and M. Costa-Mattioli. 2016. Microbial reconstitution reverses maternal dietinduced social and synaptic deficits in offspring. Cell 165: 1762-1775.
-
(2016)
Cell
, vol.165
, pp. 1762-1775
-
-
Buffington, S.A.G.1
Di Prisco, V.2
Auchtung, T.A.3
Ajami, N.J.4
Petrosino, J.F.5
Costa-Mattioli, M.6
-
7
-
-
84897480560
-
Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity
-
van de Pavert, S. A., M. Ferreira, R. G. Domingues, H. Ribeiro, R. Molenaar, L. Moreira-Santos, F. F. Almeida, S. Ibiza, I. Barbosa, G. Goverse, et al. 2014. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508: 123-127.
-
(2014)
Nature
, vol.508
, pp. 123-127
-
-
Van De Pavert, S.A.1
Ferreira, M.2
Domingues, R.G.3
Ribeiro, H.4
Molenaar, R.5
Moreira-Santos, L.6
Almeida, F.F.7
Ibiza, S.8
Barbosa, I.9
Goverse, G.10
-
8
-
-
84940309041
-
Commensal bacteria regulate thymic Aire expression
-
Nakajima, A., N. Negishi, H. Tsurui, N. Kadowaki-Ohtsuji, K. Maeda, M. Nanno, Y. Yamaguchi, N. Shimizu, H. Yagita, K. Okumura, and S. Habu. 2014. Commensal bacteria regulate thymic Aire expression. PLoS One 9: e105904.
-
(2014)
PLoS One
, vol.9
, pp. e105904
-
-
Nakajima, A.1
Negishi, N.2
Tsurui, H.3
Kadowaki-Ohtsuji, N.4
Maeda, K.5
Nanno, M.6
Yamaguchi, Y.7
Shimizu, N.8
Yagita, H.9
Okumura, K.10
Habu, S.11
-
9
-
-
84934987107
-
Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites
-
Thorburn, A. N., C. I. McKenzie, S. Shen, D. Stanley, L. Macia, L. J. Mason, L. K. Roberts, C. H.Wong, R. Shim, R. Robert, et al. 2015. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites. Nat. Commun. 6: 7320.
-
(2015)
Nat. Commun
, vol.6
, pp. 7320
-
-
Thorburn, A.N.1
McKenzie, C.I.2
Shen, S.3
Stanley, D.4
Macia, L.5
Mason, L.J.6
Roberts, L.K.7
Wong, C.H.8
Shim, R.9
Robert, R.10
-
11
-
-
78650408264
-
Diet, gut microbiota and immune responses
-
Maslowski, K. M., and C. R. Mackay. 2011. Diet, gut microbiota and immune responses. Nat. Immunol. 12: 5-9.
-
(2011)
Nat. Immunol
, vol.12
, pp. 5-9
-
-
Maslowski, K.M.1
Mackay, C.R.2
-
12
-
-
84890564250
-
Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa, Y., Y. Obata, S. Fukuda, T. A. Endo, G. Nakato, D. Takahashi, Y. Nakanishi, C. Uetake, K. Kato, T. Kato, et al. 2013. Commensal microbederived butyrate induces the differentiation of colonic regulatory T cells. Nature 504: 446-450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
Endo, T.A.4
Nakato, G.5
Takahashi, D.6
Nakanishi, Y.7
Uetake, C.8
Kato, K.9
Kato, T.10
-
13
-
-
84890550163
-
Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation
-
Arpaia, N., C. Campbell, X. Fan, S. Dikiy, J. van der Veeken, P. deRoos, H. Liu, J. R. Cross, K. Pfeffer, P. J. Coffer, and A. Y. Rudensky. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504: 451-455.
-
(2013)
Nature
, vol.504
, pp. 451-455
-
-
Arpaia, N.1
Campbell, C.2
Fan, X.3
Dikiy, S.4
Van der Veeken, J.5
DeRoos, P.6
Liu, H.7
Cross, J.R.8
Pfeffer, K.9
Coffer, P.J.10
Rudensky, A.Y.11
-
14
-
-
84881068658
-
The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis
-
Smith, P. M., M. R. Howitt, N. Panikov, M. Michaud, C. A. Gallini, M. Bohlooly-Y, J. N. Glickman, and W. S. Garrett. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569-573.
-
(2013)
Science
, vol.341
, pp. 569-573
-
-
Smith, P.M.1
Howitt, M.R.2
Panikov, N.3
Michaud, M.4
Gallini, C.A.5
Bohlooly-Y, M.6
Glickman, J.N.7
Garrett, W.S.8
-
15
-
-
84964403670
-
Development and maintenance of intestinal regulatory T cells
-
Tanoue, T., K. Atarashi, and K. Honda. 2016. Development and maintenance of intestinal regulatory T cells. Nat. Rev. Immunol. 16: 295-309.
-
(2016)
Nat. Rev. Immunol
, vol.16
, pp. 295-309
-
-
Tanoue, T.1
Atarashi, K.2
Honda, K.3
-
16
-
-
84896704750
-
Homeostatic control of regulatory T cell diversity
-
Liston, A., and D. H. Gray. 2014. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14: 154-165.
-
(2014)
Nat. Rev. Immunol
, vol.14
, pp. 154-165
-
-
Liston, A.1
Gray, D.H.2
-
17
-
-
84928581675
-
Immune tolerance Regulatory T cells generated early in life play a distinct role in maintaining self-Tolerance
-
Yang, S., N. Fujikado, D. Kolodin, C. Benoist, and D. Mathis. 2015. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-Tolerance. Science 348: 589-594.
-
(2015)
Science
, vol.348
, pp. 589-594
-
-
Yang, S.1
Fujikado, N.2
Kolodin, D.3
Benoist, C.4
Mathis, D.5
-
18
-
-
65549123867
-
Natural and adaptive foxp3+ regulatory T cells: More of the same or a division of labor?
-
Curotto de Lafaille, M. A., and J. J. Lafaille. 2009. Natural and adaptive foxp3+ regulatory T cells: more of the same or a division of labor? Immunity 30: 626-635.
-
(2009)
Immunity
, vol.30
, pp. 626-635
-
-
Curotto De Lafaille, M.A.1
Lafaille, J.J.2
-
19
-
-
84862814979
-
Selection of regulatory T cells in the thymus
-
Hsieh, C. S., H. M. Lee, and C. W. Lio. 2012. Selection of regulatory T cells in the thymus. Nat. Rev. Immunol. 12: 157-167.
-
(2012)
Nat. Rev. Immunol
, vol.12
, pp. 157-167
-
-
Hsieh, C.S.1
Lee, H.M.2
Lio, C.W.3
-
20
-
-
0029150110
-
Immunologic self-Tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25) Breakdown of a single mechanism of self-Tolerance causes various autoimmune diseases
-
Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 1995. Immunologic self-Tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-Tolerance causes various autoimmune diseases. J. Immunol. 155: 1151-1164.
-
(1995)
J. Immunol
, vol.155
, pp. 1151-1164
-
-
Sakaguchi, S.1
Sakaguchi, N.2
Asano, M.3
Itoh, M.4
Toda, M.5
-
21
-
-
60549115770
-
Heterogeneity of natural Foxp3+ T cells: A committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity
-
Komatsu, N., M. E. Mariotti-Ferrandiz, Y. Wang, B. Malissen, H. Waldmann, and S. Hori. 2009. Heterogeneity of natural Foxp3+ T cells: A committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc. Natl. Acad. Sci. USA 106: 1903-1908.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 1903-1908
-
-
Komatsu, N.1
Mariotti-Ferrandiz, M.E.2
Wang, Y.3
Malissen, B.4
Waldmann, H.5
Hori, S.6
-
22
-
-
79956348319
-
Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41)
-
Kimura, I., D. Inoue, T. Maeda, T. Hara, A. Ichimura, S. Miyauchi, M. Kobayashi, A. Hirasawa, and G. Tsujimoto. 2011. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc. Natl. Acad. Sci. USA 108: 8030-8035.
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 8030-8035
-
-
Kimura, I.1
Inoue, D.2
Maeda, T.3
Hara, T.4
Ichimura, A.5
Miyauchi, S.6
Kobayashi, M.7
Hirasawa, A.8
Tsujimoto, G.9
-
23
-
-
0036470005
-
Analysis of thymic stromal cell populations using flow cytometry
-
Gray, D. H., A. P. Chidgey, and R. L. Boyd. 2002. Analysis of thymic stromal cell populations using flow cytometry. J. Immunol. Methods 260: 15-28.
-
(2002)
J. Immunol. Methods
, vol.260
, pp. 15-28
-
-
Gray, D.H.1
Chidgey, A.P.2
Boyd, R.L.3
-
24
-
-
50249139552
-
Probiotics and blueberry attenuate the severity of dextran sulfate sodium (DSS)-induced colitis
-
Osman, N., D. Adawi, S. Ahrné, B. Jeppsson, and G. Molin. 2008. Probiotics and blueberry attenuate the severity of dextran sulfate sodium (DSS)-induced colitis. Dig. Dis. Sci. 53: 2464-2473.
-
(2008)
Dig. Dis. Sci
, vol.53
, pp. 2464-2473
-
-
Osman, N.1
Adawi, D.2
Ahrné, S.3
Jeppsson, B.4
Molin, G.5
-
25
-
-
84997610371
-
Changes in intestinal microbiota following combination therapy with fecal microbial transplantation and antibiotics for ulcerative colitis
-
Ishikawa, D., T. Sasaki, T. Osada, K. Kuwahara-Arai, K. Haga, T. Shibuya, K. Hiramatsu, and S. Watanabe. 2017. Changes in intestinal microbiota following combination therapy with fecal microbial transplantation and antibiotics for ulcerative colitis. Inflamm. Bowel Dis. 23: 116-125.
-
(2017)
Inflamm. Bowel Dis
, vol.23
, pp. 116-125
-
-
Ishikawa, D.1
Sasaki, T.2
Osada, T.3
Kuwahara-Arai, K.4
Haga, K.5
Shibuya, T.6
Hiramatsu, K.7
Watanabe, S.8
-
26
-
-
0033166540
-
Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis
-
Turner, S., K. M. Pryer, V. P. Miao, and J. D. Palmer. 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J. Eukaryot. Microbiol. 46: 327-338.
-
(1999)
J. Eukaryot. Microbiol
, vol.46
, pp. 327-338
-
-
Turner, S.1
Pryer, K.M.2
Miao, V.P.3
Palmer, J.D.4
-
27
-
-
74049108922
-
BLAST+: Architecture and applications
-
Camacho, C., G. Coulouris, V. Avagyan, N. Ma, J. Papadopoulos, K. Bealer, and T. L. Madden. 2009. BLAST+: Architecture and applications. BMC Bioinformatics 10: 421.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 421
-
-
Camacho, C.1
Coulouris, G.2
Avagyan, V.3
Ma, N.4
Papadopoulos, J.5
Bealer, K.6
Madden, T.L.7
-
28
-
-
80052549504
-
Integrative analysis of environmental sequences using MEGAN4
-
Huson, D. H., S. Mitra, H. J. Ruscheweyh, N. Weber, and S. C. Schuster. 2011. Integrative analysis of environmental sequences using MEGAN4. Genome Res. 21: 1552-1560.
-
(2011)
Genome Res
, vol.21
, pp. 1552-1560
-
-
Huson, D.H.1
Mitra, S.2
Ruscheweyh, H.J.3
Weber, N.4
Schuster, S.C.5
-
29
-
-
85010931720
-
High fibre diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in DOCA-salt hypertensive mice
-
Marques, F. Z., E. Nelson, P. Y. Chu, D. Horlock, A. Fiedler, M. Ziemann, J. K. Tan, S. Kuruppu, N. W. Rajapakse, A. El-Osta, et al. 2016. High fibre diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in DOCA-salt hypertensive mice. Circulation. 135: 964-977.
-
(2016)
Circulation
, vol.135
, pp. 964-977
-
-
Marques, F.Z.1
Nelson, E.2
Chu, P.Y.3
Horlock, D.4
Fiedler, A.5
Ziemann, M.6
Tan, J.K.7
Kuruppu, S.8
Rajapakse, N.W.9
El-Osta, A.10
-
30
-
-
84893704050
-
Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis
-
Trompette, A., E. S. Gollwitzer, K. Yadava, A. K. Sichelstiel, N. Sprenger, C. Ngom-Bru, C. Blanchard, T. Junt, L. P. Nicod, N. L. Harris, and B. J. Marsland. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20: 159-166.
-
(2014)
Nat. Med
, vol.20
, pp. 159-166
-
-
Trompette, A.1
Gollwitzer, E.S.2
Yadava, K.3
Sichelstiel, A.K.4
Sprenger, N.5
Ngom-Bru, C.6
Blanchard, C.7
Junt, T.8
Nicod, L.P.9
Harris, N.L.10
Marsland, B.J.11
-
31
-
-
84969287564
-
The importance of being a regulatory T cell in pregnancy
-
Clark, D. A. 2016. The importance of being a regulatory T cell in pregnancy. J. Reprod. Immunol. 116: 60-69.
-
(2016)
J. Reprod. Immunol
, vol.116
, pp. 60-69
-
-
Clark, D.A.1
-
32
-
-
25844504653
-
Developmental regulation of Foxp3 expression during ontogeny
-
Fontenot, J. D., J. L. Dooley, A. G. Farr, and A. Y. Rudensky. 2005. Developmental regulation of Foxp3 expression during ontogeny. J. Exp. Med. 202: 901-906.
-
(2005)
J. Exp. Med
, vol.202
, pp. 901-906
-
-
Fontenot, J.D.1
Dooley, J.L.2
Farr, A.G.3
Rudensky, A.Y.4
-
33
-
-
84867899425
-
Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells
-
Weiss, J. M., A. M. Bilate, M. Gobert, Y. Ding, M. A. Curotto de Lafaille, C. N. Parkhurst, H. Xiong, J. Dolpady, A. B. Frey, M. G. Ruocco, et al. 2012. Neuropilin 1 is expressed on thymus-derived natural regulatory T cells, but not mucosa-generated induced Foxp3+ T reg cells. J. Exp. Med. 209: 1723-1742, S1721.
-
(2012)
J. Exp. Med
, vol.209
, Issue.1723-1742
, pp. S1721
-
-
Weiss, J.M.1
Bilate, A.M.2
Gobert, M.3
Ding, Y.4
Lafaille De Curotto, M.A.5
Parkhurst, C.N.6
Xiong, H.7
Dolpady, J.8
Frey, A.B.9
Ruocco, M.G.10
-
34
-
-
84867901322
-
Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo
-
Yadav, M., C. Louvet, D. Davini, J. M. Gardner, M. Martinez-Llordella, S. Bailey-Bucktrout, B. A. Anthony, F. M. Sverdrup, R. Head, D. J. Kuster, et al. 2012. Neuropilin-1 distinguishes natural and inducible regulatory T cells among regulatory T cell subsets in vivo. J. Exp. Med. 209: 1713-1722.
-
(2012)
J. Exp. Med
, vol.209
, pp. 1713-1722
-
-
Yadav, M.1
Louvet, C.2
Davini, D.3
Gardner, J.M.4
Martinez-Llordella, M.5
Bailey-Bucktrout, S.6
Anthony, B.A.7
Sverdrup, F.M.8
Head, R.9
Kuster, D.J.10
-
35
-
-
84871861922
-
The development of T lymphocytes in fetal thymus organ culture
-
Nitta, T., I. Ohigashi, and Y. Takahama. 2013. The development of T lymphocytes in fetal thymus organ culture. Methods Mol. Biol. 946: 85-102.
-
(2013)
Methods Mol. Biol
, vol.946
, pp. 85-102
-
-
Nitta, T.1
Ohigashi, I.2
Takahama, Y.3
-
36
-
-
84878579044
-
The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43
-
Kimura, I., K. Ozawa, D. Inoue, T. Imamura, K. Kimura, T. Maeda, K. Terasawa, D. Kashihara, K. Hirano, T. Tani, et al. 2013. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4: 1829.
-
(2013)
Nat. Commun
, vol.4
, pp. 1829
-
-
Kimura, I.1
Ozawa, K.2
Inoue, D.3
Imamura, T.4
Kimura, K.5
Maeda, T.6
Terasawa, K.7
Kashihara, D.8
Hirano, K.9
Tani, T.10
-
37
-
-
84959418975
-
Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus
-
Lin, J., L. Yang, H. M. Silva, A. Trzeciak, Y. Choi, S. R. Schwab, M. L. Dustin, and J. J. Lafaille. 2016. Increased generation of Foxp3(+) regulatory T cells by manipulating antigen presentation in the thymus. Nat. Commun. 7: 10562.
-
(2016)
Nat. Commun
, vol.7
, pp. 10562
-
-
Lin, J.1
Yang, L.2
Silva, H.M.3
Trzeciak, A.4
Choi, Y.5
Schwab, S.R.6
Dustin, M.L.7
Lafaille, J.J.8
-
38
-
-
84883679216
-
Which model better fits the role of aire in the establishment of self-Tolerance: The transcription model or the maturation model?
-
Matsumoto, M., Y. Nishikawa, H. Nishijima, J. Morimoto, M. Matsumoto, and Y. Mouri. 2013. Which model better fits the role of aire in the establishment of self-Tolerance: The transcription model or the maturation model? Front. Immunol. 4: 210.
-
(2013)
Front Immunol
, vol.4
, pp. 210
-
-
Matsumoto, M.1
Nishikawa, Y.2
Nishijima, H.3
Morimoto, J.4
Matsumoto, M.5
Mouri, Y.6
-
39
-
-
34248598295
-
Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells
-
Aschenbrenner, K., L. M. DCruz, E. H. Vollmann, M. Hinterberger, J. Emmerich, L. K. Swee, A. Rolink, and L. Klein. 2007. Selection of Foxp3+ regulatory T cells specific for self antigen expressed and presented by Aire+ medullary thymic epithelial cells. Nat. Immunol. 8: 351-358.
-
(2007)
Nat. Immunol
, vol.8
, pp. 351-358
-
-
Aschenbrenner, K.1
Dcruz, L.M.2
Vollmann, E.H.3
Hinterberger, M.4
Emmerich, J.5
Swee, L.K.6
Rolink, A.7
Klein, L.8
-
40
-
-
51349111243
-
The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-Tolerance [Published erratum appears in 2013 Immunity 39: 796.]
-
Akiyama, T., Y. Shimo, H. Yanai, J. Qin, D. Ohshima, Y. Maruyama, Y. Asaumi, J. Kitazawa, H. Takayanagi, J. M. Penninger, et al. 2008. The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-Tolerance. [Published erratum appears in 2013 Immunity 39: 796.] Immunity 29: 423-437.
-
(2008)
Immunity
, vol.29
, pp. 423-437
-
-
Akiyama, T.1
Shimo, Y.2
Yanai, H.3
Qin, J.4
Ohshima, D.5
Maruyama, Y.6
Asaumi, Y.7
Kitazawa, J.8
Takayanagi, H.9
Penninger, J.M.10
-
41
-
-
51349092893
-
The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator
-
Hikosaka, Y., T. Nitta, I. Ohigashi, K. Yano, N. Ishimaru, Y. Hayashi, M. Matsumoto, K. Matsuo, J. M. Penninger, H. Takayanagi, et al. 2008. The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29: 438-450.
-
(2008)
Immunity
, vol.29
, pp. 438-450
-
-
Hikosaka, Y.1
Nitta, T.2
Ohigashi, I.3
Yano, K.4
Ishimaru, N.5
Hayashi, Y.6
Matsumoto, M.7
Matsuo, K.8
Penninger, J.M.9
Takayanagi, H.10
-
42
-
-
84961218930
-
AIRE expands: New roles in immune tolerance and beyond
-
Anderson, M. S., and M. A. Su. 2016. AIRE expands: new roles in immune tolerance and beyond. Nat. Rev. Immunol. 16: 247-258.
-
(2016)
Nat. Rev. Immunol
, vol.16
, pp. 247-258
-
-
Anderson, M.S.1
Su, M.A.2
-
43
-
-
67549104034
-
Neonatal tolerance revisited: A perinatal window for Aire control of autoimmunity
-
Guerau-de-Arellano, M., M. Martinic, C. Benoist, and D. Mathis. 2009. Neonatal tolerance revisited: A perinatal window for Aire control of autoimmunity. J. Exp. Med. 206: 1245-1252.
-
(2009)
J. Exp. Med
, vol.206
, pp. 1245-1252
-
-
Guerau-De-Arellano, M.1
Martinic, M.2
Benoist, C.3
Mathis, D.4
-
44
-
-
84892449521
-
Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis
-
Singh, N., A. Gurav, S. Sivaprakasam, E. Brady, R. Padia, H. Shi, M. Thangaraju, P. D. Prasad, S. Manicassamy, D. H. Munn, et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40: 128-139.
-
(2014)
Immunity
, vol.40
, pp. 128-139
-
-
Singh, N.1
Gurav, A.2
Sivaprakasam, S.3
Brady, E.4
Padia, R.5
Shi, H.6
Thangaraju, M.7
Prasad, P.D.8
Manicassamy, S.9
Munn, D.H.10
|