-
1
-
-
33749022511
-
Therapeutic drug delivery by genetically modified Lactococcus lactis
-
Steidler L, Rottiers P. Therapeutic drug delivery by genetically modified Lactococcus lactis. Ann N Y Acad Sci. 2006;1072:176-86.
-
(2006)
Ann N Y Acad Sci
, vol.1072
, pp. 176-186
-
-
Steidler, L.1
Rottiers, P.2
-
2
-
-
69149103259
-
Immunomodulation by genetically engineered lactic acid bacteria
-
Van Huynegem K, Loos M, Steidler L. Immunomodulation by genetically engineered lactic acid bacteria. Front Biosci (Landmark Ed). 2009;14:4825-35.
-
(2009)
Front Biosci (Landmark Ed)
, vol.14
, pp. 4825-4835
-
-
Huynegem, K.1
Loos, M.2
Steidler, L.3
-
3
-
-
40649112563
-
The lactic acid bacterium as a cell factory for food ingredient production
-
Hugenholtz J. The lactic acid bacterium as a cell factory for food ingredient production. Int Dairy J. 2008;18:466-75.
-
(2008)
Int Dairy J
, vol.18
, pp. 466-475
-
-
Hugenholtz, J.1
-
4
-
-
84882723516
-
From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria
-
Gaspar P, Carvalho AL, Vinga S, Santos H, Neves AR. From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv. 2013;31:764-88.
-
(2013)
Biotechnol Adv
, vol.31
, pp. 764-788
-
-
Gaspar, P.1
Carvalho, A.L.2
Vinga, S.3
Santos, H.4
Neves, A.R.5
-
5
-
-
33847673288
-
The genus Lactobacillus-a genomic basis for understanding its diversity
-
Claesson MJ, van Sinderen D, O'Toole PW. The genus Lactobacillus-a genomic basis for understanding its diversity. FEMS Microbiol Lett. 2007;269:22-8.
-
(2007)
FEMS Microbiol Lett
, vol.269
, pp. 22-28
-
-
Claesson, M.J.1
Sinderen, D.2
O'Toole, P.W.3
-
6
-
-
0027151798
-
High-efficiency gene inactivation and replacement system for gram-positive bacteria
-
Biswas I, Gruss A, Ehrlich SD, Maguin E. High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol. 1993;175:3628-35.
-
(1993)
J Bacteriol
, vol.175
, pp. 3628-3635
-
-
Biswas, I.1
Gruss, A.2
Ehrlich, S.D.3
Maguin, E.4
-
7
-
-
82955239992
-
Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM
-
Douglas GL, Klaenhammer TR. Directed chromosomal integration and expression of the reporter gene gusA3 in Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2011;77:7365-71.
-
(2011)
Appl Environ Microbiol
, vol.77
, pp. 7365-7371
-
-
Douglas, G.L.1
Klaenhammer, T.R.2
-
8
-
-
0035462342
-
Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination
-
Russell WM, Klaenhammer TR. Efficient system for directed integration into the Lactobacillus acidophilus and Lactobacillus gasseri chromosomes via homologous recombination. Appl Environ Microbiol. 2001;67:4361-4.
-
(2001)
Appl Environ Microbiol
, vol.67
, pp. 4361-4364
-
-
Russell, W.M.1
Klaenhammer, T.R.2
-
9
-
-
49449099815
-
Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis
-
Solem C, Defoor E, Jensen PR, Martinussen J. Plasmid pCS1966, a new selection/counterselection tool for lactic acid bacterium strain construction based on the oroP gene, encoding an orotate transporter from Lactococcus lactis. Appl Environ Microbiol. 2008;74:4772-5.
-
(2008)
Appl Environ Microbiol
, vol.74
, pp. 4772-4775
-
-
Solem, C.1
Defoor, E.2
Jensen, P.R.3
Martinussen, J.4
-
10
-
-
66249121053
-
Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM
-
Goh YJ, Azcarate-Peril MA, O'Flaherty S, Durmaz E, Valence F, Jardin J, Lortal S, Klaenhammer TR. Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol. 2009;75:3093-105.
-
(2009)
Appl Environ Microbiol
, vol.75
, pp. 3093-3105
-
-
Goh, Y.J.1
Azcarate-Peril, M.A.2
O'Flaherty, S.3
Durmaz, E.4
Valence, F.5
Jardin, J.6
Lortal, S.7
Klaenhammer, T.R.8
-
11
-
-
33847202223
-
Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum
-
Lambert JM, Bongers RS, Kleerebezem M. Cre-lox-based system for multiple gene deletions and selectable-marker removal in Lactobacillus plantarum. Appl Environ Microbiol. 2007;73:1126-35.
-
(2007)
Appl Environ Microbiol
, vol.73
, pp. 1126-1135
-
-
Lambert, J.M.1
Bongers, R.S.2
Kleerebezem, M.3
-
12
-
-
40349101854
-
Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages
-
Datta S, Costantino N, Zhou XM, Court DL. Identification and analysis of recombineering functions from Gram-negative and Gram-positive bacteria and their phages. Proc Natl Acad Sci USA. 2008;105:1626-31.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 1626-1631
-
-
Datta, S.1
Costantino, N.2
Zhou, X.M.3
Court, D.L.4
-
13
-
-
77955561819
-
Recombineering using RecTE from Pseudomonas syringae
-
Swingle B, Bao ZM, Markel E, Chambers A, Cartinhour S. Recombineering using RecTE from Pseudomonas syringae. Appl Environ Microbiol. 2010;76:4960-8.
-
(2010)
Appl Environ Microbiol
, vol.76
, pp. 4960-4968
-
-
Swingle, B.1
Bao, Z.M.2
Markel, E.3
Chambers, A.4
Cartinhour, S.5
-
15
-
-
84936960156
-
A new recombineering system for Photorhabdus and Xenorhabdus
-
Yin J, Zhu HB, Xia LQ, Ding XZ, Hoffmann T, Hoffmann M, Bian XY, Muller R, Fu J, Stewart AF, Zhang YM. A new recombineering system for Photorhabdus and Xenorhabdus. Nucleic Acids Res. 2015;43:1-9.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. 1-9
-
-
Yin, J.1
Zhu, H.B.2
Xia, L.Q.3
Ding, X.Z.4
Hoffmann, T.5
Hoffmann, M.6
Bian, X.Y.7
Muller, R.8
Fu, J.9
Stewart, A.F.10
Zhang, Y.M.11
-
16
-
-
84906828539
-
Precision genome engineering in lactic acid bacteria
-
van Pijkeren JP, Britton RA. Precision genome engineering in lactic acid bacteria. Microb Cell Fact. 2014;13(Suppl 1):S10.
-
(2014)
Microb Cell Fact
, vol.13
, pp. S10
-
-
Pijkeren, J.P.1
Britton, R.A.2
-
17
-
-
0015239451
-
The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease
-
Carter DM, Radding CM. The role of exonuclease and beta protein of phage lambda in genetic recombination. II. Substrate specificity and the mode of action of lambda exonuclease. J Biol Chem. 1971;246:2502-12.
-
(1971)
J Biol Chem
, vol.246
, pp. 2502-2512
-
-
Carter, D.M.1
Radding, C.M.2
-
18
-
-
0014216084
-
An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction
-
Little JW. An exonuclease induced by bacteriophage lambda. II. Nature of the enzymatic reaction. J Biol Chem. 1967;242:679-86.
-
(1967)
J Biol Chem
, vol.242
, pp. 679-686
-
-
Little, J.W.1
-
19
-
-
0032489359
-
The beta protein of phage lambda promotes strand exchange
-
Li Z, Karakousis G, Chiu SK, Reddy G, Radding CM. The beta protein of phage lambda promotes strand exchange. J Mol Biol. 1998;276:733-44.
-
(1998)
J Mol Biol
, vol.276
, pp. 733-744
-
-
Li, Z.1
Karakousis, G.2
Chiu, S.K.3
Reddy, G.4
Radding, C.M.5
-
20
-
-
0032524617
-
DNA strand invasion promoted by Escherichia coli RecT protein
-
Noirot P, Kolodner RD. DNA strand invasion promoted by Escherichia coli RecT protein. J Biol Chem. 1998;273:12274-80.
-
(1998)
J Biol Chem
, vol.273
, pp. 12274-12280
-
-
Noirot, P.1
Kolodner, R.D.2
-
21
-
-
0034705144
-
An efficient recombination system for chromosome engineering in Escherichia coli
-
Yu DG, Ellis HM, Lee EC, Jenkins NA, Copeland NG, Court DL. An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci USA. 2000;97:5978-83.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 5978-5983
-
-
Yu, D.G.1
Ellis, H.M.2
Lee, E.C.3
Jenkins, N.A.4
Copeland, N.G.5
Court, D.L.6
-
22
-
-
0024745304
-
Interaction between the sbcC gene of Escherichia coli and the gam gene of phage lambda
-
Kulkarni SK, Stahl FW. Interaction between the sbcC gene of Escherichia coli and the gam gene of phage lambda. Genetics. 1989;123:249-53.
-
(1989)
Genetics
, vol.123
, pp. 249-253
-
-
Kulkarni, S.K.1
Stahl, F.W.2
-
23
-
-
0015506356
-
Interaction of the recombination pathways of bacteriophage lambda and its host Escherichia coli K12: effects on exonuclease V activity
-
Unger RC, Clark AJ. Interaction of the recombination pathways of bacteriophage lambda and its host Escherichia coli K12: effects on exonuclease V activity. J Mol Biol. 1972;70:539-48.
-
(1972)
J Mol Biol
, vol.70
, pp. 539-548
-
-
Unger, R.C.1
Clark, A.J.2
-
24
-
-
0031664853
-
A new logic for DNA engineering using recombination in Escherichia coli
-
Zhang YM, Buchholz F, Muyrers JPP, Stewart AF. A new logic for DNA engineering using recombination in Escherichia coli. Nat Genet. 1998;20:123-8.
-
(1998)
Nat Genet
, vol.20
, pp. 123-128
-
-
Zhang, Y.M.1
Buchholz, F.2
Muyrers, J.P.P.3
Stewart, A.F.4
-
25
-
-
0036843636
-
Phenotypes of lexA mutations in Salmonella enterica: evidence for a lethal lexA null phenotype due to the Fels-2 prophage
-
Bunny K, Liu J, Roth J. Phenotypes of lexA mutations in Salmonella enterica: evidence for a lethal lexA null phenotype due to the Fels-2 prophage. J Bacteriol. 2002;184:6235-49.
-
(2002)
J Bacteriol
, vol.184
, pp. 6235-6249
-
-
Bunny, K.1
Liu, J.2
Roth, J.3
-
26
-
-
84896724199
-
Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system
-
Hu SB, Fu J, Huang F, Ding XZ, Stewart AF, Xia LQ, Zhang YM. Genome engineering of Agrobacterium tumefaciens using the lambda Red recombination system. Appl Microbiol Biotechnol. 2014;98:2165-72.
-
(2014)
Appl Microbiol Biotechnol
, vol.98
, pp. 2165-2172
-
-
Hu, S.B.1
Fu, J.2
Huang, F.3
Ding, X.Z.4
Stewart, A.F.5
Xia, L.Q.6
Zhang, Y.M.7
-
27
-
-
84964315717
-
CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri
-
Oh JH, van Pijkeren JP. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri. Nucleic Acids Res. 2014;42:e131.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. e131
-
-
Oh, J.H.1
Pijkeren, J.P.2
-
28
-
-
84857498858
-
High efficiency recombineering in lactic acid bacteria
-
van Pijkeren JP, Britton RA. High efficiency recombineering in lactic acid bacteria. Nucleic Acids Res. 2012;40:e76.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. e76
-
-
Pijkeren, J.P.1
Britton, R.A.2
-
29
-
-
84877699554
-
Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri
-
Van Pijkeren JP, Neoh KM, Sirias D, Findley AS, Britton RA. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri. Bioengineered. 2012;3:209-17.
-
(2012)
Bioengineered
, vol.3
, pp. 209-217
-
-
Pijkeren, J.P.1
Neoh, K.M.2
Sirias, D.3
Findley, A.S.4
Britton, R.A.5
-
30
-
-
0344982836
-
The prophage sequences of Lactobacillus plantarum strain WCFS1
-
Ventura M, Canchaya C, Kleerebezem M, de Vos WM, Siezen RJ, Brussow H. The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology. 2003;316:245-55.
-
(2003)
Virology
, vol.316
, pp. 245-255
-
-
Ventura, M.1
Canchaya, C.2
Kleerebezem, M.3
Vos, W.M.4
Siezen, R.J.5
Brussow, H.6
-
31
-
-
84941042486
-
CDD: NCBI's conserved domain database
-
Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, et al. CDD: NCBI's conserved domain database. Nucleic Acids Res. 2015;43:D222-6.
-
(2015)
Nucleic Acids Res
, vol.43
, pp. D222-D226
-
-
Marchler-Bauer, A.1
Derbyshire, M.K.2
Gonzales, N.R.3
Lu, S.4
Chitsaz, F.5
Geer, L.Y.6
Geer, R.C.7
He, J.8
Gwadz, M.9
Hurwitz, D.I.10
-
32
-
-
0029278832
-
Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome
-
Albert H, Dale EC, Lee E, Ow DW. Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J. 1995;7:649-59.
-
(1995)
Plant J
, vol.7
, pp. 649-659
-
-
Albert, H.1
Dale, E.C.2
Lee, E.3
Ow, D.W.4
-
33
-
-
0033624563
-
RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners
-
Muyrers JP, Zhang Y, Buchholz F, Stewart AF. RecE/RecT and Redalpha/Redbeta initiate double-stranded break repair by specifically interacting with their respective partners. Genes Dev. 2000;14:1971-82.
-
(2000)
Genes Dev
, vol.14
, pp. 1971-1982
-
-
Muyrers, J.P.1
Zhang, Y.2
Buchholz, F.3
Stewart, A.F.4
-
34
-
-
22144493299
-
High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors
-
Sorvig E, Mathiesen G, Naterstad K, Eijsink VG, Axelsson L. High-level, inducible gene expression in Lactobacillus sakei and Lactobacillus plantarum using versatile expression vectors. Microbiology. 2005;151:2439-49.
-
(2005)
Microbiology
, vol.151
, pp. 2439-2449
-
-
Sorvig, E.1
Mathiesen, G.2
Naterstad, K.3
Eijsink, V.G.4
Axelsson, L.5
-
35
-
-
0021245666
-
Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein
-
Abremski K, Hoess R. Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. 1984;259:1509-14.
-
(1984)
J Biol Chem
, vol.259
, pp. 1509-1514
-
-
Abremski, K.1
Hoess, R.2
-
36
-
-
9144244444
-
Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52
-
Iyer LM, Koonin EV, Aravind L. Classification and evolutionary history of the single-strand annealing proteins, RecT, Redbeta, ERF and RAD52. BMC Genom. 2002;3:8.
-
(2002)
BMC Genom
, vol.3
, pp. 8
-
-
Iyer, L.M.1
Koonin, E.V.2
Aravind, L.3
-
37
-
-
84898949923
-
Improved seamless mutagenesis by recombineering using ccdB for counterselection
-
Wang HL, Bian XY, Xia LQ, Ding XZ, Muller R, Zhang YM, Fu J, Stewart AF. Improved seamless mutagenesis by recombineering using ccdB for counterselection. Nucleic Acids Res. 2014;42:1-11.
-
(2014)
Nucleic Acids Res
, vol.42
, pp. 1-11
-
-
Wang, H.L.1
Bian, X.Y.2
Xia, L.Q.3
Ding, X.Z.4
Muller, R.5
Zhang, Y.M.6
Fu, J.7
Stewart, A.F.8
-
38
-
-
84870596202
-
Substrate and target sequence length influence RecTE(Psy) recombineering efficiency in Pseudomonas syringae
-
Bao Z, Cartinhour S, Swingle B. Substrate and target sequence length influence RecTE(Psy) recombineering efficiency in Pseudomonas syringae. PLoS One. 2012;7:e50617.
-
(2012)
PLoS One
, vol.7
, pp. e50617
-
-
Bao, Z.1
Cartinhour, S.2
Swingle, B.3
-
39
-
-
0036193882
-
Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways
-
Lovett ST, Hurley RL, Sutera VA, Aubuchon RH, Lebedeva MA. Crossing over between regions of limited homology in Escherichia coli: RecA-dependent and RecA-independent pathways. Genetics. 2002;160:851-9.
-
(2002)
Genetics
, vol.160
, pp. 851-859
-
-
Lovett, S.T.1
Hurley, R.L.2
Sutera, V.A.3
Aubuchon, R.H.4
Lebedeva, M.A.5
-
40
-
-
0026801262
-
New thermosensitive plasmid for gram-positive bacteria
-
Maguin E, Duwat P, Hege T, Ehrlich D, Gruss A. New thermosensitive plasmid for gram-positive bacteria. J Bacteriol. 1992;174:5633-8.
-
(1992)
J Bacteriol
, vol.174
, pp. 5633-5638
-
-
Maguin, E.1
Duwat, P.2
Hege, T.3
Ehrlich, D.4
Gruss, A.5
-
41
-
-
67349270900
-
Enzymatic assembly of DNA molecules up to several hundred kilobases
-
Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA, Smith HO. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. 2009;6:U341-3.
-
(2009)
Nat Methods
, vol.6
, pp. U341-U343
-
-
Gibson, D.G.1
Young, L.2
Chuang, R.Y.3
Venter, J.C.4
Hutchison, C.A.5
Smith, H.O.6
|