-
1
-
-
84862848391
-
Machine learning methods for property prediction in chemoinformatics: Quo vadis
-
Varnek, A.; Baskin, I. Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis-J. Chem. Inf. Model. 2012, 52, 1413-1437.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1413-1437
-
-
Varnek, A.1
Baskin, I.2
-
2
-
-
84866262970
-
Chemoinformatics: A view of the field and current trends in method development
-
Vogt, M.; Bajorath, J. Chemoinformatics: A View of the Field and Current Trends in Method Development. Bioorg. Med. Chem. 2012, 20, 5317-5323.
-
(2012)
Bioorg. Med. Chem.
, vol.20
, pp. 5317-5323
-
-
Vogt, M.1
Bajorath, J.2
-
3
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis. Comput. Chem. 2001, 26, 5-14.
-
(2001)
Comput. Chem.
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
4
-
-
77649220192
-
Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
-
Geppert, H.; Vogt, M.; Bajorath, J. Current Trends in Ligand-Based Virtual Screening: Molecular Representations, Data Mining Methods, New Application Areas, and Performance Evaluation. J. Chem. Inf. Model. 2010, 50, 205-216.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 205-216
-
-
Geppert, H.1
Vogt, M.2
Bajorath, J.3
-
6
-
-
34249753618
-
Support-vector networks
-
Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273-297.
-
(1995)
Mach. Learn.
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
7
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121-167.
-
(1998)
Data Min. Knowl. Discov.
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
9
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
Jorissen, R. N.; Gilson, M. K. Virtual Screening of Molecular Databases Using a Support Vector Machine. J. Chem. Inf. Model. 2005, 45, 549-561.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
10
-
-
84899013173
-
Support vector regression machines
-
Drucker, H.; Burges, C. J. C.; Kaufman, L.; Smola, A.; Vapnik, V. Support Vector Regression Machines. Adv. Neural Inform. Process. Syst 1997, 9, 155-161.
-
(1997)
Adv. Neural Inform. Process. Syst
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges, C.J.C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
11
-
-
4043137356
-
A tutorial on support vector regression
-
Smola, A. J.; Scho-lkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199-222.
-
(2004)
Stat. Comput.
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
12
-
-
84929359637
-
Systematic artifacts in support vector regression-based compound potency prediction revealed by statistical and activity landscape analysis
-
No. e0119301
-
Balfer, J.; Bajorath, J. Systematic Artifacts in Support Vector Regression-Based Compound Potency Prediction Revealed by Statistical and Activity Landscape Analysis. PLoS One 2015, 10, No. e0119301.
-
(2015)
PLoS One
, vol.10
-
-
Balfer, J.1
Bajorath, J.2
-
13
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Pittsburgh, Pennsylvania 1992; ACM: New York
-
Boser, B. E.; Guyon, I. M.; Vapnik, V. N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory; Pittsburgh, Pennsylvania, 1992; ACM: New York, 1992; pp 144-152.
-
(1992)
Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
14
-
-
84899881824
-
Qsar modeling: Where have you been-where are you going to
-
Cherkasov, A.; Muratov, E. N.; Fourches, D.; Varnek, A.; Baskin, I. I.; Cronin, M.; Dearden, J.; Gramatica, P.; Martin, Y. C.; Todeschini, R.; Consonni, V.; Kuz'min, V. E.; Cramer, R.; Benigni, R.; Yang, C.; Rathman, J.; Terfloth, L.; Gasteiger, J.; Richard, A.; Tropsha, A. QSAR Modeling: Where Have You Been-Where Are You Going To-J. Med. Chem. 2014, 57, 4977-5010.
-
(2014)
J. Med. Chem.
, vol.57
, pp. 4977-5010
-
-
Cherkasov, A.1
Muratov, E.N.2
Fourches, D.3
Varnek, A.4
Baskin, I.I.5
Cronin, M.6
Dearden, J.7
Gramatica, P.8
Martin, Y.C.9
Todeschini, R.10
Consonni, V.11
Kuz'Min, V.E.12
Cramer, R.13
Benigni, R.14
Yang, C.15
Rathman, J.16
Terfloth, L.17
Gasteiger, J.18
Richard, A.19
Tropsha, A.20
more..
-
15
-
-
80052913976
-
Visual interpretation of kernel-based prediction models
-
Hansen, K.; Baehrens, D.; Schroeter, T.; Rupp, M.; Muller, K.-R. Visual Interpretation of Kernel-Based Prediction Models. Mol. Inf. 2011, 30, 817-826.
-
(2011)
Mol. Inf.
, vol.30
, pp. 817-826
-
-
Hansen, K.1
Baehrens, D.2
Schroeter, T.3
Rupp, M.4
Muller, K.-R.5
-
16
-
-
84934918259
-
Visualization and interpretation of support vector machine activity predictions
-
Balfer, J.; Bajorath, J. Visualization and Interpretation of Support Vector Machine Activity Predictions. J. Chem. Inf. Model. 2015, 55, 1136-1147.
-
(2015)
J. Chem. Inf. Model.
, vol.55
, pp. 1136-1147
-
-
Balfer, J.1
Bajorath, J.2
-
17
-
-
84862192766
-
Chembl: A large-scale bioactivity database for drug discovery
-
Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; Overington, J. P. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012, 40, D1100-D1107.
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. D1100-D1107
-
-
Gaulton, A.1
Bellis, L.J.2
Bento, A.P.3
Chambers, J.4
Davies, M.5
Hersey, A.6
Light, Y.7
McGlinchey, S.8
Michalovich, D.9
Al-Lazikani, B.10
Overington, J.P.11
-
18
-
-
84864199587
-
Zinc: A free tool to discover chemistry for biology
-
Irwin, J. J.; Sterling, T.; Mysinger, M. M.; Bolstad, E. S.; Coleman, R. G. ZINC: A Free Tool to Discover Chemistry for Biology. J. Chem. Inf. Model. 2012, 52, 1757-1768.
-
(2012)
J. Chem. Inf. Model.
, vol.52
, pp. 1757-1768
-
-
Irwin, J.J.1
Sterling, T.2
Mysinger, M.M.3
Bolstad, E.S.4
Coleman, R.G.5
-
19
-
-
2042489375
-
-
Accelrys: San Diego CA
-
MACCS Structural Keys; Accelrys: San Diego, CA, 2011.
-
(2011)
MACCS Structural Keys
-
-
-
20
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742-754.
-
(2010)
J. Chem. Inf. Model.
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
22
-
-
23844480138
-
Graph kernels for chemical informatics
-
Ralaivola, L.; Swamidass, S. J.; Saigo, H.; Baldi, P. Graph Kernels for Chemical Informatics. Neural Network. 2005, 18, 1093-1110.
-
(2005)
Neural Network.
, vol.18
, pp. 1093-1110
-
-
Ralaivola, L.1
Swamidass, S.J.2
Saigo, H.3
Baldi, P.4
-
23
-
-
85018602312
-
Influence of varying training set composition and size on support vector machine-based prediction of active compounds
-
Rodríguez-Peírez, R.; Vogt, M.; Bajorath, J. Influence of Varying Training Set Composition and Size on Support Vector Machine-Based Prediction of Active Compounds. J. Chem. Inf. Model. 2017, 57, 710-716.
-
(2017)
J. Chem. Inf. Model.
, vol.57
, pp. 710-716
-
-
Rodríguez-Perez, R.1
Vogt, M.2
Bajorath, J.3
-
24
-
-
80555140075
-
Scikit-learn: Machine learning in python
-
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.; Brucher, M.; Perrot, M.; Duchesnay, E. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
|