메뉴 건너뛰기




Volumn 2, Issue 10, 2017, Pages 6371-6379

Support vector machine classification and regression prioritize different structural features for binary compound activity and potency value prediction

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85032643408     PISSN: None     EISSN: 24701343     Source Type: Journal    
DOI: 10.1021/acsomega.7b01079     Document Type: Article
Times cited : (86)

References (24)
  • 1
    • 84862848391 scopus 로고    scopus 로고
    • Machine learning methods for property prediction in chemoinformatics: Quo vadis
    • Varnek, A.; Baskin, I. Machine Learning Methods for Property Prediction in Chemoinformatics: Quo Vadis-J. Chem. Inf. Model. 2012, 52, 1413-1437.
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 1413-1437
    • Varnek, A.1    Baskin, I.2
  • 2
    • 84866262970 scopus 로고    scopus 로고
    • Chemoinformatics: A view of the field and current trends in method development
    • Vogt, M.; Bajorath, J. Chemoinformatics: A View of the Field and Current Trends in Method Development. Bioorg. Med. Chem. 2012, 20, 5317-5323.
    • (2012) Bioorg. Med. Chem. , vol.20 , pp. 5317-5323
    • Vogt, M.1    Bajorath, J.2
  • 3
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge, R.; Trotter, M.; Buxton, B.; Holden, S. Drug Design by Machine Learning: Support Vector Machines for Pharmaceutical Data Analysis. Comput. Chem. 2001, 26, 5-14.
    • (2001) Comput. Chem. , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 4
    • 77649220192 scopus 로고    scopus 로고
    • Current trends in ligand-based virtual screening: Molecular representations, data mining methods, new application areas, and performance evaluation
    • Geppert, H.; Vogt, M.; Bajorath, J. Current Trends in Ligand-Based Virtual Screening: Molecular Representations, Data Mining Methods, New Application Areas, and Performance Evaluation. J. Chem. Inf. Model. 2010, 50, 205-216.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 205-216
    • Geppert, H.1    Vogt, M.2    Bajorath, J.3
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273-297.
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121-167.
    • (1998) Data Min. Knowl. Discov. , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 9
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • Jorissen, R. N.; Gilson, M. K. Virtual Screening of Molecular Databases Using a Support Vector Machine. J. Chem. Inf. Model. 2005, 45, 549-561.
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 11
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola, A. J.; Scho-lkopf, B. A Tutorial on Support Vector Regression. Stat. Comput. 2004, 14, 199-222.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 12
    • 84929359637 scopus 로고    scopus 로고
    • Systematic artifacts in support vector regression-based compound potency prediction revealed by statistical and activity landscape analysis
    • No. e0119301
    • Balfer, J.; Bajorath, J. Systematic Artifacts in Support Vector Regression-Based Compound Potency Prediction Revealed by Statistical and Activity Landscape Analysis. PLoS One 2015, 10, No. e0119301.
    • (2015) PLoS One , vol.10
    • Balfer, J.1    Bajorath, J.2
  • 16
    • 84934918259 scopus 로고    scopus 로고
    • Visualization and interpretation of support vector machine activity predictions
    • Balfer, J.; Bajorath, J. Visualization and Interpretation of Support Vector Machine Activity Predictions. J. Chem. Inf. Model. 2015, 55, 1136-1147.
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 1136-1147
    • Balfer, J.1    Bajorath, J.2
  • 19
    • 2042489375 scopus 로고    scopus 로고
    • Accelrys: San Diego CA
    • MACCS Structural Keys; Accelrys: San Diego, CA, 2011.
    • (2011) MACCS Structural Keys
  • 20
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50, 742-754.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 23
    • 85018602312 scopus 로고    scopus 로고
    • Influence of varying training set composition and size on support vector machine-based prediction of active compounds
    • Rodríguez-Peírez, R.; Vogt, M.; Bajorath, J. Influence of Varying Training Set Composition and Size on Support Vector Machine-Based Prediction of Active Compounds. J. Chem. Inf. Model. 2017, 57, 710-716.
    • (2017) J. Chem. Inf. Model. , vol.57 , pp. 710-716
    • Rodríguez-Perez, R.1    Vogt, M.2    Bajorath, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.