메뉴 건너뛰기




Volumn 5, Issue 3, 2017, Pages

Big data analytics for smart manufacturing: Case studies in semiconductor manufacturing

Author keywords

Anomaly detection; Big data; Predictive analytics; Predictive maintenance; Process control; Semiconductor manufacturing; Smart manufacturing

Indexed keywords


EID: 85031732681     PISSN: None     EISSN: 22279717     Source Type: Journal    
DOI: 10.3390/pr5030039     Document Type: Article
Times cited : (204)

References (58)
  • 1
    • 85034218359 scopus 로고    scopus 로고
    • accessed on 1 June 2017
    • Wikipedia: Smart Manufacturing. Available online: https://en.wikipedia.org/wiki/Smart_manufacturing (accessed on 1 June 2017)
    • Wikipedia: Smart Manufacturing
  • 2
    • 84869487494 scopus 로고    scopus 로고
    • Smart manufacturing, manufacturing intelligence and demand-dynamic performance
    • Davis, J.; Edgar, T.; Porter, J.; Bernaden, J.; Sarli, M. Smart manufacturing, manufacturing intelligence and demand-dynamic performance. Comput. Chem. Eng. 2012, 47, 145-156
    • (2012) Comput. Chem. Eng , vol.47 , pp. 145-156
    • Davis, J.1    Edgar, T.2    Porter, J.3    Bernaden, J.4    Sarli, M.5
  • 3
    • 84905408361 scopus 로고    scopus 로고
    • Service Innovation and smart analytics for industry 4.0 and big data environment
    • Lee, J.; Kao, H.A.; Yang, S. Service Innovation and smart analytics for industry 4.0 and big data environment. Proced. Cirp 2014, 16, 3-8
    • (2014) Proced. Cirp , vol.16 , pp. 3-8
    • Lee, J.1    Kao, H.A.2    Yang, S.3
  • 4
    • 85010908189 scopus 로고    scopus 로고
    • 'Industrie 4.0' and smart manufacturing-A review of research issues and application examples
    • Thoben, K.-D.; Wiesner, S.; Wuest, T. 'Industrie 4.0' and smart manufacturing-A review of research issues and application examples. Int. J. Autom. Technol. 2017, 11, 4-16
    • (2017) Int. J. Autom. Technol , vol.11 , pp. 4-16
    • Thoben, K.-D.1    Wiesner, S.2    Wuest, T.3
  • 7
    • 85034267448 scopus 로고    scopus 로고
    • Leveraging Lessons and Innovation from Silicon Valley. American Pharmaceutical Review, 5 February 2017. (accessed on 1 June 2017)
    • Romero-Torres, S.; Moyne, J.; Kidambi, M. Towards Pharma 4.0; Leveraging Lessons and Innovation from Silicon Valley. American Pharmaceutical Review, 5 February 2017. Available online: http://www.americanpharmaceuticalreview.com/Featured-Articles/333897-Towards-Pharma-4-0-Leveraging-Lessons-and-Innovation-from-Silicon-Valley/(accessed on 1 June 2017)
    • Towards Pharma 4.0
    • Romero-Torres, S.1    Moyne, J.2    Kidambi, M.3
  • 9
    • 85034271385 scopus 로고    scopus 로고
    • (accessed on 1 June 2017)
    • Handy, J. What's It Like in a Semiconductor Fab. Forbes 2011. Available online: https://www.forbes.com/sites/jimhandy/2011/12/19/whats-it-like-in-a-semiconductor-fab/#2ecf8c9745ef (accessed on 1 June 2017)
    • What's It Like in a Semiconductor Fab. Forbes 2011
    • Handy, J.1
  • 12
    • 85034256025 scopus 로고    scopus 로고
    • Introduction to and Practical Application of APC: A Tutorial
    • Phoenix, AZ, USA, 17-20 October
    • Moyne, J. Introduction to and Practical Application of APC: A Tutorial. In Proceedings of the Advanced Process Control Conference XXVII, Phoenix, AZ, USA, 17-20 October 2016
    • (2016) Proceedings of the Advanced Process Control Conference XXVII
    • Moyne, J.1
  • 14
    • 85034246579 scopus 로고    scopus 로고
    • Implementing and Assessing the Value of Factory-Wide Fault Detection Deployment at a High Volume Foundry
    • XXX, Colorado Springs, CO, USA, 9-12 September
    • Dimond, K.; Nowalk, T.; Yelverton, M. Implementing and Assessing the Value of Factory-Wide Fault Detection Deployment at a High Volume Foundry. In Proceedings of the Advanced Process Control Symposium XV, XXX, Colorado Springs, CO, USA, 9-12 September 2003
    • (2003) Proceedings of the Advanced Process Control Symposium XV
    • Dimond, K.1    Nowalk, T.2    Yelverton, M.3
  • 15
    • 85034262845 scopus 로고    scopus 로고
    • A Blueprint for Enterprise-Wide Deployment of APC
    • XXX, Ann Arbor, MI, USA, 27-30 September
    • Moyne, J. A Blueprint for Enterprise-Wide Deployment of APC. In Proceedings of the Advanced Process Control Symposium XXI, XXX, Ann Arbor, MI, USA, 27-30 September 2009
    • (2009) Proceedings of the Advanced Process Control Symposium XXI
    • Moyne, J.1
  • 17
    • 85034213772 scopus 로고    scopus 로고
    • Emerging Trends in IC Manufacturing Analytics and Decision Making. Keynote
    • Phoenix, AZ, USA, 17-20 October
    • Hasserjian, K. Emerging Trends in IC Manufacturing Analytics and Decision Making. Keynote. In Proceedings of the Advanced Process Control Conference XXVII, Phoenix, AZ, USA, 17-20 October 2016
    • (2016) Proceedings of the Advanced Process Control Conference XXVII
    • Hasserjian, K.1
  • 18
    • 85034256821 scopus 로고    scopus 로고
    • Edition (accessed on 1 June 2017)
    • International Roadmap for Devices and Systems (IRDS): Beyond CMOS (Emerging Research Device) White Paper, 2016 Edition. Available online: http://irds.ieee.org/images/files/pdf/2016_BC.pdf (accessed on 1 June 2017)
    • (2016) Beyond CMOS (Emerging Research Device) White Paper
  • 19
    • 85034260761 scopus 로고    scopus 로고
    • Edition (accessed on 1 June 2017)
    • International Technology Roadmap for Semiconductors (ITRS): Factory Integration Chapter, 2016 Edition. Available online: www.itrs2.net (accessed on 1 June 2017)
    • (2016) Factory Integration Chapter
  • 20
    • 85034267519 scopus 로고    scopus 로고
    • Edition (accessed on 1 June 2017)
    • International Roadmap for Devices and Systems (IRDS): Factory Integration White Paper, 2016 Edition. Available online: http://irds.ieee.org/images/files/pdf/2016_FI.pdf (accessed on 1 June 2017)
    • (2016) Factory Integration White Paper
  • 21
    • 84994902662 scopus 로고    scopus 로고
    • International Technology Roadmap for Semiconductors (ITRS) Factory Integration, 2015: Summary of Updates and Deep Dive Into Big Data Enhancements
    • Austin, TX, USA, 12-14 October
    • Moyne, J. International Technology Roadmap for Semiconductors (ITRS) Factory Integration, 2015: Summary of Updates and Deep Dive Into Big Data Enhancements. In Proceedings of the APC Conference XXVII, Austin, TX, USA, 12-14 October 2015
    • (2015) Proceedings of the APC Conference XXVII
    • Moyne, J.1
  • 22
    • 85034212320 scopus 로고    scopus 로고
    • Rebooting the IT Revolution: A Call to Action
    • Washington, DC, USA, 4 January (accessed on 1 June 2017)
    • Rebooting the IT Revolution: A Call to Action; Semiconductor Industry Association and Semiconductor Research Corporation: Washington, DC, USA, 4 January 2016. Available online: https://www.src.org/newsroom/press-release/2016/758/(accessed on 1 June 2017)
    • (2016) Semiconductor Industry Association and Semiconductor Research Corporation
  • 23
    • 85034212387 scopus 로고    scopus 로고
    • accessed on 1 June 2017
    • Big Data Standards. Available online: http://bigdata.ieee.org/standards (accessed on 1 June 2017)
    • Big Data Standards
  • 24
    • 85034253541 scopus 로고    scopus 로고
    • (accessed on 1 June 2017)
    • SEMI E133-1014: Specification for Automated Process Control Systems Interface. Semiconductor Equipment and Materials International, 2014. Available online: http://www.semi.org/en/Standards/StandardsPublications (accessed on 1 June 2017)
    • (2014) Semiconductor Equipment and Materials International
  • 25
    • 85034227661 scopus 로고    scopus 로고
    • Categorization of anomalies in smart manufacturing systems to support the selection of detection mechanisms
    • Lopez, F.; Saez, M.; Shao, Y.; Balta, E.C.; Moyne, J.; Mao, Z.M.; Barton, K.; Tilbury, D. Categorization of anomalies in smart manufacturing systems to support the selection of detection mechanisms. IEEE Robot. Autom. Lett. 2017, 2, 1885-1892
    • (2017) IEEE Robot. Autom. Lett , vol.2 , pp. 1885-1892
    • Lopez, F.1    Saez, M.2    Shao, Y.3    Balta, E.C.4    Moyne, J.5    Mao, Z.M.6    Barton, K.7    Tilbury, D.8
  • 27
    • 84906948333 scopus 로고    scopus 로고
    • An approach to quality monitoring in manufacturing using supervised machine learning on product state data
    • Wuest, T.; Irgens, C.; Thoben, K.-D. An approach to quality monitoring in manufacturing using supervised machine learning on product state data. J. Intell. Manuf. 2014, 25, 1167-1180
    • (2014) J. Intell. Manuf , vol.25 , pp. 1167-1180
    • Wuest, T.1    Irgens, C.2    Thoben, K.-D.3
  • 33
    • 0142126712 scopus 로고    scopus 로고
    • Novelty detection: A review-Part 2: Neural network based approaches
    • Markou, M.; Singh, S. Novelty detection: A review-Part 2: Neural network based approaches. Signal Process. 2003, 83, 2499-2521
    • (2003) Signal Process , vol.83 , pp. 2499-2521
    • Markou, M.1    Singh, S.2
  • 34
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review-Part 1: Statistical approaches
    • Markou, M.; Singh, S. Novelty detection: A review-Part 1: Statistical approaches. Signal Process. 2003, 83, 2481-2497
    • (2003) Signal Process , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 35
    • 60649118732 scopus 로고    scopus 로고
    • State estimation in high-mix semiconductor manufacturing
    • Wang, J.; He, Q.P.; Edgar, T.F. State estimation in high-mix semiconductor manufacturing. J. Process Control 2009, 19, 443-456
    • (2009) J. Process Control , vol.19 , pp. 443-456
    • Wang, J.1    He, Q.P.2    Edgar, T.F.3
  • 39
    • 77951986108 scopus 로고    scopus 로고
    • Yield management enhanced advanced process control system (YMeAPC): Part I, description and case study of feedback for optimized multi-process control
    • Moyne, J.; Schulze, B. Yield management enhanced advanced process control system (YMeAPC): Part I, description and case study of feedback for optimized multi-process control. IEEE Trans. Semicond. Manuf. Spec. Issue Adv. Process Control 2010, 23, 221-235
    • (2010) IEEE Trans. Semicond. Manuf. Spec. Issue Adv. Process Control , vol.23 , pp. 221-235
    • Moyne, J.1    Schulze, B.2
  • 40
    • 11144325691 scopus 로고
    • Partial least-squares regression: A tutorial
    • Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1-17
    • (1986) Anal. Chim. Acta , vol.185 , pp. 1-17
    • Geladi, P.1    Kowalski, B.R.2
  • 42
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • Kohonen, T. The self-organizing map. Neurocomputing 1998, 21, 1-6
    • (1998) Neurocomputing , vol.21 , pp. 1-6
    • Kohonen, T.1
  • 44
    • 0022594196 scopus 로고
    • An Introduction to hidden markov models
    • Rabiner, L.; Juang, B. An Introduction to hidden markov models. IEEE ASSP Mag. 1986, 3, 4-16
    • (1986) IEEE ASSP Mag , vol.3 , pp. 4-16
    • Rabiner, L.1    Juang, B.2
  • 46
    • 85034264367 scopus 로고    scopus 로고
    • accessed on 1 June 2017
    • Integrated Measurement Association (IMA) APC Council Meeting Minutes: October 2015 Meeting. Available online: http://info.cimetrix.com/blog/default-blog/blog/2015_advanced_process_control_conference (accessed on 1 June 2017)
    • APC Council Meeting Minutes: October 2015 Meeting
  • 49
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (roc) curve
    • Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (roc) curve. Radiology 1982, 143, 29-36
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 52
    • 84926426953 scopus 로고    scopus 로고
    • accessed on 1 June 2017
    • Wikipedia: Apache_Hadoop. Available online: http://en.wikipedia.org/wiki/Apache_Hadoop (accessed on 1 June 2017)
    • Wikipedia: Apache_Hadoop
  • 53
    • 84994896267 scopus 로고    scopus 로고
    • Big data capabilities applied to semiconductor manufacturing advanced process control
    • Moyne, J.; Samantaray, J.; Armacost, M. Big data capabilities applied to semiconductor manufacturing advanced process control. IEEE Trans. Semicond. Manuf. 2016, 29, 283-291
    • (2016) IEEE Trans. Semicond. Manuf , vol.29 , pp. 283-291
    • Moyne, J.1    Samantaray, J.2    Armacost, M.3
  • 54
    • 85034236373 scopus 로고    scopus 로고
    • accessed on 1 June 2017
    • Wikipedia: Artificial Intelligence. Available online: https://en.wikipedia.org/wiki/Artificial_intelligence (accessed on 1 June 2017)
    • Wikipedia: Artificial Intelligence
  • 56
    • 85034250386 scopus 로고    scopus 로고
    • Big data and neural networks: New drivers for the semiconductor industry
    • submitted for publication
    • Lammers, D. Big data and neural networks: New drivers for the semiconductor industry. Nanochip Fab Solut. 2017, 12, submitted for publication
    • (2017) Nanochip Fab Solut , vol.12
    • Lammers, D.1
  • 57
    • 79952584761 scopus 로고    scopus 로고
    • Cognitive load theory vs. constructivist approaches: Which best leads to efficient, deep learning?
    • Vogel-Walcutt, J.J.; Gebrim, J.B.; Bowers, C.; Carper, T.M.; Nicholson, D. Cognitive load theory vs. constructivist approaches: Which best leads to efficient, deep learning? J. Comput. Assist. Learn. 2011, 27, 133-145
    • (2011) J. Comput. Assist. Learn , vol.27 , pp. 133-145
    • Vogel-Walcutt, J.J.1    Gebrim, J.B.2    Bowers, C.3    Carper, T.M.4    Nicholson, D.5
  • 58
    • 85034264456 scopus 로고    scopus 로고
    • accessed on 1 June 2017
    • Cyber-Physical Systems (CPS) Program Solicitation NSF 10-515. Available online: https://www.nsf.gov/pubs/2010/nsf10515/nsf10515.htm (accessed on 1 June 2017)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.