메뉴 건너뛰기




Volumn 23, Issue 1, 2018, Pages 151-160

CHEMGENIE: integration of chemogenomics data for applications in chemical biology

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGY; GENE INTERACTION; DRUG DEVELOPMENT; FACTUAL DATABASE; GENOMICS; PHENOTYPE; THEORETICAL MODEL;

EID: 85030778666     PISSN: 13596446     EISSN: 18785832     Source Type: Journal    
DOI: 10.1016/j.drudis.2017.09.004     Document Type: Review
Times cited : (12)

References (55)
  • 1
    • 84978768131 scopus 로고    scopus 로고
    • Evidence-based and quantitative prioritization of tool compounds in phenotypic drug discovery
    • Wang, Y., et al. Evidence-based and quantitative prioritization of tool compounds in phenotypic drug discovery. Cell Chem. Biol. 23 (2016), 862–874.
    • (2016) Cell Chem. Biol. , vol.23 , pp. 862-874
    • Wang, Y.1
  • 2
    • 84876933802 scopus 로고    scopus 로고
    • Shifting from the single to the multitarget paradigm in drug discovery
    • Medina-Franco, J.L., et al. Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov. Today 18 (2013), 495–501.
    • (2013) Drug Discov. Today , vol.18 , pp. 495-501
    • Medina-Franco, J.L.1
  • 3
    • 84899149579 scopus 로고    scopus 로고
    • Drug2Gene: an exhaustive resource to explore effectively the drug–target relation network
    • Roider, H.G., et al. Drug2Gene: an exhaustive resource to explore effectively the drug–target relation network. BMC Bioinf., 15, 2014, 68.
    • (2014) BMC Bioinf. , vol.15 , pp. 68
    • Roider, H.G.1
  • 4
    • 84976897983 scopus 로고    scopus 로고
    • STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data
    • Szklarczyk, D., et al. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44 (2016), D380–D384.
    • (2016) Nucleic Acids Res. , vol.44 , pp. D380-D384
    • Szklarczyk, D.1
  • 5
    • 0031710509 scopus 로고    scopus 로고
    • Chemical genetics resulting from a passion for synthetic organic chemistry
    • Schreiber, S.L., Chemical genetics resulting from a passion for synthetic organic chemistry. Bioorg. Med. Chem. 6 (1998), 1127–1152.
    • (1998) Bioorg. Med. Chem. , vol.6 , pp. 1127-1152
    • Schreiber, S.L.1
  • 6
    • 11144298973 scopus 로고    scopus 로고
    • Exploring biology with small organic molecules
    • Stockwell, B.R., Exploring biology with small organic molecules. Nature 432 (2004), 846–854.
    • (2004) Nature , vol.432 , pp. 846-854
    • Stockwell, B.R.1
  • 7
  • 8
    • 84870774465 scopus 로고    scopus 로고
    • Reducing safety-related drug attrition: the use of in vitro pharmacological profiling
    • Bowes, J., et al. Reducing safety-related drug attrition: the use of in vitro pharmacological profiling. Nat. Rev. Drug Discov. 11 (2012), 909–922.
    • (2012) Nat. Rev. Drug Discov. , vol.11 , pp. 909-922
    • Bowes, J.1
  • 9
    • 84878771632 scopus 로고    scopus 로고
    • WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery
    • S.L. Schreiber Wiley-VCH
    • Olah, M., et al. WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery. Schreiber, S.L., (eds.) Chemical Biology: From Small Molecules to Systems Biology and Drug Design, 2007, Wiley-VCH, 760–786.
    • (2007) Chemical Biology: From Small Molecules to Systems Biology and Drug Design , pp. 760-786
    • Olah, M.1
  • 10
    • 84891762026 scopus 로고    scopus 로고
    • The ChEMBL bioactivity database: an update
    • Bento, A.P., et al. The ChEMBL bioactivity database: an update. Nucleic Acids Res. 42 (2014), D1083–D1090.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D1083-D1090
    • Bento, A.P.1
  • 11
    • 2542530042 scopus 로고    scopus 로고
    • The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures
    • Wang, R., et al. The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. J. Med. Chem. 47 (2004), 2977–2980.
    • (2004) J. Med. Chem. , vol.47 , pp. 2977-2980
    • Wang, R.1
  • 12
    • 84891791940 scopus 로고    scopus 로고
    • The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands
    • Pawson, A.J., et al. The IUPHAR/BPS Guide to PHARMACOLOGY: an expert-driven knowledgebase of drug targets and their ligands. Nucleic Acids Res. 42 (2014), D1098–D1106.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D1098-D1106
    • Pawson, A.J.1
  • 13
    • 84946035207 scopus 로고    scopus 로고
    • BioAssay Research Database (BARD): chemical biology and probe-development enabled by structured metadata and result types
    • Howe, E.A., et al. BioAssay Research Database (BARD): chemical biology and probe-development enabled by structured metadata and result types. Nucleic Acids Res. 43 (2015), D1163–D1170.
    • (2015) Nucleic Acids Res. , vol.43 , pp. D1163-D1170
    • Howe, E.A.1
  • 14
    • 84939257632 scopus 로고    scopus 로고
    • Cross-mapping of protein – ligand binding data between ChEMBL and PDBbind
    • Liu, Z.H., et al. Cross-mapping of protein – ligand binding data between ChEMBL and PDBbind. Mol. Inf. 34 (2015), 568–576.
    • (2015) Mol. Inf. , vol.34 , pp. 568-576
    • Liu, Z.H.1
  • 15
    • 84884590180 scopus 로고    scopus 로고
    • Big pharma screening collections: more of the same or unique libraries? The AstraZeneca-Bayer Pharma AG case
    • Kogej, T., et al. Big pharma screening collections: more of the same or unique libraries? The AstraZeneca-Bayer Pharma AG case. Drug Discov. Today 18 (2013), 1014–1024.
    • (2013) Drug Discov. Today , vol.18 , pp. 1014-1024
    • Kogej, T.1
  • 16
    • 84876725194 scopus 로고    scopus 로고
    • InChI — the worldwide chemical structure identifier standard
    • Heller, S., et al. InChI — the worldwide chemical structure identifier standard. J. Cheminf., 5, 2013, 7.
    • (2013) J. Cheminf. , vol.5 , pp. 7
    • Heller, S.1
  • 17
    • 0037252705 scopus 로고    scopus 로고
    • Database resources of the National Center for Biotechnology
    • Wheeler, D.L., et al. Database resources of the National Center for Biotechnology. Nucleic Acids Res. 31 (2003), 28–33.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 28-33
    • Wheeler, D.L.1
  • 18
    • 85016153986 scopus 로고    scopus 로고
    • UniProt: the universal protein knowledgebase
    • UniProt Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45 (2017), D158–D169.
    • (2017) Nucleic Acids Res. , vol.45 , pp. D158-D169
    • UniProt Consortium1
  • 19
    • 0037249501 scopus 로고    scopus 로고
    • PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification
    • Thomas, P.D., et al. PANTHER: a browsable database of gene products organized by biological function, using curated protein family and subfamily classification. Nucleic Acids Res. 31 (2003), 334–341.
    • (2003) Nucleic Acids Res. , vol.31 , pp. 334-341
    • Thomas, P.D.1
  • 20
    • 84891760956 scopus 로고    scopus 로고
    • Data, information, knowledge and principle: back to metabolism in KEGG
    • Kanehisa, M., et al. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42 (2014), D199–D205.
    • (2014) Nucleic Acids Res. , vol.42 , pp. D199-D205
    • Kanehisa, M.1
  • 21
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology: The Gene Ontology Consortium
    • Ashburner, M., et al. Gene ontology: tool for the unification of biology: The Gene Ontology Consortium. Nat. Genet. 25 (2000), 25–29.
    • (2000) Nat. Genet. , vol.25 , pp. 25-29
    • Ashburner, M.1
  • 22
    • 70349570566 scopus 로고    scopus 로고
    • Manual annotation of protein interactions
    • Bureeva, S., et al. Manual annotation of protein interactions. Methods Mol. Biol. 563 (2009), 75–95.
    • (2009) Methods Mol. Biol. , vol.563 , pp. 75-95
    • Bureeva, S.1
  • 23
    • 0037598287 scopus 로고    scopus 로고
    • Finding the molecules to fuel chemogenomics
    • Namchuk, M.N., Finding the molecules to fuel chemogenomics. Targets 1 (2002), 125–129.
    • (2002) Targets , vol.1 , pp. 125-129
    • Namchuk, M.N.1
  • 24
    • 84885904434 scopus 로고    scopus 로고
    • The CARLSBAD database: a confederated database of chemical bioactivities
    • bat044
    • Mathias, S.L., et al. The CARLSBAD database: a confederated database of chemical bioactivities. Database, 2013, 2013 bat044.
    • (2013) Database , vol.2013
    • Mathias, S.L.1
  • 25
    • 0029894013 scopus 로고    scopus 로고
    • The properties of known drugs. 1. Molecular frameworks
    • Bemis, G.W., Murcko, M.A., The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39 (1996), 2887–2893.
    • (1996) J. Med. Chem. , vol.39 , pp. 2887-2893
    • Bemis, G.W.1    Murcko, M.A.2
  • 26
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers, D., Hahn, M., Extended-connectivity fingerprints. J. Chem. Inf. Model. 50 (2010), 742–754.
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 27
    • 0023965741 scopus 로고
    • Smiles, a Chemical Language and Information-System. 1. Introduction to methodology and encoding rules
    • Weininger, D., Smiles, a Chemical Language and Information-System. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Comput. Sci. 28 (1988), 31–36.
    • (1988) J. Chem. Inf. Comput. Sci. , vol.28 , pp. 31-36
    • Weininger, D.1
  • 28
    • 33745391215 scopus 로고    scopus 로고
    • Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases
    • Nidhi, et al. Prediction of biological targets for compounds using multiple-category Bayesian models trained on chemogenomics databases. J. Chem. Inf. Model. 46 (2006), 1124–1133.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 1124-1133
    • Nidhi1
  • 29
    • 85016031495 scopus 로고    scopus 로고
    • Chemometric applications of naïve Bayesian models in drug discovery
    • J. Bajorath John Wiley & Sons
    • Lounkine, E., et al. Chemometric applications of naïve Bayesian models in drug discovery. Bajorath, J., (eds.) Chemoinformatics for Drug Discovery, 2013, John Wiley & Sons, 131–148.
    • (2013) Chemoinformatics for Drug Discovery , pp. 131-148
    • Lounkine, E.1
  • 30
    • 84996605707 scopus 로고    scopus 로고
    • The evolution of drug design at Merck Research Laboratories
    • Brown, F.K., et al. The evolution of drug design at Merck Research Laboratories. J. Comput. Aided Mol. Des. 31 (2017), 255–266.
    • (2017) J. Comput. Aided Mol. Des. , vol.31 , pp. 255-266
    • Brown, F.K.1
  • 31
    • 33750986884 scopus 로고    scopus 로고
    • ‘Bayes affinity fingerprints’ improve retrieval rates in virtual screening and define orthogonal bioactivity space: When are multitarget drugs a feasible concept?
    • Bender, A., et al. ‘Bayes affinity fingerprints’ improve retrieval rates in virtual screening and define orthogonal bioactivity space: When are multitarget drugs a feasible concept?. J. Chem. Inf. Model. 46 (2006), 2445–2456.
    • (2006) J. Chem. Inf. Model. , vol.46 , pp. 2445-2456
    • Bender, A.1
  • 32
    • 10044263240 scopus 로고    scopus 로고
    • Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR
    • Sheridan, R.P., et al. Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J. Chem. Inf. Comput. Sci. 44 (2004), 1912–1928.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1912-1928
    • Sheridan, R.P.1
  • 33
    • 84862237958 scopus 로고    scopus 로고
    • MetaBase—the wiki-database of biological databases
    • Bolser, D.M., et al. MetaBase—the wiki-database of biological databases. Nucleic Acids Res. 40 (2012), D1250–D1254.
    • (2012) Nucleic Acids Res. , vol.40 , pp. D1250-D1254
    • Bolser, D.M.1
  • 34
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • Ma, J., et al. Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55 (2015), 263–274.
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 263-274
    • Ma, J.1
  • 35
    • 84927735077 scopus 로고    scopus 로고
    • Massively Multitask Networks for Drug Discovery
    • Cornell University Library
    • Ramsundar, B., et al. Massively Multitask Networks for Drug Discovery. 2015, Cornell University Library.
    • (2015)
    • Ramsundar, B.1
  • 36
    • 84894641359 scopus 로고    scopus 로고
    • Enrichment analysis for discovering biological associations in phenotypic screens
    • Polyakov, V.R., et al. Enrichment analysis for discovering biological associations in phenotypic screens. J. Chem. Inf. Model. 54 (2014), 377–386.
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 377-386
    • Polyakov, V.R.1
  • 37
    • 84996843153 scopus 로고    scopus 로고
    • Understanding cytotoxicity and cytostaticity in a high-throughput screening collection
    • Mervin, L.H., et al. Understanding cytotoxicity and cytostaticity in a high-throughput screening collection. ACS Chem. Biol. 11 (2016), 3007–3023.
    • (2016) ACS Chem. Biol. , vol.11 , pp. 3007-3023
    • Mervin, L.H.1
  • 38
    • 84939958419 scopus 로고    scopus 로고
    • The opportunities of mining historical and collective data in drug discovery
    • Wassermann, A.M., et al. The opportunities of mining historical and collective data in drug discovery. Drug Discov. Today 20 (2015), 422–434.
    • (2015) Drug Discov. Today , vol.20 , pp. 422-434
    • Wassermann, A.M.1
  • 39
    • 84902201072 scopus 로고    scopus 로고
    • The role of historical bioactivity data in the deconvolution of phenotypic screens
    • Bornot, A., et al. The role of historical bioactivity data in the deconvolution of phenotypic screens. J. Biomol. Screen. 19 (2014), 696–706.
    • (2014) J. Biomol. Screen. , vol.19 , pp. 696-706
    • Bornot, A.1
  • 40
    • 84881116194 scopus 로고    scopus 로고
    • Systematic identification of proteins that elicit drug side effects
    • Kuhn, M., et al. Systematic identification of proteins that elicit drug side effects. Mol Syst Biol., 9, 2013, 663.
    • (2013) Mol Syst Biol. , vol.9 , pp. 663
    • Kuhn, M.1
  • 41
    • 84904731398 scopus 로고    scopus 로고
    • Composition and applications of focus libraries to phenotypic assays
    • Wassermann, A.M., et al. Composition and applications of focus libraries to phenotypic assays. Front. Pharmacol., 5, 2014, 164.
    • (2014) Front. Pharmacol. , vol.5 , pp. 164
    • Wassermann, A.M.1
  • 42
    • 77249142404 scopus 로고    scopus 로고
    • The art of the chemical probe
    • Frye, S.V., The art of the chemical probe. Nat. Chem. Biol. 6 (2010), 159–161.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 159-161
    • Frye, S.V.1
  • 43
    • 84875457503 scopus 로고    scopus 로고
    • The why and how of phenotypic small-molecule screens
    • Eggert, U.S., The why and how of phenotypic small-molecule screens. Nat. Chem. Biol. 9 (2013), 206–209.
    • (2013) Nat. Chem. Biol. , vol.9 , pp. 206-209
    • Eggert, U.S.1
  • 44
    • 84863317657 scopus 로고    scopus 로고
    • Novel aspects of mevalonate pathway inhibitors as antitumor agents
    • Thurnher, M., et al. Novel aspects of mevalonate pathway inhibitors as antitumor agents. Clin. Cancer Res. 18 (2012), 3524–3531.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 3524-3531
    • Thurnher, M.1
  • 45
    • 77953193637 scopus 로고    scopus 로고
    • Analysis of kinase inhibitor selectivity using a thermodynamics-based partition index
    • Cheng, A.C., et al. Analysis of kinase inhibitor selectivity using a thermodynamics-based partition index. J. Med. Chem. 53 (2010), 4502–4510.
    • (2010) J. Med. Chem. , vol.53 , pp. 4502-4510
    • Cheng, A.C.1
  • 46
    • 36148943501 scopus 로고    scopus 로고
    • Gini coefficient: a new way to express selectivity of kinase inhibitors against a family of kinases
    • Graczyk, P.P., Gini coefficient: a new way to express selectivity of kinase inhibitors against a family of kinases. J. Med. Chem. 50 (2007), 5773–5779.
    • (2007) J. Med. Chem. , vol.50 , pp. 5773-5779
    • Graczyk, P.P.1
  • 47
    • 79953837902 scopus 로고    scopus 로고
    • A theoretical entropy score as a single value to express inhibitor selectivity
    • Uitdehaag, J.C., Zaman, G.J., A theoretical entropy score as a single value to express inhibitor selectivity. BMC Bioinf., 12, 2011, 94.
    • (2011) BMC Bioinf. , vol.12 , pp. 94
    • Uitdehaag, J.C.1    Zaman, G.J.2
  • 48
    • 68949147006 scopus 로고    scopus 로고
    • Measuring and interpreting the selectivity of protein kinase inhibitors
    • Smyth, L.A., Collins, I., Measuring and interpreting the selectivity of protein kinase inhibitors. J. Chem. Biol. 2 (2009), 131–151.
    • (2009) J. Chem. Biol. , vol.2 , pp. 131-151
    • Smyth, L.A.1    Collins, I.2
  • 49
    • 84866261609 scopus 로고    scopus 로고
    • Chemotography for multi-target SAR analysis in the context of biological pathways
    • Lounkine, E., et al. Chemotography for multi-target SAR analysis in the context of biological pathways. Bioorg. Med. Chem. 20 (2012), 5416–5427.
    • (2012) Bioorg. Med. Chem. , vol.20 , pp. 5416-5427
    • Lounkine, E.1
  • 50
    • 13444292249 scopus 로고    scopus 로고
    • Using genome-wide transcriptional profiling to elucidate small-molecule mechanism
    • Butcher, R.A., Schreiber, S.L., Using genome-wide transcriptional profiling to elucidate small-molecule mechanism. Curr. Opin. Chem. Biol. 9 (2005), 25–30.
    • (2005) Curr. Opin. Chem. Biol. , vol.9 , pp. 25-30
    • Butcher, R.A.1    Schreiber, S.L.2
  • 51
    • 85015335626 scopus 로고    scopus 로고
    • Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes
    • 1757–1174
    • Bray, M.A., et al. Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes. Nat. Protoc., 11, 2016 1757–1174.
    • (2016) Nat. Protoc. , vol.11
    • Bray, M.A.1
  • 52
    • 84891388151 scopus 로고    scopus 로고
    • Multiplex cytological profiling assay to measure diverse cellular states
    • Gustafsdottir, S.M., et al. Multiplex cytological profiling assay to measure diverse cellular states. PLoS One, 8, 2013, e80999.
    • (2013) PLoS One , vol.8 , pp. e80999
    • Gustafsdottir, S.M.1
  • 53
    • 63849172494 scopus 로고    scopus 로고
    • Identifying the proteins to which small-molecule probes and drugs bind in cells
    • Ong, S.E., et al. Identifying the proteins to which small-molecule probes and drugs bind in cells. Proc. Natl. Acad. Sci. U. S. A. 106 (2009), 4617–4622.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 4617-4622
    • Ong, S.E.1
  • 54
    • 84906702408 scopus 로고    scopus 로고
    • RNAi screening comes of age: improved techniques and complementary approaches
    • Mohr, S.E., et al. RNAi screening comes of age: improved techniques and complementary approaches. Nat. Rev. Mol. Cell Biol. 15 (2014), 591–600.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 591-600
    • Mohr, S.E.1
  • 55
    • 84913594397 scopus 로고    scopus 로고
    • Genome editing. The new frontier of genome engineering with CRISPR-Cas9
    • Doudna, J.A., Charpentier, E., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science, 346, 2014, 1258096.
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.