-
3
-
-
85030244852
-
-
CoRR, abs/1607. 07295
-
L. Castrejon, Y. Aytar, C. Vondrick, H. Pirsiavash, and A. Torralba. Learning aligned cross-modal representations from weakly aligned data. CoRR, abs/1607. 07295, 2016.
-
(2016)
Learning Aligned Cross-modal Representations from Weakly Aligned Data
-
-
Castrejon, L.1
Aytar, Y.2
Vondrick, C.3
Pirsiavash, H.4
Torralba, A.5
-
4
-
-
84990051868
-
-
CoRR, abs/1606. 00915
-
L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR, abs/1606. 00915, 2016.
-
(2016)
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs
-
-
Chen, L.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
5
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In International Conference of Learning Representations (ICLR), 2015.
-
(2015)
International Conference of Learning Representations (ICLR)
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
6
-
-
85198028989
-
ImageNet: A Large-Scale Hierarchical Image Database
-
J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical Image Database. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.
-
(2009)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.-J.4
Li, K.5
Fei-Fei, L.6
-
8
-
-
85020547612
-
-
CoRR, abs/1608. 04117
-
M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal. The importance of skip connections in biomedical image segmentation. CoRR, abs/1608. 04117, 2016.
-
(2016)
The Importance of Skip Connections in Biomedical Image Segmentation
-
-
Drozdzal, M.1
Vorontsov, E.2
Chartrand, G.3
Kadoury, S.4
Pal, C.5
-
11
-
-
84958589374
-
-
CoRR, abs/1512. 03385
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. CoRR, abs/1512. 03385, 2015.
-
(2015)
Deep Residual Learning for Image Recognition
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
12
-
-
84973911419
-
-
CoRR, abs/1502. 01852
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR, abs/1502. 01852, 2015.
-
(2015)
Delving Deep into Rectifiers: Surpassing Human-level Performance on Imagenet Classification
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
84990053967
-
Deeplysupervised nets
-
C. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu. Deeplysupervised nets. In International Conference on Artificial Intelligence and Statistics (AISTATS), 2015.
-
(2015)
International Conference on Artificial Intelligence and Statistics (AISTATS)
-
-
Lee, C.1
Xie, S.2
Gallagher, P.W.3
Zhang, Z.4
Tu, Z.5
-
19
-
-
84937834115
-
Microsoft coco: Common objects in context
-
T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollr, and C. L. Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer Vision (ECCV), 2014.
-
(2014)
European Conference on Computer Vision (ECCV)
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.3
Hays, J.4
Perona, P.5
Ramanan, D.6
Dollr, P.7
Zitnick, C.L.8
-
24
-
-
84961917629
-
-
CoRR, abs/1506. 02640
-
J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. CoRR, abs/1506. 02640, 2015.
-
(2015)
You only Look Once: Unified, Real-time Object Detection
-
-
Redmon, J.1
Divvala, S.K.2
Girshick, R.B.3
Farhadi, A.4
-
25
-
-
84955283951
-
-
CoRR, abs/1506. 01497
-
S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object detection with region proposal networks. CoRR, abs/1506. 01497, 2015.
-
(2015)
Faster R-CNN: Towards Real-time Object Detection with Region Proposal Networks
-
-
Ren, S.1
He, K.2
Girshick, R.B.3
Sun, J.4
-
28
-
-
84986265711
-
The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes
-
G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez. The synthia dataset: A large collection of synthetic images for semantic segmentation of urban scenes. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
-
-
Ros, G.1
Sellart, L.2
Materzynska, J.3
Vazquez, D.4
Lopez, A.M.5
-
30
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
31
-
-
84964983441
-
-
CoRR, abs/1409. 4842
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CoRR, abs/1409. 4842, 2014.
-
(2014)
Going Deeper with Convolutions
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.E.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
34
-
-
84984964891
-
-
CoRR, abs/1511. 06681
-
D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Deep end2end voxel2voxel prediction. CoRR, abs/1511. 06681, 2015.
-
(2015)
Deep end2end voxel2voxel Prediction
-
-
Tran, D.1
Bourdev, L.D.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
36
-
-
85010223513
-
Reseg: A recurrent neural network-based model for semantic segmentation
-
F. Visin, M. Ciccone, A. Romero, K. Kastner, K. Cho, Y. Bengio, M. Matteucci, and A. Courville. Reseg: A recurrent neural network-based model for semantic segmentation. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) workshop, 2016.
-
(2016)
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshop
-
-
Visin, F.1
Ciccone, M.2
Romero, A.3
Kastner, K.4
Cho, K.5
Bengio, Y.6
Matteucci, M.7
Courville, A.8
-
38
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional random fields as recurrent neural networks. In International Conference on Computer Vision (ICCV), 2015.
-
(2015)
International Conference on Computer Vision (ICCV)
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
|