메뉴 건너뛰기




Volumn 2016-September, Issue , 2016, Pages 49.1-49.12

Learning to detect and match keypoints with deep architectures

Author keywords

[No Author keywords available]

Indexed keywords

DEEP ARCHITECTURES; FEATURE DETECTION; KEYPOINTS; LARGE-SCALE DATASET; LEARNING-BASED APPROACH; MULTI-SCALE; SUPPORT REGIONS;

EID: 85029570955     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.5244/C.30.49     Document Type: Conference Paper
Times cited : (74)

References (30)
  • 1
    • 84986275007 scopus 로고    scopus 로고
    • Learning to match aerial images with deep attentive architectures
    • Hani Altwaijry, Eduard Trulls, James Hays, Pascal Fua, and Serge Belongie. Learning to Match Aerial Images with Deep Attentive Architectures. In CVPR, 2016.
    • (2016) CVPR
    • Altwaijry, H.1    Trulls, E.2    Hays, J.3    Fua, P.4    Belongie, S.5
  • 2
    • 85083951423 scopus 로고    scopus 로고
    • Multiple object recognition with visual attention
    • Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu. Multiple object recognition with visual attention. In ICLR, 2015.
    • (2015) ICLR
    • Ba, J.1    Mnih, V.2    Kavukcuoglu, K.3
  • 3
    • 50649114604 scopus 로고    scopus 로고
    • Task specific local region matching
    • Boris Babenko, Piotr Doll r, and Serge Belongie. Task specific local region matching. In ICCV, 2007.
    • (2007) ICCV
    • Babenko, B.1    Doll r, P.2    Belongie, S.3
  • 4
    • 34548574887 scopus 로고    scopus 로고
    • SURF: Speeded up robust features
    • Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust features. In ECCV 2006.
    • (2006) ECCV
    • Bay, H.1    Tuytelaars, T.2    Van Gool, L.3
  • 5
    • 24644437539 scopus 로고
    • Signature verification using a “siamese” time delay neural network
    • J. Bromley, I. Guyon, Y. Lecun, E. Sckinger, and R. Shah. Signature verification using a “siamese” time delay neural network. In NIPS, 1994.
    • (1994) NIPS
    • Bromley, J.1    Guyon, I.2    Lecun, Y.3    Sckinger, E.4    Shah, R.5
  • 6
    • 78649324041 scopus 로고    scopus 로고
    • Discriminative learning of local image descriptors
    • Matthew Brown, Gang Hua, and Simon Winder. Discriminative learning of local image descriptors. PAMI, 2011.
    • (2011) PAMI
    • Brown, M.1    Hua, G.2    Winder, S.3
  • 9
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection. In CVPR 2005.
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 10
    • 0019574599 scopus 로고
    • Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography
    • Martin A. Fischler and Robert C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of ACM, 1981.
    • (1981) Communications of ACM
    • Fischler, M.A.1    Bolles, R.C.2
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 12
    • 84959255777 scopus 로고    scopus 로고
    • MatchNet: Unifying feature and metric learning for patch-based matching
    • Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander C Berg. MatchNet: Unifying feature and metric learning for patch-based matching. In CVPR, 2015.
    • (2015) CVPR
    • Han, X.1    Leung, T.2    Jia, Y.3    Sukthankar, R.4    Berg, A.C.5
  • 15
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS. 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 84856647875 scopus 로고    scopus 로고
    • Brisk: Binary robust invariant scalable keypoints
    • Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary robust invariant scalable keypoints. In ICCV, 2011.
    • (2011) ICCV
    • Leutenegger, S.1    Chli, M.2    Siegwart, R.Y.3
  • 17
    • 84937874835 scopus 로고    scopus 로고
    • Do convnets learn correspondence?
    • Jonathan L Long, Ning Zhang, and Trevor Darrell. Do convnets learn correspondence? In NIPS, 2014.
    • (2014) NIPS
    • Long, J.L.1    Zhang, N.2    Darrell, T.3
  • 18
    • 0033284915 scopus 로고    scopus 로고
    • Object recognition from local scale-invariant features
    • David G. Lowe. Object recognition from local scale-invariant features. ICCV 1999.
    • (1999) ICCV
    • Lowe, D.G.1
  • 20
    • 84937959846 scopus 로고    scopus 로고
    • Recurrent models of visual attention
    • Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual attention. In NIPS, 2014.
    • (2014) NIPS
    • Mnih, V.1    Heess, N.2    Graves, A.3
  • 21
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015.
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 22
    • 84946751287 scopus 로고    scopus 로고
    • Facenet: A unified embedding for face recognition and clustering
    • Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and clustering. In CVPR, 2015.
    • (2015) CVPR
    • Schroff, F.1    Kalenichenko, D.2    Philbin, J.3
  • 24
    • 84904175757 scopus 로고    scopus 로고
    • Learning local feature descriptors using convex optimisation
    • Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Learning local feature descriptors using convex optimisation. PAMI, 2014.
    • (2014) PAMI
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 26
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Yaniv Taigman, Ming Yang, Marc'Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level performance in face verification. In CVPR, 2014.
    • (2014) CVPR
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 27
    • 84959218013 scopus 로고    scopus 로고
    • TILDE: A temporally invariant learned DEtector
    • Yannick Verdie, Kwang Moo Yi, Pascal Fua, and Vincent Lepetit. TILDE: A temporally invariant learned DEtector. In CVPR, 2015.
    • (2015) CVPR
    • Verdie, Y.1    Yi, K.M.2    Fua, P.3    Lepetit, V.4
  • 28
    • 84886051944 scopus 로고    scopus 로고
    • Towards linear-time incremental structure from motion
    • Changchang Wu. Towards linear-time incremental structure from motion. In 3DV, 2013.
    • (2013) 3DV
    • Wu, C.1
  • 30
    • 84959179619 scopus 로고    scopus 로고
    • Learning to compare image patches via convolutional neural networks
    • Sergey Zagoruyko and Nikos Komodakis. Learning to compare image patches via convolutional neural networks. CVPR, 2015.
    • (2015) CVPR
    • Zagoruyko, S.1    Komodakis, N.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.