메뉴 건너뛰기




Volumn 27, Issue 10, 2013, Pages 3697-3711

Monthly Rainfall Prediction Using Wavelet Neural Network Analysis

Author keywords

Decomposition; Neural network and wavelet; Rainfall; Training

Indexed keywords

ALTERNATIVE METHODS; CALIBRATION AND VALIDATIONS; HYDROLOGICAL MODELS; RAINFALL PREDICTION; TIME-FREQUENCY REPRESENTATIONS; WAVELET NEURAL NETWORK MODEL; WAVELET NEURAL NETWORKS; WAVELET TECHNIQUES;

EID: 84880043630     PISSN: 09204741     EISSN: None     Source Type: Journal    
DOI: 10.1007/s11269-013-0374-4     Document Type: Article
Times cited : (218)

References (42)
  • 1
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390(1-2): 85-91.
    • (2010) J Hydrol , vol.390 , Issue.1-2 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 2
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil F, Tape DG (2004) An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J Environ Eng Sci 3: 121-128.
    • (2004) J Environ Eng Sci , vol.3 , pp. 121-128
    • Anctil, F.1    Tape, D.G.2
  • 4
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-I: preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee (2000a) Artificial neural networks in hydrology-I: preliminary concepts. J Hydrol Eng 5(2): 115-123.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 115-123
  • 5
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology-II: hydrologic applications
    • ASCE Task Committee
    • ASCE Task Committee (2000b) Artificial neural networks in hydrology-II: hydrologic applications. J Hydrol Eng 5(2): 124-137.
    • (2000) J Hydrol Eng , vol.5 , Issue.2 , pp. 124-137
  • 6
    • 0031513628 scopus 로고    scopus 로고
    • Combining neural network forecasts on wavelet transformed series
    • Aussem A, Murtagh F (1997) Combining neural network forecasts on wavelet transformed series. Connect Sci 9(1): 113-121.
    • (1997) Connect Sci , vol.9 , Issue.1 , pp. 113-121
    • Aussem, A.1    Murtagh, F.2
  • 7
    • 33750417685 scopus 로고    scopus 로고
    • Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting
    • Benaouda D, Murtagh F, Starck JL, Renaud O (2006) Wavelet-based nonlinear multiscale decomposition model for electricity load forecasting. Neurocomputing 70(1-3): 139-154.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 139-154
    • Benaouda, D.1    Murtagh, F.2    Starck, J.L.3    Renaud, O.4
  • 9
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B, Fanni A, See L, Sias G (2006) Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys Chem Earth A/B/C 31(18): 1164-1171.
    • (2006) Phys Chem Earth A/B/C , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 10
    • 0000649310 scopus 로고
    • Application of linear models to four annual streamflowseries
    • Carlson RF, MacCormick AJA, Watts DG (1970) Application of linear models to four annual streamflowseries. Water Resour Res 6(4): 1070-1078.
    • (1970) Water Resour Res , vol.6 , Issue.4 , pp. 1070-1078
    • Carlson, R.F.1    MacCormick, A.J.A.2    Watts, D.G.3
  • 11
    • 84880045026 scopus 로고    scopus 로고
    • Development of monsoon model for long range forecast rainfall explored for Anand (Gujarat-India)
    • Chinchorkar SS, Patel GR, Sayyad FG (2012) Development of monsoon model for long range forecast rainfall explored for Anand (Gujarat-India). Int J Water Resour Environ Eng 4(11): 322-326.
    • (2012) Int J Water Resour Environ Eng , vol.4 , Issue.11 , pp. 322-326
    • Chinchorkar, S.S.1    Patel, G.R.2    Sayyad, F.G.3
  • 12
    • 79955018148 scopus 로고    scopus 로고
    • A threshold based wavelet denoising method for hydrological data modelling
    • Chou C (2011) A threshold based wavelet denoising method for hydrological data modelling. Water Resour Manag 25: 1809-1830.
    • (2011) Water Resour Manag , vol.25 , pp. 1809-1830
    • Chou, C.1
  • 13
    • 0034298548 scopus 로고    scopus 로고
    • A recurrent neural networks approach using indices of Low-frequency climatic variability to forecast regional annual runoff
    • Coulibaly P, Anctil F, Rasmussen P, Bobee B (2000) A recurrent neural networks approach using indices of Low-frequency climatic variability to forecast regional annual runoff. Hydrol Process 14(15): 2755-2777.
    • (2000) Hydrol Process , vol.14 , Issue.15 , pp. 2755-2777
    • Coulibaly, P.1    Anctil, F.2    Rasmussen, P.3    Bobee, B.4
  • 14
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson DW, Wilby R (2001) Hydrological modeling using artificial neural networks. Prog Phys Geogr 25(1): 80-108.
    • (2001) Prog Phys Geogr , vol.25 , Issue.1 , pp. 80-108
    • Dawson, D.W.1    Wilby, R.2
  • 15
    • 0000562670 scopus 로고
    • Decomposition of hardy functions into square integrable wavelets of constant shape
    • Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15(4): 723-736.
    • (1984) SIAM J Math Anal , vol.15 , Issue.4 , pp. 723-736
    • Grossmann, A.1    Morlet, J.2
  • 16
    • 0028543366 scopus 로고
    • Training feed forward networks with Marquardt algorithm
    • Hagan MT, Menhaj MB (1994) Training feed forward networks with Marquardt algorithm. IEEE Trans Neural Netw 5: 989-993.
    • (1994) IEEE Trans Neural Netw , vol.5 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 17
    • 34249996860 scopus 로고    scopus 로고
    • The extrapolation of artificial neural networks for the modeling of rainfall-runoff relationships
    • Hettiarachchi P, Hall MJ, Minns AW (2005) The extrapolation of artificial neural networks for the modeling of rainfall-runoff relationships. J Hydroinformatics 7(4): 291-296.
    • (2005) J Hydroinformatics , vol.7 , Issue.4 , pp. 291-296
    • Hettiarachchi, P.1    Hall, M.J.2    Minns, A.W.3
  • 18
    • 0029413797 scopus 로고
    • Artificial neural network modeling of rainfall-runoff process
    • Hsu KL, Gupta HV, Sorooshian S (1995) Artificial neural network modeling of rainfall-runoff process. Water Resour Res 31(10): 2517-2530.
    • (1995) Water Resour Res , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 19
    • 0344586239 scopus 로고    scopus 로고
    • Wave parameters and functions in wavelet analysis
    • Huang MC (2004) Wave parameters and functions in wavelet analysis. Ocean Eng 31(1): 111-125.
    • (2004) Ocean Eng , vol.31 , Issue.1 , pp. 111-125
    • Huang, M.C.1
  • 20
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi O (2008) Stream flow forecasting using neuro-wavelet technique. Hydrol Process 22(20): 4142-4152.
    • (2008) Hydrol Process , vol.22 , Issue.20 , pp. 4142-4152
    • Kisi, O.1
  • 21
    • 68049112473 scopus 로고    scopus 로고
    • Neural networks and wavelet conjunction model for intermittent stream flow forecasting
    • Kisi O (2009) Neural networks and wavelet conjunction model for intermittent stream flow forecasting. J Hydrol Eng 14(8): 773-782.
    • (2009) J Hydrol Eng , vol.14 , Issue.8 , pp. 773-782
    • Kisi, O.1
  • 22
    • 77955049922 scopus 로고    scopus 로고
    • Wavelet regression model for short-term stream flow forecasting
    • Kisi O (2010) Wavelet regression model for short-term stream flow forecasting. J Hydrol 389: 344-353.
    • (2010) J Hydrol , vol.389 , pp. 344-353
    • Kisi, O.1
  • 23
    • 78751591071 scopus 로고    scopus 로고
    • Wavelet regression model as an alternative to neural networks for river stage forecasting
    • Kisi O (2011) Wavelet regression model as an alternative to neural networks for river stage forecasting. Water Resour Manag 25(2): 579-600.
    • (2011) Water Resour Manag , vol.25 , Issue.2 , pp. 579-600
    • Kisi, O.1
  • 24
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly stream flow forecasting
    • Kisi O, Cimen M (2011). A wavelet-support vector machine conjunction model for monthly stream flow forecasting. J. Hydrol 399: 132-140.
    • (2011) J. Hydrol , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 25
    • 33751581359 scopus 로고    scopus 로고
    • Wavelet regression technique for stream flow prediction
    • Kucuk M, Agiralioǧlu N (2006) Wavelet regression technique for stream flow prediction. J Appl Stat 33(9): 943-960.
    • (2006) J Appl Stat , vol.33 , Issue.9 , pp. 943-960
    • Kucuk, M.1    Agiralioǧlu, N.2
  • 26
    • 0029527609 scopus 로고
    • Climate signal detection using wavelet transform: how to make a time seriessing
    • Lau KM, Weng HY (1995) Climate signal detection using wavelet transform: how to make a time seriessing. Bull Am Meteorol Soc 76: 2391-2402.
    • (1995) Bull Am Meteorol Soc , vol.76 , pp. 2391-2402
    • Lau, K.M.1    Weng, H.Y.2
  • 28
    • 0035427967 scopus 로고    scopus 로고
    • Wavelet analysis for processing of ocean surface wave records
    • Massel SR (2001) Wavelet analysis for processing of ocean surface wave records. Ocean Eng 28: 957-987.
    • (2001) Ocean Eng , vol.28 , pp. 957-987
    • Massel, S.R.1
  • 29
    • 0343004958 scopus 로고
    • Statistical properties of multivariate fractional noise process
    • Matalas NC, Wallis JR (1971) Statistical properties of multivariate fractional noise process. Water Resour Res 7: 1460-1468.
    • (1971) Water Resour Res , vol.7 , pp. 1460-1468
    • Matalas, N.C.1    Wallis, J.R.2
  • 30
    • 79956141353 scopus 로고    scopus 로고
    • Precipitation forecast using artificial neural networks in specific regions of Greece
    • Moustris KP, Ioanna K, Larissi (2011) Precipitation forecast using artificial neural networks in specific regions of Greece. Water Resour Manag 25: 1979-1993.
    • (2011) Water Resour Manag , vol.25 , pp. 1979-1993
    • Moustris, K.P.1    Ioanna, K.2    Larissi3
  • 31
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T, Kisi O (2007) Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. J Hydrol 342: 199-212.
    • (2007) J Hydrol , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 32
    • 0022471098 scopus 로고
    • Learning Representations by Back-Propagating Errors
    • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning Representations by Back-Propagating Errors. Nature 323(9): 533-536.
    • (1986) Nature , vol.323 , Issue.9 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 84876984605 scopus 로고    scopus 로고
    • Improved wavelet modeling framework for hydrologic time series forecasting
    • Sang Y (2013) Improved wavelet modeling framework for hydrologic time series forecasting. Water Resour Manag 27(8): 2807-2821.
    • (2013) Water Resour Manag , vol.27 , Issue.8 , pp. 2807-2821
    • Sang, Y.1
  • 35
    • 0036501747 scopus 로고    scopus 로고
    • Measurement of the instantaneous characteristics of natural response modes of a spar platform subjected to irregular wave loading
    • Teisseire LM, Delafoy MG, Jordan DA, Miksad RW, Weggel DC (2002) Measurement of the instantaneous characteristics of natural response modes of a spar platform subjected to irregular wave loading. J Offshore Polar Eng 12(1): 16-24.
    • (2002) J Offshore Polar Eng , vol.12 , Issue.1 , pp. 16-24
    • Teisseire, L.M.1    Delafoy, M.G.2    Jordan, D.A.3    Miksad, R.W.4    Weggel, D.C.5
  • 36
    • 1542680533 scopus 로고    scopus 로고
    • A practical guide to wavelet analysis
    • Torrence C, Compo GP (1997) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1): 61-78.
    • (1997) Bull Am Meteorol Soc , vol.79 , Issue.1 , pp. 61-78
    • Torrence, C.1    Compo, G.P.2
  • 37
    • 84944833986 scopus 로고
    • Disaggregation processes in stochastic hydrology
    • Valencia DR, Schaake JC Jr (1973) Disaggregation processes in stochastic hydrology. Water Resour Res 9(3): 580-585.
    • (1973) Water Resour Res , vol.9 , Issue.3 , pp. 580-585
    • Valencia, D.R.1    Schaake Jr., J.C.2
  • 38
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang D, Ding J (2003) Wavelet network model and its application to the prediction of hydrology. Nat Sci 1(1): 67-71.
    • (2003) Nat Sci , vol.1 , Issue.1 , pp. 67-71
    • Wang, D.1    Ding, J.2
  • 39
    • 78650305167 scopus 로고    scopus 로고
    • Wavelet transform method for synthetic generation of daily stream flow
    • Wang W, Li Y (2011) Wavelet transform method for synthetic generation of daily stream flow. Water Resour Manag 25: 41-57.
    • (2011) Water Resour Manag , vol.25 , pp. 41-57
    • Wang, W.1    Li, Y.2
  • 40
    • 70349237925 scopus 로고    scopus 로고
    • Prediction of inflow at three gorges dam in Yangtze River with wavelet network model
    • Wang W, Jin J, Li Y (2009) Prediction of inflow at three gorges dam in Yangtze River with wavelet network model. Water Resour Manag 23(13): 2791-2803.
    • (2009) Water Resour Manag , vol.23 , Issue.13 , pp. 2791-2803
    • Wang, W.1    Jin, J.2    Li, Y.3
  • 41
    • 33646848323 scopus 로고    scopus 로고
    • Prediction of under-ground water levels using wavelet decompositions and transforms
    • Wu D, Wang J, Teng Y (2004) Prediction of under-ground water levels using wavelet decompositions and transforms. J Hydrol Eng 5: 34-39.
    • (2004) J Hydrol Eng , vol.5 , pp. 34-39
    • Wu, D.1    Wang, J.2    Teng, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.