메뉴 건너뛰기




Volumn 529, Issue P1, 2015, Pages 287-301

Prediction of daily rainfall by a hybrid wavelet-season-neuro technique

Author keywords

Develi; Rainfall prediction; Season algorithm; Seasonal decomposition; Tomarza; Wavelet transform

Indexed keywords

FLOOD CONTROL; FLOODS; MEAN SQUARE ERROR; MULTILAYERS; NEURAL NETWORKS; RAIN; RISK ANALYSIS; RISK ASSESSMENT; WAVELET DECOMPOSITION; WAVELET TRANSFORMS;

EID: 84938794312     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2015.07.046     Document Type: Article
Times cited : (72)

References (43)
  • 1
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390:85-91.
    • (2010) J. Hydrol. , vol.390 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 2
    • 33846458992 scopus 로고    scopus 로고
    • Forecasting surface water level fluctuations of Lake Van by artificial neural networks
    • Altunkaynak A. Forecasting surface water level fluctuations of Lake Van by artificial neural networks. Water Resour. Manage 2007, 21:399-408.
    • (2007) Water Resour. Manage , vol.21 , pp. 399-408
    • Altunkaynak, A.1
  • 3
    • 84870687035 scopus 로고    scopus 로고
    • Prediction of significant wave height using geno-multilayer perceptron
    • Altunkaynak A. Prediction of significant wave height using geno-multilayer perceptron. Ocean Eng. 2013, 58:144-153.
    • (2013) Ocean Eng. , vol.58 , pp. 144-153
    • Altunkaynak, A.1
  • 4
    • 84901052817 scopus 로고    scopus 로고
    • Predicting water level fluctuations in Lake Michigan-Huron using wavelet-expert system methods
    • Altunkaynak A. Predicting water level fluctuations in Lake Michigan-Huron using wavelet-expert system methods. Water Res. Manage. 2014, 28:2293-2314.
    • (2014) Water Res. Manage. , vol.28 , pp. 2293-2314
    • Altunkaynak, A.1
  • 5
    • 72149111639 scopus 로고    scopus 로고
    • A predictive model for reach morphology classification in mountain streams using multilayer perceptron methods
    • (accessed on 02.07.13)
    • Altunkaynak A., Strom K.B. A predictive model for reach morphology classification in mountain streams using multilayer perceptron methods. Water Resour. Res. 2009, 45:W12501. (accessed on 02.07.13). 10.1029/2009WR008055.
    • (2009) Water Resour. Res. , vol.45 , pp. W12501
    • Altunkaynak, A.1    Strom, K.B.2
  • 6
    • 34047221076 scopus 로고    scopus 로고
    • Probabilistic forecast of daily areal precipitation focusing on extreme events
    • Bliefernicht J., Bardossy A. Probabilistic forecast of daily areal precipitation focusing on extreme events. Nat. Hazards Earth Syst. Sci. 2007, 7:263-269.
    • (2007) Nat. Hazards Earth Syst. Sci. , vol.7 , pp. 263-269
    • Bliefernicht, J.1    Bardossy, A.2
  • 7
    • 84868621819 scopus 로고    scopus 로고
    • Real-time deployment of artificial neural network forecasting models: understanding the range of applicability
    • Bowden G.J., Maier H.R., Dandy G.C. Real-time deployment of artificial neural network forecasting models: understanding the range of applicability. Water Resour. Res. 2012, 48:W10549.
    • (2012) Water Resour. Res. , vol.48 , pp. W10549
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 8
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Sias G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phy. Chem. Earth 2006, 31:1164-1171.
    • (2006) Phy. Chem. Earth , vol.31 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 9
    • 84889679815 scopus 로고    scopus 로고
    • Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information
    • Chang F.J., Chiang Y.M., Tsai M.J., Shieh M.C., Sorooshian S. Watershed rainfall forecasting using neuro-fuzzy networks with the assimilation of multi-sensor information. J. Hydrol. 2014, 508:374-384.
    • (2014) J. Hydrol. , vol.508 , pp. 374-384
    • Chang, F.J.1    Chiang, Y.M.2    Tsai, M.J.3    Shieh, M.C.4    Sorooshian, S.5
  • 10
    • 84873751024 scopus 로고    scopus 로고
    • Reference evapotranspiration based on Class A pan evaporation via wavelet regression technique
    • Cobaner M. Reference evapotranspiration based on Class A pan evaporation via wavelet regression technique. Irrig. Sci. 2013, 31:119-134.
    • (2013) Irrig. Sci. , vol.31 , pp. 119-134
    • Cobaner, M.1
  • 12
    • 84938793057 scopus 로고    scopus 로고
    • Wavelet-neural network conjunction model in flow forecasting of sub-Himalayan river Brahmaputra
    • Dadu K.S., Deka P.C. Wavelet-neural network conjunction model in flow forecasting of sub-Himalayan river Brahmaputra. JCIET 2012, 3:415-425.
    • (2012) JCIET , vol.3 , pp. 415-425
    • Dadu, K.S.1    Deka, P.C.2
  • 13
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25:80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 15
    • 0036962760 scopus 로고    scopus 로고
    • The uncertainty in the prediction of flash floods in the Northern Mediterranean environment
    • Ferraris L., Rudari R., Siccardi F. The uncertainty in the prediction of flash floods in the Northern Mediterranean environment. J. Hydrometeorol. 2002, 3:714-727.
    • (2002) J. Hydrometeorol. , vol.3 , pp. 714-727
    • Ferraris, L.1    Rudari, R.2    Siccardi, F.3
  • 16
    • 0032710602 scopus 로고    scopus 로고
    • Precipitation forecasting using a neural network
    • Hall T., Brooks H.E., Doswell C.E. Precipitation forecasting using a neural network. Weath. Forecast. 1998, 14:338-345.
    • (1998) Weath. Forecast. , vol.14 , pp. 338-345
    • Hall, T.1    Brooks, H.E.2    Doswell, C.E.3
  • 17
    • 0029413797 scopus 로고
    • Artificial neural network modeling of the rainfall-runoff process
    • Hsu K.L., Gupta H.V., Sorooshian S. Artificial neural network modeling of the rainfall-runoff process. Water Resour. Res. 1995, 31:2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.L.1    Gupta, H.V.2    Sorooshian, S.3
  • 18
    • 84964232140 scopus 로고    scopus 로고
    • Using soil and water assessment tool for flow simulation and assessment of sensitive parameters applying SUFI-2 algorithm
    • Jajarmizadeh M., Harun S., Salarpour M. Using soil and water assessment tool for flow simulation and assessment of sensitive parameters applying SUFI-2 algorithm. Casp. J. Appl. Sci. Res. 2013, 2:37-44.
    • (2013) Casp. J. Appl. Sci. Res. , vol.2 , pp. 37-44
    • Jajarmizadeh, M.1    Harun, S.2    Salarpour, M.3
  • 19
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff relationships for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses
    • Labat D., Ababou R., Mangin A. Rainfall-runoff relationships for karstic springs. Part II: Continuous wavelet and discrete orthogonal multiresolution analyses. J. Hydrol. 2000, 238:149-178.
    • (2000) J. Hydrol. , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 21
    • 0029663876 scopus 로고    scopus 로고
    • Operational rainfall prediction in meso-γ scales of hydrologic applications
    • Lee T.H., Georgakakos K.P. Operational rainfall prediction in meso-γ scales of hydrologic applications. Water Resour. Res. 1996, 32:987-1003.
    • (1996) Water Resour. Res. , vol.32 , pp. 987-1003
    • Lee, T.H.1    Georgakakos, K.P.2
  • 22
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., McCabe G.J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35:233-241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 24
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • Moriasi D.N., Arnold J.G., Van Liew M.W., Binger R.L., Harmel R.D., Veith T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. TASABE 2007, 50:885-900.
    • (2007) TASABE , vol.50 , pp. 885-900
    • Moriasi, D.N.1    Arnold, J.G.2    Van Liew, M.W.3    Binger, R.L.4    Harmel, R.D.5    Veith, T.L.6
  • 25
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models: Part 1. A discussion of principle
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models: Part 1. A discussion of principle. J. Hydrol. 1970, 10:282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 26
    • 69949188486 scopus 로고    scopus 로고
    • Prediction of daily precipitation using wavelet-neural networks
    • Partal T., Cigizoglu H.K. Prediction of daily precipitation using wavelet-neural networks. Hydrol. Sci. J. 2009, 54:234-246.
    • (2009) Hydrol. Sci. J. , vol.54 , pp. 234-246
    • Partal, T.1    Cigizoglu, H.K.2
  • 27
    • 28844493616 scopus 로고    scopus 로고
    • Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data
    • Pereira A.J., Santos C.C. Modeling a densely urbanized watershed with an artificial neural network, weather radar and telemetric data. J. Hydrol. 2006, 317:31-48.
    • (2006) J. Hydrol. , vol.317 , pp. 31-48
    • Pereira, A.J.1    Santos, C.C.2
  • 29
    • 84880043630 scopus 로고    scopus 로고
    • Monthly rainfall prediction using wavelet-neural network analysis
    • Ramana R.V., Krishna B., Kumar S.R., Pandey N.G. Monthly rainfall prediction using wavelet-neural network analysis. Water Resour. Manage 2013, 27:3697-3711.
    • (2013) Water Resour. Manage , vol.27 , pp. 3697-3711
    • Ramana, R.V.1    Krishna, B.2    Kumar, S.R.3    Pandey, N.G.4
  • 30
    • 0008715143 scopus 로고    scopus 로고
    • Using APEX to identify alternative practices for animal waste management: Part II
    • Model application. ASAE Paper 97-2209, ASAE (accessed on 18.03.15).
    • Ramanarayanan, T.S., Williams, J.R., Dugas, W.A., Hauck, L.M., McFarland, A.M.S., 1997. Using APEX to identify alternative practices for animal waste management: Part II. Model application. ASAE Paper 97-2209, ASAE. (accessed on 18.03.15).
    • (1997)
    • Ramanarayanan, T.S.1    Williams, J.R.2    Dugas, W.A.3    Hauck, L.M.4    McFarland, A.M.S.5
  • 31
    • 84884859040 scopus 로고    scopus 로고
    • Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting
    • Robertson D.E., Shrestha D.L., Wang Q.J. Post-processing rainfall forecasts from numerical weather prediction models for short-term streamflow forecasting. Hydrol. Earth Syst. Sci. 2013, 17:3587-3603.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , pp. 3587-3603
    • Robertson, D.E.1    Shrestha, D.L.2    Wang, Q.J.3
  • 32
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 33
    • 84879218182 scopus 로고    scopus 로고
    • Comparison between multilayer feedforward neural networks and a radial basis function network to detect and locate leaks in pipelines transporting gas
    • Santos R., Ruppb M., Bonzi S., Filetia A.M. Comparison between multilayer feedforward neural networks and a radial basis function network to detect and locate leaks in pipelines transporting gas. Chem. Eng. Trans. 2013, 32:1375-1380.
    • (2013) Chem. Eng. Trans. , vol.32 , pp. 1375-1380
    • Santos, R.1    Ruppb, M.2    Bonzi, S.3    Filetia, A.M.4
  • 34
    • 84876423750 scopus 로고    scopus 로고
    • Flood flow at ungauged sites: the case of East Mediterranean river basin, Turkey
    • Seckin N., Cobaner M., Yurtal R., Haktanir T. Flood flow at ungauged sites: the case of East Mediterranean river basin, Turkey. Water Resour. Manage. 2013, 27:2103-2124.
    • (2013) Water Resour. Manage. , vol.27 , pp. 2103-2124
    • Seckin, N.1    Cobaner, M.2    Yurtal, R.3    Haktanir, T.4
  • 35
    • 84938815064 scopus 로고    scopus 로고
    • Efficient use of Bi-Orthogonal wavelet transform for cardiac signals
    • Sharma A., Sharma R., Toshniwal S. Efficient use of Bi-Orthogonal wavelet transform for cardiac signals. Int. J. Comput. Appl. 2014, 89:19-23.
    • (2014) Int. J. Comput. Appl. , vol.89 , pp. 19-23
    • Sharma, A.1    Sharma, R.2    Toshniwal, S.3
  • 36
    • 84879122274 scopus 로고    scopus 로고
    • Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose
    • Shrestha D.L., Robertson D.E., Wang Q.J., Pagano T.C., Hapuarachchi H.A.P. Evaluation of numerical weather prediction model precipitation forecasts for short-term streamflow forecasting purpose. Hydrol. Earth Syst. Sci. 2013, 17:1913-1931.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , pp. 1913-1931
    • Shrestha, D.L.1    Robertson, D.E.2    Wang, Q.J.3    Pagano, T.C.4    Hapuarachchi, H.A.P.5
  • 37
    • 84904681268 scopus 로고    scopus 로고
    • Forecasting daily precipitation using hybrid model of wavelet-artificial neural network and comparison with adaptive neurofuzzy inference system. Case Study: Verayneh Station, Nahavand
    • Solgi A., Nourani V., Pourhaghi A. Forecasting daily precipitation using hybrid model of wavelet-artificial neural network and comparison with adaptive neurofuzzy inference system. Case Study: Verayneh Station, Nahavand. Adv. Civ. Eng. 2014, 2014:1-12.
    • (2014) Adv. Civ. Eng. , vol.2014 , pp. 1-12
    • Solgi, A.1    Nourani, V.2    Pourhaghi, A.3
  • 38
    • 72149087074 scopus 로고    scopus 로고
    • A novel method to estimate model uncertainty using machine learning techniques
    • Solomatine D.P., Shrestha D.L. A novel method to estimate model uncertainty using machine learning techniques. Water Resour. Res. 2009, 45.
    • (2009) Water Resour. Res. , vol.45
    • Solomatine, D.P.1    Shrestha, D.L.2
  • 39
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari M.K., Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394:458-470.
    • (2010) J. Hydrol. , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 40
    • 84938802938 scopus 로고    scopus 로고
    • URL 1: IBM SPSS 20 Algorithms. (12.04.13).
    • URL 1: IBM SPSS 20 Algorithms. (12.04.13).
  • 41
    • 84936985967 scopus 로고    scopus 로고
    • Long-term runoff study using SARIMA and ARIMA models in the United States
    • (June 12)
    • Valipour M. Long-term runoff study using SARIMA and ARIMA models in the United States. Meteorol. Appl. 2015, 2015. (June 12). 10.1002/met.1491.
    • (2015) Meteorol. Appl. , vol.2015
    • Valipour, M.1
  • 42
    • 84869052207 scopus 로고    scopus 로고
    • Monthly inflow forecasting using autoregressive artificial neural network
    • Valipour M., Banihabib M.E., Behbahani S.M.R. Monthly inflow forecasting using autoregressive artificial neural network. J. Appl. Sci. 2012, 12:2139-2147.
    • (2012) J. Appl. Sci. , vol.12 , pp. 2139-2147
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3
  • 43
    • 84870999624 scopus 로고    scopus 로고
    • Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir
    • Valipour M., Banihabib M.E., Behbahani S.M.R. Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476:433-441.
    • (2013) J. Hydrol. , vol.476 , pp. 433-441
    • Valipour, M.1    Banihabib, M.E.2    Behbahani, S.M.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.