메뉴 건너뛰기




Volumn 9, Issue 5, 2017, Pages

Maritime semantic labeling of optical remote sensing images with multi-scale fully convolutional network

Author keywords

Convolution neural network; Fully convolutional network; Sea land segmentation; Semantic labeling; Ship detection

Indexed keywords

CONVOLUTION; IMAGE PROCESSING; IMAGE RECONSTRUCTION; REMOTE SENSING; SEMANTIC WEB; SEMANTICS; SHIPS;

EID: 85019922802     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9050480     Document Type: Article
Times cited : (77)

References (60)
  • 1
    • 84977998287 scopus 로고    scopus 로고
    • Salient band selection for hyperspectral image classification via manifold ranking
    • Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279-1289.
    • (2016) IEEE Trans. Neural Netw. Learn. Syst , vol.27 , pp. 1279-1289
    • Wang, Q.1    Lin, J.2    Yuan, Y.3
  • 2
    • 18844437317 scopus 로고    scopus 로고
    • A novel algorithm for ship detection in SAR imagery based on the wavelet transform
    • Tello, M.; López-Martínez, C.; Mallorqui, J.J. A novel algorithm for ship detection in SAR imagery based on the wavelet transform. IEEE Geosci. Remote Sens. Lett. 2005, 2, 201-205.
    • (2005) IEEE Geosci. Remote Sens. Lett , vol.2 , pp. 201-205
    • Tello, M.1    López-Martínez, C.2    Mallorqui, J.J.3
  • 3
    • 78149333575 scopus 로고    scopus 로고
    • Learning to detect roads in high-resolution aerial images
    • Crete, Greece, 5-11 September
    • Mnih, V.; Hinton, G.E. Learning to detect roads in high-resolution aerial images. In Proceedings of the European Conference on Computer Vision, Crete, Greece, 5-11 September 2010; pp. 210-223.
    • (2010) Proceedings of the European Conference on Computer Vision , pp. 210-223
    • Mnih, V.1    Hinton, G.E.2
  • 4
    • 84934294672 scopus 로고    scopus 로고
    • Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine
    • Wang, J.; Song, J.; Chen, M.; Yang, Z. Road network extraction: A neural-dynamic framework based on deep learning and a finite state machine. Int. J. Remote Sens. 2015, 36, 3144-3169.
    • (2015) Int. J. Remote Sens , vol.36 , pp. 3144-3169
    • Wang, J.1    Song, J.2    Chen, M.3    Yang, Z.4
  • 5
    • 78650907105 scopus 로고    scopus 로고
    • A probabilistic framework to detect buildings in aerial and satellite images
    • Sirmacek, B.; Unsalan, C. A probabilistic framework to detect buildings in aerial and satellite images. IEEE Trans. Geosci. Remote Sens. 2011, 49, 211-221.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , pp. 211-221
    • Sirmacek, B.1    Unsalan, C.2
  • 6
    • 84920176485 scopus 로고    scopus 로고
    • Detection of buildings in multispectral very high spatial resolution images using the percentage occupancy hit-or-miss transform
    • Stankov, K.; He, D.C. Detection of buildings in multispectral very high spatial resolution images using the percentage occupancy hit-or-miss transform. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4069-4080.
    • (2014) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.7 , pp. 4069-4080
    • Stankov, K.1    He, D.C.2
  • 7
    • 84924942991 scopus 로고    scopus 로고
    • Circular oil tank detection from panchromatic satellite images: A new automated approach
    • Ok, A.O.; Başeski, E. Circular oil tank detection from panchromatic satellite images: A new automated approach. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1347-1351.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 1347-1351
    • Ok, A.O.1    Başeski, E.2
  • 8
    • 84940765289 scopus 로고    scopus 로고
    • A Hierarchical Oil Tank Detector with Deep Surrounding Features for High-Resolution Optical Satellite Imagery
    • Zhang, L.; Shi, Z.; Wu, J. A Hierarchical Oil Tank Detector with Deep Surrounding Features for High-Resolution Optical Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4895-4909.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.8 , pp. 4895-4909
    • Zhang, L.1    Shi, Z.2    Wu, J.3
  • 9
    • 84924428800 scopus 로고    scopus 로고
    • Efficient feature selection and classification for vehicle detection
    • Wen, X.; Shao, L.; Fang, W.; Xue, Y. Efficient feature selection and classification for vehicle detection. IEEE Trans. Circuits Syst. Video Technol. 2015, 25, 508-517.
    • (2015) IEEE Trans. Circuits Syst. Video Technol , vol.25 , pp. 508-517
    • Wen, X.1    Shao, L.2    Fang, W.3    Xue, Y.4
  • 10
    • 85027949751 scopus 로고    scopus 로고
    • Airborne sar moving target signatures and imagery based on LVD
    • Yang, L.; Bi, G.; Xing, M.; Zhang, L. Airborne sar moving target signatures and imagery based on LVD. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5958-5971.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 5958-5971
    • Yang, L.1    Bi, G.2    Xing, M.3    Zhang, L.4
  • 11
    • 84942199172 scopus 로고    scopus 로고
    • Vehicle detection in remote sensing imagery based on salient information and local shape feature
    • Yu, X.; Shi, Z. Vehicle detection in remote sensing imagery based on salient information and local shape feature. Opt.-Int. J. Light Electron Opt. 2015, 126, 2485-2490.
    • (2015) Opt.-Int. J. Light Electron Opt , vol.126 , pp. 2485-2490
    • Yu, X.1    Shi, Z.2
  • 14
    • 84901240963 scopus 로고    scopus 로고
    • An automated airplane detection system for large panchromatic image with high spatial resolution
    • An, Z.; Shi, Z.; Teng, X.; Yu, X.; Tang, W. An automated airplane detection system for large panchromatic image with high spatial resolution. Opt.-Int. J. Light Electron Opt. 2014, 125, 2768-2775.
    • (2014) Opt.-Int. J. Light Electron Opt , vol.125 , pp. 2768-2775
    • An, Z.1    Shi, Z.2    Teng, X.3    Yu, X.4    Tang, W.5
  • 15
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised feature learning for aerial scene classification
    • Cheriyadat, A.M. Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 439-451.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 439-451
    • Cheriyadat, A.M.1
  • 16
    • 84908032942 scopus 로고    scopus 로고
    • Saliency-guided unsupervised feature learning for scene classification
    • Zhang, F.; Du, B.; Zhang, L. Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2175-2184.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 2175-2184
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 17
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119-132.
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 19
    • 0031101258 scopus 로고    scopus 로고
    • Ship detection by the RADARSAT SAR: Validation of detection model predictions
    • Vachon, P.; Campbell, J.; Bjerkelund, C.; Dobson, F.; Rey, M. Ship detection by the RADARSAT SAR: Validation of detection model predictions. Can. J. Remote Sens. 1997, 23, 48-59.
    • (1997) Can. J. Remote Sens , vol.23 , pp. 48-59
    • Vachon, P.1    Campbell, J.2    Bjerkelund, C.3    Dobson, F.4    Rey, M.5
  • 20
    • 84884679933 scopus 로고    scopus 로고
    • Extraction of coastline in aquaculture coast from multispectral remote sensing images: Object-based region growing integrating edge detection
    • Zhang, T.; Yang, X.; Hu, S.; Su, F. Extraction of coastline in aquaculture coast from multispectral remote sensing images: Object-based region growing integrating edge detection. Remote Sens. 2013, 5, 4470-4487.
    • (2013) Remote Sens , vol.5 , pp. 4470-4487
    • Zhang, T.1    Yang, X.2    Hu, S.3    Su, F.4
  • 21
    • 84976472326 scopus 로고    scopus 로고
    • Efficient sea-land segmentation using seeds learning and edge directed graph cut
    • Cheng, D.; Meng, G.; Xiang, S.; Pan, C. Efficient sea-land segmentation using seeds learning and edge directed graph cut. Neurocomputing 2016, 207, 36-47.
    • (2016) Neurocomputing , vol.207 , pp. 36-47
    • Cheng, D.1    Meng, G.2    Xiang, S.3    Pan, C.4
  • 22
    • 77956059560 scopus 로고    scopus 로고
    • A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features
    • Zhu, C.; Zhou, H.; Wang, R.; Guo, J. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3446-3456.
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , pp. 3446-3456
    • Zhu, C.1    Zhou, H.2    Wang, R.3    Guo, J.4
  • 23
    • 84884268846 scopus 로고    scopus 로고
    • A new method on inshore ship detection in high-resolution satellite images using shape and context information
    • Liu, G.; Zhang, Y.; Zheng, X.; Sun, X.; Fu, K.; Wang, H. A new method on inshore ship detection in high-resolution satellite images using shape and context information. IEEE Geosci. Remote Sens. Lett. 2014, 11, 617-621.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 617-621
    • Liu, G.1    Zhang, Y.2    Zheng, X.3    Sun, X.4    Fu, K.5    Wang, H.6
  • 24
    • 84896388817 scopus 로고    scopus 로고
    • Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature
    • Shi, Z.; Yu, X.; Jiang, Z.; Li, B. Ship detection in high-resolution optical imagery based on anomaly detector and local shape feature. IEEE Trans. Geosci. Remote Sens. 2014, 52, 4511-4523.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 4511-4523
    • Shi, Z.1    Yu, X.2    Jiang, Z.3    Li, B.4
  • 26
    • 84907463801 scopus 로고    scopus 로고
    • Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine
    • Tang, J.; Deng, C.; Huang, G.B.; Zhao, B. Compressed-domain ship detection on spaceborne optical image using deep neural network and extreme learning machine. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1174-1185.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 1174-1185
    • Tang, J.1    Deng, C.2    Huang, G.B.3    Zhao, B.4
  • 27
    • 84975263405 scopus 로고    scopus 로고
    • Ship Detection in Spaceborne Optical Image with SVD Networks
    • Zou, Z.; Shi, Z. Ship Detection in Spaceborne Optical Image with SVD Networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5832-5845.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 5832-5845
    • Zou, Z.1    Shi, Z.2
  • 28
    • 84945467880 scopus 로고    scopus 로고
    • Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines
    • Taormina, R.; Chau, K.W. Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and Extreme Learning Machines. J. Hydrol. 2015, 529, 1617-1632.
    • (2015) J. Hydrol , vol.529 , pp. 1617-1632
    • Taormina, R.1    Chau, K.W.2
  • 29
    • 85019963093 scopus 로고    scopus 로고
    • Fuzzy prediction of AWJ turbulence characteristics by using typical multi-phase flow models
    • Liang, Z.; Shan, S.; Liu, X.; Wen, Y. Fuzzy prediction of AWJ turbulence characteristics by using typical multi-phase flow models. Eng. Appl. Comput. Fluid Mech. 2017, 11, 225-257.
    • (2017) Eng. Appl. Comput. Fluid Mech , vol.11 , pp. 225-257
    • Liang, Z.1    Shan, S.2    Liu, X.3    Wen, Y.4
  • 30
    • 84961778059 scopus 로고    scopus 로고
    • Application of computational fluid dynamics and surrogate-coupled evolutionary computing to enhance centrifugal-pump performance
    • Bellary, S.A.I.; Adhav, R.; Siddique, M.H.; Chon, B.H.; Kenyery, F.; Samad, A. Application of computational fluid dynamics and surrogate-coupled evolutionary computing to enhance centrifugal-pump performance. Eng. Appl. Comput. Fluid Mech. 2016, 10, 171-181.
    • (2016) Eng. Appl. Comput. Fluid Mech , vol.10 , pp. 171-181
    • Bellary, S.A.I.1    Adhav, R.2    Siddique, M.H.3    Chon, B.H.4    Kenyery, F.5    Samad, A.6
  • 31
    • 67650173866 scopus 로고    scopus 로고
    • Multilayer Ensemble Pruning via Novel Multi-sub-swarm Particle Swarm Optimization
    • Zhang, J.; Chau, K.W. Multilayer Ensemble Pruning via Novel Multi-sub-swarm Particle Swarm Optimization. J. Univ. Comput. Sci. 2009, 15, 840-858.
    • (2009) J. Univ. Comput. Sci , vol.15 , pp. 840-858
    • Zhang, J.1    Chau, K.W.2
  • 32
    • 84939955777 scopus 로고    scopus 로고
    • Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition
    • Wang, W.C.; Chau, K.W.; Xu, D.M.; Chen, X.Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 2015, 29, 2655-2675.
    • (2015) Water Resour. Manag , vol.29 , pp. 2655-2675
    • Wang, W.C.1    Chau, K.W.2    Xu, D.M.3    Chen, X.Y.4
  • 33
    • 70350776230 scopus 로고    scopus 로고
    • Dimension reduction using semi-supervised locally linear embedding for plant leaf classification
    • Zhang, S.; Chau, K.W. Dimension reduction using semi-supervised locally linear embedding for plant leaf classification. Emerg. Intell. Comput. Technol. Appl. 2009, 948-955.
    • (2009) Emerg. Intell. Comput. Technol. Appl , pp. 948-955
    • Zhang, S.1    Chau, K.W.2
  • 34
    • 77954384622 scopus 로고    scopus 로고
    • Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques
    • Wu, C.; Chau, K.; Fan, C. Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146-167.
    • (2010) J. Hydrol , vol.389 , pp. 146-167
    • Wu, C.1    Chau, K.2    Fan, C.3
  • 37
    • 84973897611 scopus 로고    scopus 로고
    • Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
    • Santiago, Chile, 13-16 December
    • Eigen, D.; Fergus, R. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13-16 December 2015; pp. 2650-2658.
    • (2015) Proceedings of the IEEE International Conference on Computer Vision , pp. 2650-2658
    • Eigen, D.1    Fergus, R.2
  • 39
    • 84886598638 scopus 로고    scopus 로고
    • Saliency detection by multiple-instance learning
    • Wang, Q.; Yuan, Y.; Yan, P.; Li, X. Saliency detection by multiple-instance learning. IEEE Trans. Cybern. 2013, 43, 660-672.
    • (2013) IEEE Trans. Cybern , vol.43 , pp. 660-672
    • Wang, Q.1    Yuan, Y.2    Yan, P.3    Li, X.4
  • 52
    • 84904670452 scopus 로고    scopus 로고
    • Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping
    • Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping. Remote Sens. 2013, 5, 6026-6042.
    • (2013) Remote Sens , vol.5 , pp. 6026-6042
    • Hu, Q.1    Wu, W.2    Xia, T.3    Yu, Q.4    Yang, P.5    Li, Z.6    Song, Q.7
  • 54
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected crfs with gaussian edge potentials
    • Koltun, V. Efficient inference in fully connected crfs with gaussian edge potentials. Adv. Neural Inf. Process. Syst. 2011, 109-117.
    • (2011) Adv. Neural Inf. Process. Syst , pp. 109-117
    • Koltun, V.1
  • 55
    • 84983110889 scopus 로고    scopus 로고
    • A desicion-theoretic generalization of on-line learning and an application to boostin
    • Barcelona, Spain, 13-15 March 1995 Springer Berlin, Germany
    • Freund, Y.; Schapire, R.E. A desicion-theoretic generalization of on-line learning and an application to boosting. In Proceedings of the European Conference on Computational Learning Theory, Barcelona, Spain, 13-15 March 1995; Springer: Berlin, Germany; pp. 23-37.
    • In Proceedings of the European Conference on Computational Learning Theory , pp. 23-37
    • Freund, Y.1    Schapire, R.E.2
  • 56
    • 33745824267 scopus 로고    scopus 로고
    • Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentatio
    • Amsterdam, The Netherlands, 8-16 October 2006 Springer Berlin, Germany
    • Shotton, J.; Winn, J.; Rother, C.; Criminisi, A. Textonboost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8-16 October 2006; Springer: Berlin, Germany; pp. 1-15.
    • In Proceedings of the European Conference on Computer Vision , pp. 1-15
    • Shotton, J.1    Winn, J.2    Rother, C.3    Criminisi, A.4
  • 57
    • 78649442534 scopus 로고    scopus 로고
    • Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China
    • Li, X.; Damen, M.C. Coastline change detection with satellite remote sensing for environmental management of the Pearl River Estuary, China. J. Mar. Syst. 2010, 82, S54-S61.
    • (2010) J. Mar. Syst , vol.82 , pp. S54-S61
    • Li, X.1    Damen, M.C.2
  • 58
    • 80052235771 scopus 로고    scopus 로고
    • Coastline change detection of the Bohai Bay using satellite remote sensing
    • Environment and Transportation Engineering (RSETE), Nanjing, China, 24-26 June
    • Ji, R.; Lu, Y.; Zuo, L. Coastline change detection of the Bohai Bay using satellite remote sensing. In Proceedings of the 2011 International Conference on Remote Sensing, Environment and Transportation Engineering (RSETE), Nanjing, China, 24-26 June 2011; pp. 168-171.
    • (2011) Proceedings of the 2011 International Conference on Remote Sensing , pp. 168-171
    • Ji, R.1    Lu, Y.2    Zuo, L.3
  • 59
    • 84863987656 scopus 로고    scopus 로고
    • Coastline detection in synthetic aperture radar (SAR) images by integrating watershed transformation and controllable gradient vector flow (GVF) snake model
    • Sheng, G.; Yang, W.; Deng, X.; He, C.; Cao, Y.; Sun, H. Coastline detection in synthetic aperture radar (SAR) images by integrating watershed transformation and controllable gradient vector flow (GVF) snake model. IEEE J. Ocean. Eng. 2012, 37, 375-383.
    • (2012) IEEE J. Ocean. Eng , vol.37 , pp. 375-383
    • Sheng, G.1    Yang, W.2    Deng, X.3    He, C.4    Cao, Y.5    Sun, H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.