메뉴 건너뛰기




Volumn 24, Issue 4, 2017, Pages 813-821

Deep learning for pharmacovigilance: Recurrent neural network architectures for labeling adverse drug reactions in Twitter posts

Author keywords

Adverse drug reaction; Natural language processing; Neural networks (computer); Social media; Twitter messaging

Indexed keywords

ADVERSE DRUG REACTION; ARTICLE; ARTIFICIAL NEURAL NETWORK; DRUG SURVEILLANCE PROGRAM; EMBEDDING; LEARNING; NATURAL LANGUAGE PROCESSING; PARASOMNIA; SOCIAL MEDIA; HUMAN; MACHINE LEARNING;

EID: 85026398638     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw180     Document Type: Article
Times cited : (185)

References (54)
  • 1
    • 84858184252 scopus 로고    scopus 로고
    • Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions: a meta-analysis
    • Hakkarainen KM, Hedna, K, Petzold M, et al. Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions: a meta-analysis. PLoS One. 2012;7(3):e33236.
    • (2012) PLoS One. , vol.7 , Issue.3
    • Hakkarainen, K.M.1    Hedna, K.2    Petzold, M.3
  • 3
    • 0037238861 scopus 로고    scopus 로고
    • Adverse drug event monitoring at the Food and Drug Administration
    • Ahmad, SR. Adverse drug event monitoring at the Food and Drug Administration. J Gen Intern Med. 2003;18(1):57-60.
    • (2003) J Gen Intern Med. , vol.18 , Issue.1 , pp. 57-60
    • Ahmad, S.R.1
  • 4
    • 84896089082 scopus 로고    scopus 로고
    • Adverse drug reactions of spontaneous reports in Shanghai pediatric population
    • Li H, Guo, XJ, Ye XF, et al. Adverse drug reactions of spontaneous reports in Shanghai pediatric population. PLoS One. 2014;9(2):e89829.
    • (2014) PLoS One. , vol.9 , Issue.2
    • Li, H.1    Guo, X.J.2    Ye, X.F.3
  • 5
    • 53849138066 scopus 로고    scopus 로고
    • VigiBase, the WHO global ICSR database system: basic facts
    • Lindquist M. VigiBase, the WHO global ICSR database system: basic facts. Drug Inform J. 2008;42(5):409-19.
    • (2008) Drug Inform J. , vol.42 , Issue.5 , pp. 409-419
    • Lindquist, M.1
  • 6
    • 79851472033 scopus 로고    scopus 로고
    • Developing the Sentinel System: a national resource for evidence development
    • Behrman RE, Benner JS, Brown JS, et al. Developing the Sentinel System: a national resource for evidence development. N Engl J Med. 2011;364(6):498-99.
    • (2011) N Engl J Med. , vol.364 , Issue.6 , pp. 498-499
    • Behrman, R.E.1    Benner, J.S.2    Brown, J.S.3
  • 7
    • 78650457394 scopus 로고    scopus 로고
    • Development and evaluation of a common data model enabling active drug safety surveillance using disparate healthcare databases
    • Reisinger SJ, Ryan PB, O'Hara DJ, et al. Development and evaluation of a common data model enabling active drug safety surveillance using disparate healthcare databases. J Am Med Inform Assoc. 2010;17(6): 652-62.
    • (2010) J Am Med Inform Assoc. , vol.17 , Issue.6 , pp. 652-662
    • Reisinger, S.J.1    Ryan, P.B.2    O'Hara, D.J.3
  • 8
    • 78650495544 scopus 로고    scopus 로고
    • Drug safety surveillance using de-identified EMR and claims data: issues and challenges
    • Nadkarni PM. Drug safety surveillance using de-identified EMR and claims data: issues and challenges. J Am Med Inform Assoc. 2010;17(6):671-74.
    • (2010) J Am Med Inform Assoc. , vol.17 , Issue.6 , pp. 671-674
    • Nadkarni, P.M.1
  • 9
    • 65349157361 scopus 로고    scopus 로고
    • Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study
    • Wang X, Hripcsak G, Markatou M, et al. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009;16(3):328-37.
    • (2009) J Am Med Inform Assoc. , vol.16 , Issue.3 , pp. 328-337
    • Wang, X.1    Hripcsak, G.2    Markatou, M.3
  • 11
    • 84876670577 scopus 로고    scopus 로고
    • Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions
    • Harpaz R, Vilar S, Dumouchel W, et al. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J Am Med Inform Assoc. 2013;20(3):413-19.
    • (2013) J Am Med Inform Assoc. , vol.20 , Issue.3 , pp. 413-419
    • Harpaz, R.1    Vilar, S.2    Dumouchel, W.3
  • 13
    • 84855919063 scopus 로고    scopus 로고
    • Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
    • Benton A, Ungar L, Hill S, et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform. 2011;44(6):989-96.
    • (2011) J Biomed Inform. , vol.44 , Issue.6 , pp. 989-996
    • Benton, A.1    Ungar, L.2    Hill, S.3
  • 14
    • 84870409509 scopus 로고    scopus 로고
    • Detecting signals of adverse drug reactions from health consumer contributed content in social media
    • Discovery and Data Mining Workshop on Health Informatics (HI-SIGKDD)
    • Yang C, Jiang L, Yang H, et al. Detecting signals of adverse drug reactions from health consumer contributed content in social media. In: Proceedings of the 18th Association for Computing Machinery Special Interest Group on Knowledge Discovery and Data Mining Workshop on Health Informatics (HI-SIGKDD); 2012:1-8.
    • (2012) In: Proceedings of the 18th Association for Computing Machinery Special Interest Group on Knowledge , pp. 1-8
    • Yang, C.1    Jiang, L.2    Yang, H.3
  • 15
    • 84875466594 scopus 로고    scopus 로고
    • ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites
    • 7814LNCS
    • Yates A, Goharian N. ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites. Adv Inform Retrieval. 2013;7814LNCS:816-19.
    • (2013) Adv Inform Retrieval. , pp. 816-819
    • Yates, A.1    Goharian, N.2
  • 16
    • 84879892778 scopus 로고    scopus 로고
    • Web-scale pharmacovigilance: listening to signals from the crowd
    • White RW, Tatonetti NP, Shah NH, et al. Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc. 2013;20(3):404-08.
    • (2013) J Am Med Inform Assoc. , vol.20 , Issue.3 , pp. 404-408
    • White, R.W.1    Tatonetti, N.P.2    Shah, N.H.3
  • 17
    • 84901857191 scopus 로고    scopus 로고
    • Digital drug safety surveillance: monitoring pharmaceutical products in Twitter
    • Freifeld CC, Brownstein JS, Menone CM, et al. Digital drug safety surveillance: monitoring pharmaceutical products in Twitter. Drug Saf. 2014;37(5):343-50.
    • (2014) Drug Saf. , vol.37 , Issue.5 , pp. 343-350
    • Freifeld, C.C.1    Brownstein, J.S.2    Menone, C.M.3
  • 20
    • 84964312897 scopus 로고    scopus 로고
    • Pharmacovigilance on Twitter? Mining tweets for adverse drug reactions
    • O'Connor K,Nikfarjam A, Ginn R, et al. Pharmacovigilance on Twitter? Mining tweets for adverse drug reactions. AMIA Annu Symp Proc; 2104:924-33.
    • (2014) AMIA Annu Symp Proc , pp. 924-933
    • O'Connor, K.1    Nikfarjam, A.2    Ginn, R.3
  • 21
    • 84927943705 scopus 로고    scopus 로고
    • Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
    • Nikfarjam A, Sarker A, O'Connor K, et al. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc. 2015;22(3):671-81.
    • (2015) J Am Med Inform Assoc. , vol.22 , Issue.3 , pp. 671-681
    • Nikfarjam, A.1    Sarker, A.2    O'Connor, K.3
  • 26
    • 70349284484 scopus 로고    scopus 로고
    • Supervised sequence labeling with recurrent neural networks (doctoral dissertation)
    • Graves A. Supervised sequence labeling with recurrent neural networks (doctoral dissertation). Studies in Computational Intelligence 385, Springer; 2012:1-131.
    • (2012) Studies in Computational Intelligence 385, Springer , pp. 1-131
    • Graves, A.1
  • 32
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional LSTM and other neural network architectures
    • Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005;18(5-6):602-10.
    • (2005) Neural Netw. , vol.18 , Issue.5-6 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 34
    • 85026384380 scopus 로고    scopus 로고
    • Part-of-speech tagging for Twitter: word clusters and other advances.
    • CMU-ML-12-107. 2012.Accessed August 2016.
    • Owoputi O, O'Connor B, Dyer C, et al. Part-of-speech tagging for Twitter: word clusters and other advances. Carnegie Mellon University. CMU-ML-12-107. 2012. www.cs.cmu.edu/ark/TweetNLP/owoputi+etal.tr12.pdf. Accessed August 2016.
    • Carnegie Mellon University.
    • Owoputi, O.1    O'Connor, B.2    Dyer, C.3
  • 36
    • 85083951332 scopus 로고    scopus 로고
    • Efficient Estimation of Word Representations in Vector Space.
    • arXiv preprint arXiv:1301.3781. arxiv.org/pdf/1301.3781v3.pdf. Accessed August 1, 2016.
    • Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781. 2013. arxiv. org/pdf/1301.3781v3.pdf. Accessed August 1, 2016.
    • (2013)
    • Mikolov, T.1    Chen, K.2    Corrado, G.3
  • 37
    • 85044236120 scopus 로고    scopus 로고
    • Accessed August 1, 2016.
    • Chollet F. Keras. GitHub Repository. 2016. github.com/fchollet/keras. Accessed August 1, 2016.
    • (2016) GitHub Repository.
    • Chollet, F.K.1
  • 40
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos, PJ. Backpropagation through time: what it does and how to do it. Proc IEEE. 1990;78(10):1550-60.
    • (1990) Proc IEEE. , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 41
    • 85026400869 scopus 로고    scopus 로고
    • consumerhealthvocab. org. Accessed August 1
    • Open Source Collaborative Consumer Health Vocabulary Initiative. consumerhealthvocab. org. Accessed August 1, 2016.
    • (2016)
  • 44
    • 85026415107 scopus 로고    scopus 로고
    • GitHub Repository. Accessed August 1, 2016.
    • Guo Z. DepND. GitHub Repository. 2016. github.com/zachguo/DepND. Accessed August 1, 2016.
    • (2016) DepND.
    • Guo, Z.1
  • 45
    • 85026355162 scopus 로고    scopus 로고
    • Software package. Accessed August 1, 2016.
    • Sagae, K GDep (GENIA dependency parser). Software package. 2016. sagae.bitbucket.org/gdep/. Accessed August 1, 2016.
    • (2016)
  • 47
    • 33644946285 scopus 로고    scopus 로고
    • Various criteria in the evaluation of biomedical named entity recognition
    • Tsai RT, Wu SH, Chou WC, et al. Various criteria in the evaluation of biomedical named entity recognition. BMC Bioinformatics. 2006;7: 92-100.
    • (2006) BMC Bioinformatics. , vol.7 , pp. 92-100
    • Tsai, R.T.1    Wu, S.H.2    Chou, W.C.3
  • 49
    • 0003516648 scopus 로고
    • Empirical Methods for Artificial Intelligence
    • Cohen P. Empirical Methods for Artificial Intelligence. Cambridge, MA: MIT Press; 1995:165-75.
    • (1995) Cambridge, MA: MIT Press , pp. 165-175
    • Cohen, P.1
  • 51
    • 84971287198 scopus 로고    scopus 로고
    • MIMIC-III, a freely accessible critical care database
    • Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Scientific Data. 2016; 3: 160035.
    • (2016) Scientific Data. , vol.3 , pp. 160035
    • Johnson, A.E.W.1    Pollard, T.J.2    Shen, L.3
  • 53
    • 84924285421 scopus 로고    scopus 로고
    • Portable automatic text classification for adverse drug reaction detection via multi-corpus training
    • Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J Biomed Inform. 2015; 53: 196-207.
    • (2015) J Biomed Inform. , vol.53 , pp. 196-207
    • Sarker, A.1    Gonzalez, G.2
  • 54
    • 84978034203 scopus 로고    scopus 로고
    • Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts
    • Korkontzelos I, Nikfarjam A, Shardlow M, et al. Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. J Biomed Inform. 2016; 62: 148-58.
    • (2016) J Biomed Inform. , vol.62 , pp. 148-158
    • Korkontzelos, I.1    Nikfarjam, A.2    Shardlow, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.