-
1
-
-
84858184252
-
Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions: a meta-analysis
-
Hakkarainen KM, Hedna, K, Petzold M, et al. Percentage of patients with preventable adverse drug reactions and preventability of adverse drug reactions: a meta-analysis. PLoS One. 2012;7(3):e33236.
-
(2012)
PLoS One.
, vol.7
, Issue.3
-
-
Hakkarainen, K.M.1
Hedna, K.2
Petzold, M.3
-
3
-
-
0037238861
-
Adverse drug event monitoring at the Food and Drug Administration
-
Ahmad, SR. Adverse drug event monitoring at the Food and Drug Administration. J Gen Intern Med. 2003;18(1):57-60.
-
(2003)
J Gen Intern Med.
, vol.18
, Issue.1
, pp. 57-60
-
-
Ahmad, S.R.1
-
4
-
-
84896089082
-
Adverse drug reactions of spontaneous reports in Shanghai pediatric population
-
Li H, Guo, XJ, Ye XF, et al. Adverse drug reactions of spontaneous reports in Shanghai pediatric population. PLoS One. 2014;9(2):e89829.
-
(2014)
PLoS One.
, vol.9
, Issue.2
-
-
Li, H.1
Guo, X.J.2
Ye, X.F.3
-
5
-
-
53849138066
-
VigiBase, the WHO global ICSR database system: basic facts
-
Lindquist M. VigiBase, the WHO global ICSR database system: basic facts. Drug Inform J. 2008;42(5):409-19.
-
(2008)
Drug Inform J.
, vol.42
, Issue.5
, pp. 409-419
-
-
Lindquist, M.1
-
6
-
-
79851472033
-
Developing the Sentinel System: a national resource for evidence development
-
Behrman RE, Benner JS, Brown JS, et al. Developing the Sentinel System: a national resource for evidence development. N Engl J Med. 2011;364(6):498-99.
-
(2011)
N Engl J Med.
, vol.364
, Issue.6
, pp. 498-499
-
-
Behrman, R.E.1
Benner, J.S.2
Brown, J.S.3
-
7
-
-
78650457394
-
Development and evaluation of a common data model enabling active drug safety surveillance using disparate healthcare databases
-
Reisinger SJ, Ryan PB, O'Hara DJ, et al. Development and evaluation of a common data model enabling active drug safety surveillance using disparate healthcare databases. J Am Med Inform Assoc. 2010;17(6): 652-62.
-
(2010)
J Am Med Inform Assoc.
, vol.17
, Issue.6
, pp. 652-662
-
-
Reisinger, S.J.1
Ryan, P.B.2
O'Hara, D.J.3
-
8
-
-
78650495544
-
Drug safety surveillance using de-identified EMR and claims data: issues and challenges
-
Nadkarni PM. Drug safety surveillance using de-identified EMR and claims data: issues and challenges. J Am Med Inform Assoc. 2010;17(6):671-74.
-
(2010)
J Am Med Inform Assoc.
, vol.17
, Issue.6
, pp. 671-674
-
-
Nadkarni, P.M.1
-
9
-
-
65349157361
-
Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study
-
Wang X, Hripcsak G, Markatou M, et al. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009;16(3):328-37.
-
(2009)
J Am Med Inform Assoc.
, vol.16
, Issue.3
, pp. 328-337
-
-
Wang, X.1
Hripcsak, G.2
Markatou, M.3
-
11
-
-
84876670577
-
Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions
-
Harpaz R, Vilar S, Dumouchel W, et al. Combing signals from spontaneous reports and electronic health records for detection of adverse drug reactions. J Am Med Inform Assoc. 2013;20(3):413-19.
-
(2013)
J Am Med Inform Assoc.
, vol.20
, Issue.3
, pp. 413-419
-
-
Harpaz, R.1
Vilar, S.2
Dumouchel, W.3
-
13
-
-
84855919063
-
Identifying potential adverse effects using the web: a new approach to medical hypothesis generation
-
Benton A, Ungar L, Hill S, et al. Identifying potential adverse effects using the web: a new approach to medical hypothesis generation. J Biomed Inform. 2011;44(6):989-96.
-
(2011)
J Biomed Inform.
, vol.44
, Issue.6
, pp. 989-996
-
-
Benton, A.1
Ungar, L.2
Hill, S.3
-
14
-
-
84870409509
-
Detecting signals of adverse drug reactions from health consumer contributed content in social media
-
Discovery and Data Mining Workshop on Health Informatics (HI-SIGKDD)
-
Yang C, Jiang L, Yang H, et al. Detecting signals of adverse drug reactions from health consumer contributed content in social media. In: Proceedings of the 18th Association for Computing Machinery Special Interest Group on Knowledge Discovery and Data Mining Workshop on Health Informatics (HI-SIGKDD); 2012:1-8.
-
(2012)
In: Proceedings of the 18th Association for Computing Machinery Special Interest Group on Knowledge
, pp. 1-8
-
-
Yang, C.1
Jiang, L.2
Yang, H.3
-
15
-
-
84875466594
-
ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites
-
7814LNCS
-
Yates A, Goharian N. ADRTrace: detecting expected and unexpected adverse drug reactions from user reviews on social media sites. Adv Inform Retrieval. 2013;7814LNCS:816-19.
-
(2013)
Adv Inform Retrieval.
, pp. 816-819
-
-
Yates, A.1
Goharian, N.2
-
16
-
-
84879892778
-
Web-scale pharmacovigilance: listening to signals from the crowd
-
White RW, Tatonetti NP, Shah NH, et al. Web-scale pharmacovigilance: listening to signals from the crowd. J Am Med Inform Assoc. 2013;20(3):404-08.
-
(2013)
J Am Med Inform Assoc.
, vol.20
, Issue.3
, pp. 404-408
-
-
White, R.W.1
Tatonetti, N.P.2
Shah, N.H.3
-
17
-
-
84901857191
-
Digital drug safety surveillance: monitoring pharmaceutical products in Twitter
-
Freifeld CC, Brownstein JS, Menone CM, et al. Digital drug safety surveillance: monitoring pharmaceutical products in Twitter. Drug Saf. 2014;37(5):343-50.
-
(2014)
Drug Saf.
, vol.37
, Issue.5
, pp. 343-350
-
-
Freifeld, C.C.1
Brownstein, J.S.2
Menone, C.M.3
-
20
-
-
84964312897
-
Pharmacovigilance on Twitter? Mining tweets for adverse drug reactions
-
O'Connor K,Nikfarjam A, Ginn R, et al. Pharmacovigilance on Twitter? Mining tweets for adverse drug reactions. AMIA Annu Symp Proc; 2104:924-33.
-
(2014)
AMIA Annu Symp Proc
, pp. 924-933
-
-
O'Connor, K.1
Nikfarjam, A.2
Ginn, R.3
-
21
-
-
84927943705
-
Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features
-
Nikfarjam A, Sarker A, O'Connor K, et al. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features. J Am Med Inform Assoc. 2015;22(3):671-81.
-
(2015)
J Am Med Inform Assoc.
, vol.22
, Issue.3
, pp. 671-681
-
-
Nikfarjam, A.1
Sarker, A.2
O'Connor, K.3
-
24
-
-
85012154122
-
Online Proceedings of the Social Media Mining Shared Task Workshop
-
Sarker, A, Nikfarjam, A, Gonzalez, G. Online Proceedings of the Social Media Mining Shared Task Workshop. Pacific Symposium on Biocomputing. 2016;21:581-92.
-
(2016)
Pacific Symposium on Biocomputing.
, vol.21
, pp. 581-592
-
-
Sarker, A.1
Nikfarjam, A.2
Gonzalez, G.3
-
26
-
-
70349284484
-
Supervised sequence labeling with recurrent neural networks (doctoral dissertation)
-
Graves A. Supervised sequence labeling with recurrent neural networks (doctoral dissertation). Studies in Computational Intelligence 385, Springer; 2012:1-131.
-
(2012)
Studies in Computational Intelligence 385, Springer
, pp. 1-131
-
-
Graves, A.1
-
32
-
-
27744588611
-
Framewise phoneme classification with bidirectional LSTM and other neural network architectures
-
Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 2005;18(5-6):602-10.
-
(2005)
Neural Netw.
, vol.18
, Issue.5-6
, pp. 602-610
-
-
Graves, A.1
Schmidhuber, J.2
-
34
-
-
85026384380
-
Part-of-speech tagging for Twitter: word clusters and other advances.
-
CMU-ML-12-107. 2012.Accessed August 2016.
-
Owoputi O, O'Connor B, Dyer C, et al. Part-of-speech tagging for Twitter: word clusters and other advances. Carnegie Mellon University. CMU-ML-12-107. 2012. www.cs.cmu.edu/ark/TweetNLP/owoputi+etal.tr12.pdf. Accessed August 2016.
-
Carnegie Mellon University.
-
-
Owoputi, O.1
O'Connor, B.2
Dyer, C.3
-
36
-
-
85083951332
-
Efficient Estimation of Word Representations in Vector Space.
-
arXiv preprint arXiv:1301.3781. arxiv.org/pdf/1301.3781v3.pdf. Accessed August 1, 2016.
-
Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781. 2013. arxiv. org/pdf/1301.3781v3.pdf. Accessed August 1, 2016.
-
(2013)
-
-
Mikolov, T.1
Chen, K.2
Corrado, G.3
-
37
-
-
85044236120
-
-
Accessed August 1, 2016.
-
Chollet F. Keras. GitHub Repository. 2016. github.com/fchollet/keras. Accessed August 1, 2016.
-
(2016)
GitHub Repository.
-
-
Chollet, F.K.1
-
40
-
-
0025503558
-
Backpropagation through time: what it does and how to do it
-
Werbos, PJ. Backpropagation through time: what it does and how to do it. Proc IEEE. 1990;78(10):1550-60.
-
(1990)
Proc IEEE.
, vol.78
, Issue.10
, pp. 1550-1560
-
-
Werbos, P.J.1
-
41
-
-
85026400869
-
-
consumerhealthvocab. org. Accessed August 1
-
Open Source Collaborative Consumer Health Vocabulary Initiative. consumerhealthvocab. org. Accessed August 1, 2016.
-
(2016)
-
-
-
43
-
-
83255189974
-
Smith. Part-of-speech tagging for Twitter: annotation, features, and experiments.
-
Companion Volume. Portland, OR; June
-
Gimpel K, Schneider N, O'Connor B, et al. Smith. Part-of-speech tagging for Twitter: annotation, features, and experiments. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, Companion Volume. Portland, OR; June 2011.
-
(2011)
In Proceedings of the Annual Meeting of the Association for Computational Linguistics
-
-
Gimpel, K.1
Schneider, N.2
O'Connor, B.3
-
44
-
-
85026415107
-
-
GitHub Repository. Accessed August 1, 2016.
-
Guo Z. DepND. GitHub Repository. 2016. github.com/zachguo/DepND. Accessed August 1, 2016.
-
(2016)
DepND.
-
-
Guo, Z.1
-
45
-
-
85026355162
-
-
Software package. Accessed August 1, 2016.
-
Sagae, K GDep (GENIA dependency parser). Software package. 2016. sagae.bitbucket.org/gdep/. Accessed August 1, 2016.
-
(2016)
-
-
-
47
-
-
33644946285
-
Various criteria in the evaluation of biomedical named entity recognition
-
Tsai RT, Wu SH, Chou WC, et al. Various criteria in the evaluation of biomedical named entity recognition. BMC Bioinformatics. 2006;7: 92-100.
-
(2006)
BMC Bioinformatics.
, vol.7
, pp. 92-100
-
-
Tsai, R.T.1
Wu, S.H.2
Chou, W.C.3
-
49
-
-
0003516648
-
Empirical Methods for Artificial Intelligence
-
Cohen P. Empirical Methods for Artificial Intelligence. Cambridge, MA: MIT Press; 1995:165-75.
-
(1995)
Cambridge, MA: MIT Press
, pp. 165-175
-
-
Cohen, P.1
-
51
-
-
84971287198
-
MIMIC-III, a freely accessible critical care database
-
Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible critical care database. Scientific Data. 2016; 3: 160035.
-
(2016)
Scientific Data.
, vol.3
, pp. 160035
-
-
Johnson, A.E.W.1
Pollard, T.J.2
Shen, L.3
-
53
-
-
84924285421
-
Portable automatic text classification for adverse drug reaction detection via multi-corpus training
-
Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J Biomed Inform. 2015; 53: 196-207.
-
(2015)
J Biomed Inform.
, vol.53
, pp. 196-207
-
-
Sarker, A.1
Gonzalez, G.2
-
54
-
-
84978034203
-
Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts
-
Korkontzelos I, Nikfarjam A, Shardlow M, et al. Analysis of the effect of sentiment analysis on extracting adverse drug reactions from tweets and forum posts. J Biomed Inform. 2016; 62: 148-58.
-
(2016)
J Biomed Inform.
, vol.62
, pp. 148-158
-
-
Korkontzelos, I.1
Nikfarjam, A.2
Shardlow, M.3
|