-
1
-
-
33745780323
-
The interplay of optimization and machine learning research
-
Bennett KP, Parrado-Hernández E. The interplay of optimization and machine learning research. J Mach Learn Res. 2006;7:1265–81.
-
(2006)
J Mach Learn Res
, vol.7
, pp. 1265-1281
-
-
Bennett, K.P.1
Parrado-Hernández, E.2
-
2
-
-
85013977220
-
Deep learning applications and challenges in big data analytics
-
Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics. J Big Data. 2015;2(1):1–21.
-
(2015)
J Big Data
, vol.2
, Issue.1
, pp. 1-21
-
-
Najafabadi, M.M.1
Villanustre, F.2
Khoshgoftaar, T.M.3
Seliya, N.4
Wald, R.5
Muharemagic, E.6
-
3
-
-
85010458423
-
Strategies and principles of distributed machine learning on big data
-
Xing EP, Ho Q, Xie P, Wei D. Strategies and principles of distributed machine learning on big data. Engineering. 2016;2(2):179–95.
-
(2016)
Engineering
, vol.2
, Issue.2
, pp. 179-195
-
-
Xing, E.P.1
Ho, Q.2
Xie, P.3
Wei, D.4
-
4
-
-
84877760312
-
Large scale distributed deep networks
-
Nevada: Curran Associates Inc
-
Dean J, Corrado G, Monga R, Chen K, Devin M, Mao M, Senior A, Tucker P, Yang K, Le QV, et al. Large scale distributed deep networks. In: Advances in neural information processing systems. Lake Tahoe, Nevada: Curran Associates Inc.; 2012. p. 1223–31.
-
(2012)
Advances in neural information processing systems. Lake Tahoe
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Senior, A.7
Tucker, P.8
Yang, K.9
Le, Q.V.10
-
5
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Curran Associates: Inc
-
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ, editors. Advances in neural information processing systems. Lake Tahoe, Nevada: Curran Associates, Inc.; 2012. p. 1097–05.
-
(2012)
Advances in neural information processing systems. Lake Tahoe, Nevada
, pp. 1005-1097
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
Pereira, F.4
Burges, C.J.C.5
Bottou, L.6
Weinberger, K.Q.7
-
6
-
-
85024915681
-
A hierarchical distributed processing framework for big image data
-
Dong L, Lin Z, Liang Y, He L, Zhang N, Chen Q, Cao X, Izquierdo E. A hierarchical distributed processing framework for big image data. IEEE Trans Big Data. 2016;2(4):297–309.
-
(2016)
IEEE Trans Big Data
, vol.2
, Issue.4
, pp. 297-309
-
-
Dong, L.1
Lin, Z.2
Liang, Y.3
He, L.4
Zhang, N.5
Chen, Q.6
Cao, X.7
Izquierdo, E.8
-
7
-
-
85009415089
-
Applying parallel computing techniques to analyze terabyte atmospheric boundary layer model outputs
-
Sliwinski TS, Kang SL. Applying parallel computing techniques to analyze terabyte atmospheric boundary layer model outputs. Big Data Res. 2017;7:31–41.
-
(2017)
Big Data Res
, vol.7
, pp. 31-41
-
-
Sliwinski, T.S.1
Kang, S.L.2
-
9
-
-
80052686241
-
Parallelized stochastic gradient descent
-
Columbia, Canada: Curran Associates Inc
-
Zinkevich M, Weimer M, Li L, Smola AJ. Parallelized stochastic gradient descent. In: Lafferty JD, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A, editors. Advances in neural information processing systems. Vancouver, British Columbia, Canada: Curran Associates Inc.; 2010. p. 2595–03.
-
(2010)
Advances in neural information processing systems. Vancouver, British
, pp. 2503-2595
-
-
Zinkevich, M.1
Weimer, M.2
Li, L.3
Smola, A.J.4
Lafferty, J.D.5
Williams, C.K.I.6
Shawe-Taylor, J.7
Zemel, R.S.8
Culotta, A.9
-
11
-
-
80053437034
-
On optimization methods for deep learning
-
Ngiam J, Coates A, Lahiri A, Prochnow B, Le QV, Ng AY. On optimization methods for deep learning. In: Proceedings of the 28th international conference on machine learning (ICML-11). 2011. p. 265–72.
-
In: Proceedings of the 28th international conference on machine learning (ICML-11)
, vol.2011
, pp. 265-272
-
-
Ngiam, J.1
Coates, A.2
Lahiri, A.3
Prochnow, B.4
Le, Q.V.5
Ng, A.Y.6
-
12
-
-
84862300219
-
A stochastic quasi-newton method for online convex optimization
-
Schraudolph NN, Yu J, Günter S, et al. A stochastic quasi-newton method for online convex optimization. Artif Intell Stat Conf. 2007;7:436–43.
-
(2007)
Artif Intell Stat Conf
, vol.7
, pp. 436-443
-
-
Schraudolph, N.N.1
Yu, J.2
Günter, S.3
-
15
-
-
37549003336
-
Mapreduce: simplified data processing on large clusters
-
Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
-
(2008)
Commun ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
17
-
-
85183810771
-
-
Datasets, R.D.: A faulttolerant abstraction for inmemory cluster computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mccauley, Michael J. Franklin, Scott Shenker, Ion Stoica University of California: Berkeley.
-
A faulttolerant abstraction for inmemory cluster computing Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy Mccauley, Michael J. Franklin, Scott Shenker, Ion Stoica University of California: Berkeley.
-
-
Datasets, R.D.1
-
18
-
-
84899845537
-
A reliable effective terascale linear learning system
-
Agarwal A, Chapelle O, Dudík M, Langford J. A reliable effective terascale linear learning system. J Mach Learn Res. 2014;15(1):1111–33.
-
(2014)
J Mach Learn Res
, vol.15
, Issue.1
, pp. 1111-1133
-
-
Agarwal, A.1
Chapelle, O.2
Dudík, M.3
Langford, J.4
-
22
-
-
84860625894
-
Hogwild: a lock-free approach to parallelizing stochastic gradient descent
-
Curran Associates: Inc
-
Recht B, Re C, Wright S, Niu F. Hogwild: a lock-free approach to parallelizing stochastic gradient descent. In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira F, Weinberger KQ, editors. Advances in neural information processing systems. Granada, Spain: Curran Associates, Inc.; 2011. p. 693–701.
-
(2011)
Advances in neural information processing systems. Granada, Spain
, pp. 693-701
-
-
Recht, B.1
Re, C.2
Wright, S.3
Niu, F.4
Shawe-Taylor, J.5
Zemel, R.S.6
Bartlett, P.L.7
Pereira, F.8
Weinberger, K.Q.9
-
23
-
-
73649114265
-
Mapreduce: a flexible data processing tool
-
Dean J, Ghemawat S. Mapreduce: a flexible data processing tool. Commun ACM. 2010;53(1):72–7.
-
(2010)
Commun ACM
, vol.53
, Issue.1
, pp. 72-77
-
-
Dean, J.1
Ghemawat, S.2
-
24
-
-
84860560293
-
Scope: easy and efficient parallel processing of massive data sets
-
Chaiken R, Jenkins B, Larson P-Å, Ramsey B, Shakib D, Weaver S, Zhou J. Scope: easy and efficient parallel processing of massive data sets. Proc VLDB Endow. 2008;1(2):1265–76.
-
(2008)
Proc VLDB Endow
, vol.1
, Issue.2
, pp. 1265-1276
-
-
Chaiken, R.1
Jenkins, B.2
Larson, P.3
Ramsey, B.4
Shakib, D.5
Weaver, S.6
Zhou, J.7
-
25
-
-
73649141347
-
Mapreduce and parallel dbmss: friends or foes?
-
Stonebraker M, Abadi D, DeWitt DJ, Madden S, Paulson E, Pavlo A, Rasin A. Mapreduce and parallel dbmss: friends or foes? Commun ACM. 2010;53(1):64–71.
-
(2010)
Commun ACM
, vol.53
, Issue.1
, pp. 64-71
-
-
Stonebraker, M.1
Abadi, D.2
DeWitt, D.J.3
Madden, S.4
Paulson, E.5
Pavlo, A.6
Rasin, A.7
-
26
-
-
30344452311
-
Interpreting the data: parallel analysis with sawzall
-
Pike R, Dorward S, Griesemer R, Quinlan S. Interpreting the data: parallel analysis with sawzall. Sci Program. 2005;13(4):277–98.
-
(2005)
Sci Program
, vol.13
, Issue.4
, pp. 277-298
-
-
Pike, R.1
Dorward, S.2
Griesemer, R.3
Quinlan, S.4
-
27
-
-
77952278077
-
Building a high-level dataflow system on top of map-reduce: the pig experience
-
Gates AF, Natkovich O, Chopra S, Kamath P, Narayanamurthy SM, Olston C, Reed B, Srinivasan S, Srivastava U. Building a high-level dataflow system on top of map-reduce: the pig experience. Proc VLDB Endow. 2009;2(2):1414–25.
-
(2009)
Proc VLDB Endow
, vol.2
, Issue.2
, pp. 1414-1425
-
-
Gates, A.F.1
Natkovich, O.2
Chopra, S.3
Kamath, P.4
Narayanamurthy, S.M.5
Olston, C.6
Reed, B.7
Srinivasan, S.8
Srivastava, U.9
-
28
-
-
84978518772
-
-
Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint. 2016. arXiv:1603.04467.
-
(1603)
Devin M, et al. Tensorflow: large-scale machine learning on heterogeneous distributed systems.
, pp. 4467
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
Davis, A.8
Dean, J.9
-
29
-
-
0014492147
-
Convergence conditions for ascent methods
-
Wolfe P. Convergence conditions for ascent methods. SIAM Rev. 1969;11(2):226–35.
-
(1969)
SIAM Rev
, vol.11
, Issue.2
, pp. 226-235
-
-
Wolfe, P.1
-
30
-
-
85183824754
-
-
White paper, LexisNexis Risk Solutions
-
Team BRD. Ecl language reference. White paper, LexisNexis Risk Solutions. 2015. http://cdn.hpccsystems.com/install/docs/3_4_0_1/ECLLanguageReference.pdf.
-
(2015)
Ecl language reference
-
-
Team, B.R.D.1
|