메뉴 건너뛰기




Volumn 4, Issue 1, 2017, Pages

Large-scale distributed L-BFGS

Author keywords

HPCC systems; Large scale L BFGS implementation; Parallel and distributed processing

Indexed keywords

BIG DATA; CLUSTER COMPUTING; DATA ANALYTICS; DATA MINING; LEARNING ALGORITHMS; LEARNING SYSTEMS; MACHINE LEARNING; OPEN SYSTEMS;

EID: 85024831970     PISSN: None     EISSN: 21961115     Source Type: Journal    
DOI: 10.1186/s40537-017-0084-5     Document Type: Article
Times cited : (31)

References (32)
  • 1
    • 33745780323 scopus 로고    scopus 로고
    • The interplay of optimization and machine learning research
    • Bennett KP, Parrado-Hernández E. The interplay of optimization and machine learning research. J Mach Learn Res. 2006;7:1265–81.
    • (2006) J Mach Learn Res , vol.7 , pp. 1265-1281
    • Bennett, K.P.1    Parrado-Hernández, E.2
  • 3
    • 85010458423 scopus 로고    scopus 로고
    • Strategies and principles of distributed machine learning on big data
    • Xing EP, Ho Q, Xie P, Wei D. Strategies and principles of distributed machine learning on big data. Engineering. 2016;2(2):179–95.
    • (2016) Engineering , vol.2 , Issue.2 , pp. 179-195
    • Xing, E.P.1    Ho, Q.2    Xie, P.3    Wei, D.4
  • 7
    • 85009415089 scopus 로고    scopus 로고
    • Applying parallel computing techniques to analyze terabyte atmospheric boundary layer model outputs
    • Sliwinski TS, Kang SL. Applying parallel computing techniques to analyze terabyte atmospheric boundary layer model outputs. Big Data Res. 2017;7:31–41.
    • (2017) Big Data Res , vol.7 , pp. 31-41
    • Sliwinski, T.S.1    Kang, S.L.2
  • 12
    • 84862300219 scopus 로고    scopus 로고
    • A stochastic quasi-newton method for online convex optimization
    • Schraudolph NN, Yu J, Günter S, et al. A stochastic quasi-newton method for online convex optimization. Artif Intell Stat Conf. 2007;7:436–43.
    • (2007) Artif Intell Stat Conf , vol.7 , pp. 436-443
    • Schraudolph, N.N.1    Yu, J.2    Günter, S.3
  • 15
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: simplified data processing on large clusters
    • Dean J, Ghemawat S. Mapreduce: simplified data processing on large clusters. Commun ACM. 2008;51(1):107–13.
    • (2008) Commun ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 18
    • 84899845537 scopus 로고    scopus 로고
    • A reliable effective terascale linear learning system
    • Agarwal A, Chapelle O, Dudík M, Langford J. A reliable effective terascale linear learning system. J Mach Learn Res. 2014;15(1):1111–33.
    • (2014) J Mach Learn Res , vol.15 , Issue.1 , pp. 1111-1133
    • Agarwal, A.1    Chapelle, O.2    Dudík, M.3    Langford, J.4
  • 23
    • 73649114265 scopus 로고    scopus 로고
    • Mapreduce: a flexible data processing tool
    • Dean J, Ghemawat S. Mapreduce: a flexible data processing tool. Commun ACM. 2010;53(1):72–7.
    • (2010) Commun ACM , vol.53 , Issue.1 , pp. 72-77
    • Dean, J.1    Ghemawat, S.2
  • 26
    • 30344452311 scopus 로고    scopus 로고
    • Interpreting the data: parallel analysis with sawzall
    • Pike R, Dorward S, Griesemer R, Quinlan S. Interpreting the data: parallel analysis with sawzall. Sci Program. 2005;13(4):277–98.
    • (2005) Sci Program , vol.13 , Issue.4 , pp. 277-298
    • Pike, R.1    Dorward, S.2    Griesemer, R.3    Quinlan, S.4
  • 29
    • 0014492147 scopus 로고
    • Convergence conditions for ascent methods
    • Wolfe P. Convergence conditions for ascent methods. SIAM Rev. 1969;11(2):226–35.
    • (1969) SIAM Rev , vol.11 , Issue.2 , pp. 226-235
    • Wolfe, P.1
  • 30
    • 85183824754 scopus 로고    scopus 로고
    • White paper, LexisNexis Risk Solutions
    • Team BRD. Ecl language reference. White paper, LexisNexis Risk Solutions. 2015. http://cdn.hpccsystems.com/install/docs/3_4_0_1/ECLLanguageReference.pdf.
    • (2015) Ecl language reference
    • Team, B.R.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.