-
2
-
-
0038453192
-
Rademacher and Gaussian complexities: Risk bounds and structural results
-
P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.L.1
Mendelson, S.2
-
5
-
-
80051762104
-
Distributed optimization and statistical learning via the alternating direction method of multipliers
-
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning, 3:1-122, 2011.
-
(2011)
Foundations and Trends in Machine Learning
, vol.3
, pp. 1-122
-
-
Boyd, S.1
Parikh, N.2
Chu, E.3
Peleato, B.4
Eckstein, J.5
-
6
-
-
84899786988
-
Sibyl: A system for large scale supervised machine learning
-
A short presentation
-
K. Canini, T. Chandra, E. Ie, J. McFadden, K. Goldman, M. Gunter, J. Harmsen, K. LeFevre, D. Lepikhin, T. L. Llinares, I. Mukherjee, F. Pereira, J. Redstone, T. Shaked, and Y. Singer. Sibyl: A system for large scale supervised machine learning. In MLSS Santa Cruz, 2012. URL http://users.soe.ucsc.edu/- niejiazhong/slides/chandra.pdf. A short presentation.
-
(2012)
MLSS Santa Cruz
-
-
Canini, K.1
Chandra, T.2
Ie, E.3
McFadden, J.4
Goldman, K.5
Gunter, M.6
Harmsen, J.7
Lefevre, K.8
Lepikhin, D.9
Llinares, T.L.10
Mukherjee, I.11
Pereira, F.12
Redstone, J.13
Shaked, T.14
Singer, Y.15
-
7
-
-
84899821216
-
Sibyl: A system for large scale machine learning
-
A keynote talk
-
T. Chandra, E. Ie, K. Goldman, T. L. Llinares, J. McFadden, F. Pereira, J. Redstone, T. Shaked, and Y. Singer. Sibyl: a system for large scale machine learning. In LADIS 2010: The 4th ACM SIGOPS/SIGACT Workshop on Large Scale Distributed Systems and Middleware, 2010. URL http://www.magicbroom.info/Papers/ Ladis10.pdf. A keynote talk.
-
(2010)
LADIS 2010: The 4th ACM SIGOPS/SIGACT Workshop on Large Scale Distributed Systems and Middleware
-
-
Chandra, T.1
Ie, E.2
Goldman, K.3
Llinares, T.L.4
McFadden, J.5
Pereira, F.6
Redstone, J.7
Shaked, T.8
Singer, Y.9
-
9
-
-
56049109090
-
Mapreduce for machine learning on multicore
-
C.T. Chu, S.K. Kim, Y.A. Lin, Y.Y. Yu, G. Bradski, A.Y. Ng, and K. Olukotun. Mapreduce for machine learning on multicore. In Advances in Neural Information Processing Systems 19, volume 19, page 281, 2007.
-
(2007)
Advances in Neural Information Processing Systems 19
, vol.19
, pp. 281
-
-
Chu, C.T.1
Kim, S.K.2
Lin, Y.A.3
Yu, Y.Y.4
Bradski, G.5
Ng, A.Y.6
Olukotun, K.7
-
10
-
-
37549003336
-
Mapreduce: Simplified data processing on large clusters
-
J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Com- munications of the ACM, 51:107-113, 2008.
-
(2008)
Communications of the ACM
, vol.51
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
11
-
-
84883190472
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, Q. Le, M. Mao, M. A. Ranzato, A. Senior, P. Tucker, K. Yang, and A. Ng. Large scale distributed deep networks. In Advances in Neural Information Processing Systems 25, pages 1232-1240. 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1232-1240
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Le, Q.6
Mao, M.7
Ranzato, M.A.8
Senior, A.9
Tucker, P.10
Yang, K.11
Ng, A.12
-
12
-
-
84857527621
-
Optimal distributed online prediction using mini-batches
-
O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction using mini-batches. Journal of Machine Learning Research, 13:165-202, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 165-202
-
-
Dekel, O.1
Gilad-Bachrach, R.2
Shamir, O.3
Xiao, L.4
-
14
-
-
80052250414
-
Adaptive subgradient methods for online learning and stochastic optimization
-
J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12:2121-2159, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.12
, pp. 2121-2159
-
-
Duchi, J.1
Hazan, E.2
Singer, Y.3
-
15
-
-
84857708133
-
Dual averaging for distributed optimization: Convergence analysis and network scaling
-
J.C. Duchi, A. Agarwal, and M.J. Wainwright. Dual averaging for distributed optimization: Convergence analysis and network scaling. Automatic Control, IEEE Transactions on, 57(3):592-606, 2012.
-
(2012)
Automatic Control IEEE Transactions on
, vol.57
, Issue.3
, pp. 592-606
-
-
Duchi, J.C.1
Agarwal, A.2
Wainwright, M.J.3
-
16
-
-
80051744633
-
Mapreduce/bigtable for distributed optimization
-
K. Hall, S. Gilpin, and G. Mann. Mapreduce/bigtable for distributed optimization. In Workshop on Learning on Cores, Clusters, and Clouds, 2010.
-
(2010)
Workshop on Learning on Cores, Clusters, and Clouds
-
-
Hall, K.1
Gilpin, S.2
Mann, G.3
-
22
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimization. Mathematical Programming, 45:503-528, 1989. (Pubitemid 20660315)
-
(1989)
Mathematical Programming, Series B
, vol.45
, Issue.3
, pp. 503-528
-
-
Liu Dong, C.1
Nocedal Jorge2
-
23
-
-
80053161467
-
Graphlab: A new framework for parallel machine learning
-
Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Graphlab: A new framework for parallel machine learning. In Uncertainty in Artificial Intelligence, 2010.
-
(2010)
Uncertainty in Artificial Intelligence
-
-
Low, Y.1
Gonzalez, J.2
Kyrola, A.3
Bickson, D.4
Guestrin, C.5
Hellerstein, J.M.6
-
24
-
-
0001208950
-
Parallel gradient distribution in unconstrained optimization
-
O. L. Mangasarian. Parallel gradient distribution in unconstrained optimization. SIAM Journal on Optimization, 33:1916-1925, 1995.
-
(1995)
SIAM Journal on Optimization
, vol.33
, pp. 1916-1925
-
-
Mangasarian, O.L.1
-
27
-
-
34249966948
-
Block truncated-Newton methods for parallel optimization
-
S. G. Nash and A. Sofer. Block truncated-newton methods for parallel optimization. Math- ematical Programming, 45:529-546, 1989. (Pubitemid 20660316)
-
(1989)
Mathematical Programming, Series B
, vol.45
, Issue.3
, pp. 529-546
-
-
Nash Stephen, G.1
Sofer Ariela2
-
28
-
-
84966262179
-
Updating quasi-Newton matrices with limited storage
-
J. Nocedal. Updating quasi-Newton matrices with limited storage. Math. Comp., 35(151): 773-782, 1980.
-
(1980)
Math. Comp.
, vol.35
, Issue.151
, pp. 773-782
-
-
Nocedal, J.1
-
32
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
K. Weinberger, A. Dasgupta, J. Langford, A. Smola, and J. Attenberg. Feature hashing for large scale multitask learning. In International Conference on Machine Learning, 2009.
-
(2009)
International Conference on Machine Learning
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
34
-
-
82155187960
-
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
-
EECS Department, University of California, Berkeley
-
M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin, S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. Technical Report UCB/EECS-2011-82, EECS Department, University of California, Berkeley, 2011.
-
(2011)
Technical Report UCB/EECS-2011-82
-
-
Zaharia, M.1
Chowdhury, M.2
Das, T.3
Dave, A.4
Ma, J.5
McCauley, M.6
Franklin, M.7
Shenker, S.8
Stoica, I.9
|